基本信息
张旭 中国科学院大连化学物理研究所
电子邮件: zhangxu6@dicp.ac.cn
通信地址: 大连市沙河口区中山路457号,生物楼
邮政编码:116023
研究方向
1. 肌肉组织芯片构筑与应用研究
研究体外肌肉组织工程化构筑新方法,建立基于血管化肌肉芯片的骨骼肌、心肌病理模型;利用体外疾病模型探索特发性肌炎、心肌损伤等疾病的发病过程并进行药物评价研究。
2. 动脉粥样硬化体外模型构建与药物筛评
建立人源性、具有动脉血管主要结构和功能特征的三维血管组织芯片模型;研究高血脂、高血糖、炎症反应、慢性肝病等病理因素在动脉粥样硬化形成过程中的关键作用,解决目前动脉粥样硬化研究模型单一的问题;并为临床研究、特效药物的开发提供新策略、新方法。
3. 多器官芯片体系构建与功能调控研究
围绕脑、心、肝、肠、肌肉等人体重要组织器官,建立体外多器官功能模块、以及多器官单元可控组装互联的关键核心技术,实现多器官芯片体系的构筑;整合生物传感技术,建立集成化器官芯片电极传感新体系,实现芯片内电化学、电生理、多物理场等多种电极的集成与信号采集分析,增强器官功能模拟的可控性及稳定性,用于通量化器官生理病理模型构建、药物筛选评价研究。
招生信息
欢迎生物技术、生物工程、生物医学工程、生物制药、分析化学、基础医学等专业的学生报考。
招生专业
070302-分析化学
研究领域
器官芯片、微流控、组织工程
教育背景
2008-09--2015-01 中国科学院大连化学物理研究所 博士2004-09--2008-07 华南理工大学 本科
专利与奖励
专利成果
[1] 裴为华, 张旭, 陈英, 李亚民, 王阳. 转印薄膜器件的方法. CN: CN115101702A, 2022-09-23.[2] 秦建华, 赵孟乾, 张旭. 一种用于体外构建大尺寸血管化肌肉束的模具及其使用方法. CN: CN114214195A, 2022-03-22.[3] 秦建华, 张旭, 赵孟乾. 一种基于血管化心肌的冠心病体外模型及其构建方法和应用. CN: CN114196615A, 2022-03-18.[4] 秦建华, 李中玉, 张旭. 一种基于微流控芯片的细胞双向侵袭监测方法. CN: CN106566863A, 2017-04-19.[5] 秦建华, 石杨, 张旭. 基于微流控芯片的三维细胞微球培养与可控释放方法. CN: CN105733943A, 2016-07-06.[6] 秦建华, 张旭, 许慧. 一种基于微流控芯片的多功能区域细胞三维共培养方法. CN: CN105713835A, 2016-06-29.[7] 秦建华, 张敏, 张旭, 许慧. 一种利用表面微结构激活星形神经胶质细胞的方法. CN: CN105647868A, 2016-06-08.[8] 秦建华, 石杨, 张旭, 李艳峰. 一种纤维软骨支架的制备方法. CN: CN105497978A, 2016-04-20.[9] 秦建华, 张旭, 马静云. 一种基于纳米电纺丝的细胞一维生长方法. CN: CN104694467A, 2015-06-10.[10] 秦建华, 马静云, 张旭. 一种模拟肿瘤缺氧微环境中细胞球侵袭及药物评价的方法. CN: CN104419743A, 2015-03-18.[11] 秦建华, 马静云, 张旭, 石杨. 一种肿瘤细胞球三维可控图案化的方法. CN: CN104419696A, 2015-03-18.[12] 秦建华, 姜雷, 张旭. 一种通用型纳米电纺丝区域化方法. CN: CN102978152A, 2013-03-20.[13] 秦建华, 马静云, 姜雷, 张旭. 一种同时含有方形、弧形通道PDMS芯片的制备方法. CN: CN102975318A, 2013-03-20.[14] 秦建华, 张旭, 孟昭旭, 马静云. 一种灵活产生形态各异性细胞模块的方法及应用. CN: CN102978151A, 2013-03-20.[15] 秦建华, 石杨, 姜雷, 张旭. 一种弧形凹陷小孔的PDMS聚合物芯片的制备方法及应用. CN: CN102978110A, 2013-03-20.[16] 秦建华, 孟昭旭, 徐涛, 张旭. 一种基于电纺丝模板制备微流控芯片的方法. CN: CN102950036A, 2013-03-06.[17] 秦建华, 张旭, 姜雷. 一种以喷墨打印通道为模板制作微流控芯片的方法及应用. CN: CN102935391A, 2013-02-20.[18] 秦建华, 高兴华, 张敏, 张旭, 马慧朋. 一种基于薄膜纤维材料微流控芯片的细胞分析技术. CN: CN103255195A, 2013-08-21.[19] 秦建华, 张旭. 一种基于微流控技术产生具有浓度梯度纳米电纺丝的方法. CN: CN103173871A, 2013-06-26.[20] 秦建华, 张旭. 以纳米电纺丝为模板对聚合物表面进行修饰的方法及应用. CN: CN102672957A, 2012-09-19.[21] 秦建华, 高兴华, 张旭, 林炳承. 一种用于细胞受力行为研究的微流控芯片系统. CN: CN102262162A, 2011-11-30.
出版信息
发表论文
[1] Zhao, Mengqian, Liu, Haitao, Zhang, Xu, Qin, Jianhua. Advances in Skeletal Muscle Engineering in Biomedical Research. ADVANCED MATERIALS TECHNOLOGIES[J]. 2023, http://dx.doi.org/10.1002/admt.202300595.[2] Tian, Lingling, Ma, Jingyun, Li, Wei, Zhang, Xu, Gao, Xinghua. Microfiber Fabricated via Microfluidic Spinning toward Tissue Engineering Applications. MACROMOLECULAR BIOSCIENCEnull. 2023, 23(3): https://www.doi.org/10.1002/mabi.202200429.[3] 赵孟乾, 刘海涛, 张旭, 甘忠桥, 秦建华. 全水相微流控系统一步制备球丝异质载体用作细胞三维培养. 色谱[J]. 2023, 41(9): 742-751, http://lib.cqvip.com/Qikan/Article/Detail?id=7110434543.[4] Haitao Liu, Xu Zhang, Jiayue Liu, Jianhua Qin. Vascularization of engineered organoids. BMEMAT[J]. 2023, 1(3): n/a-n/a, https://doaj.org/article/794529719ea045b1ac6e140185f944d1.[5] Pengwei Deng, Mengqian Zhao, Xu Zhang, Jianhua Qin. A Transwell-Based Vascularized Model to Investigate the Effect of Interstitial Flow on Vasculogenesis. BIOENGINEERING[J]. 2022, 9(11): https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9687519/.[6] Li, Wei, Yao, Kun, Tian, Lingling, Xue, Chang, Zhang, Xu, Gao, Xinghua. 3D printing of heterogeneous microfibers with multi-hollow structure via microfluidic spinning. JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE[J]. 2022, 16(10): 913-922, http://dx.doi.org/10.1002/term.3339.[7] Chen, Wenwen, Cao, Rongkai, Su, Wentao, Zhang, Xu, Xu, Yuhai, Wang, Peng, Gan, Zhongqiao, Xie, Yingying, Li, Hongjing, Qin, Jianhua. Simple and fast isolation of circulating exosomes with a chitosan modified shuttle flow microchip for breast cancer diagnosis. LAB ON A CHIP[J]. 2021, 21(9): 1759-1770, http://dx.doi.org/10.1039/d0lc01311k.[8] Yin, Fangchao, Zhang, Xu, Wang, Li, Wang, Yaqing, Zhu, Yujuan, Li, Zhongyu, Tao, Tingting, Chen, Wenwen, Yu, Hao, Qin, Jianhua. HiPSC-derived multi-organoids-on-chip system for safety assessment of antidepressant drugs. LAB ON A CHIP[J]. 2021, 21(3): 571-581, https://www.webofscience.com/wos/woscc/full-record/WOS:000616353700011.[9] Guo, Yaqiong, Luo, Ronghua, Wang, Yaqing, Deng, Pengwei, Song, Tianzhang, Zhang, Min, Wang, Peng, Zhang, Xu, Cui, Kangli, Tao, Tingting, Li, Zhongyu, Chen, Wenwen, Zheng, Yongtang, Qin, Jianhua. SARS-CoV-2 induced intestinal responses with a biomimetic human gut-on-chip. SCIENCE BULLETIN[J]. 2021, 66(8): 783-793, http://sciencechina.cn/gw.jsp?action=detail.jsp&internal_id=6980831&detailType=1.[10] Zhang, Min, Wang, Peng, Luo, Ronghua, Wang, Yaqing, Li, Zhongyu, Guo, Yaqiong, Yao, Yulin, Li, Minghua, Tao, Tingting, Chen, Wenwen, Han, Jianbao, Liu, Haitao, Cui, Kangli, Zhang, Xu, Zheng, Yongtang, Qin, Jianhua. Biomimetic Human Disease Model of SARS-CoV-2-Induced Lung Injury and Immune Responses on Organ Chip System. ADVANCED SCIENCE[J]. 2021, 8(3): https://doaj.org/article/2ce0f3c02a2d4d0cb0529de81023bd05.[11] Xu Zhang, Muath Bishawi, Ge Zhang, Varun Prasad, Ellen Salmon, Jason J Breithaupt, Qiao Zhang, George A Truskey. Modeling early stage atherosclerosis in a primary human vascular microphysiological system. NATURE COMMUNICATIONS[J]. 2020, 11(1): https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7591486/.[12] Zhang, Xu, Hong, Sungmin, Yen, Ringo, Kondash, Megan, Fernandez, Cristina E, Truskey, George A. A system to monitor statin-induced myopathy in individual engineered skeletal muscle myobundles. LAB ON A CHIP[J]. 2018, 18(18): 2787-2796, http://dx.doi.org/10.1039/c8lc00654g.[13] Gu, Rui, Zhang, Xu, Zhang, Ge, Tao, Tingting, Yu, Haibo, Liu, Lianqing, Dou, Ying, Li, Aiping, Qin, Jianhua. Probing the Bi-directional Interaction Between Microglia and Gliomas in a Tumor Microenvironment on a Microdevice. NEUROCHEMICAL RESEARCH[J]. 2017, 42(5): 1478-1487, http://www.irgrid.ac.cn/handle/1471x/1176045.[14] Ma, Jingyun, Zhang, Xu, Liu, Yang, Yu, Haibo, Liu, Lianqing, Shi, Yang, Li, Yanfeng, Qin, Jianhua. Patterning hypoxic multicellular spheroids in a 3D matrix - a promising method for anti-tumor drug screening. BIOTECHNOLOGY JOURNAL[J]. 2016, 11(1): 127-134, http://www.irgrid.ac.cn/handle/1471x/1029209.[15] Xu, Hui, Rahimpour, Shervin, Nesvick, Cody L, Zhang, Xu, Ma, Jingyun, Zhang, Min, Zhang, Ge, Wang, Li, Yang, Chunzhang, Hong, Christopher S, Germanwala, Anand V, Elder, J Bradley, RayChaudhury, Abhik, Yao, Yu, Gilbert, Mark R, Lonser, Russell R, Heiss, John D, Brady, Roscoe O, Mao, Ying, Qin, Jianhua, Zhuang, Zhengping. Activation of hypoxia signaling induces phenotypic transformation of glioma cells: implications for bevacizumab antiangiogenic therapy. ONCOTARGET[J]. 2015, 6(14): 11882-11893, http://cas-ir.dicp.ac.cn/handle/321008/146438.[16] Zhang, Xu, Meng, Zhaoxu, Ma, Jingyun, Shi, Yang, Xu, Hui, Lykkemark, Simon, Qin, Jianhua. Flexible Fabrication of Shape-Controlled Collagen Building Blocks for Self-Assembly of 3D Microtissues. SMALL[J]. 2015, 11(30): 3666-3675, http://cas-ir.dicp.ac.cn/handle/321008/146435.[17] Shi, Yang, Ma, Jingyun, Zhang, Xu, Li, Hongjing, Jiang, Lei, Qin, Jianhua. Hypoxia combined with spheroid culture improves cartilage specific function in chondrocytes. INTEGRATIVE BIOLOGY[J]. 2015, 7(3): 289-297, http://cas-ir.dicp.ac.cn/handle/321008/146106.[18] 张旭, 孟昭旭, 马静云, 秦建华. FLEXIBLE MANIPILATION OF COLLAGEN BLOCKS FOR ASSEMBLING MICRO-SCALE TISSUE CONSTRUCTS. the 18th international conference on miniaturized systems for chemistry and life sciencesnull. 2014, http://cas-ir.dicp.ac.cn/handle/321008/143662.[19] 张敏, 张旭, XiXiangZhang, 许慧, 秦建华. The Activation of Astrocytes Triggered by Micro-structured topography. lab on a chip industry workshop- microfluidic applicationsnull. 2014, http://cas-ir.dicp.ac.cn/handle/321008/143505.[20] 张旭, 古瑞, 陶婷婷, 秦建华. Investigation of bi-directional relationbetween microglia and glioma using Microfluidic device. lab on a chip industry workshop- microfluidic applicationsnull. 2014, http://cas-ir.dicp.ac.cn/handle/321008/143507.[21] Gao, Xinghua, Zhang, Xu, Xu, Hui, Zhou, Bingpu, Wen, Weijia, Qin, Jianhua. Regulation of cell migration and osteogenic differentiation in mesenchymal stem cells under extremely low fluidic shear stress. BIOMICROFLUIDICS[J]. 2014, 8(5): http://cas-ir.dicp.ac.cn/handle/321008/143946.[22] 许慧, 张敏, 张旭, 秦建华. Probing the hypoxia induced invasion of glioma cells on microfluidic device. lab on a chip industry workshop- microfluidic applicationsnull. 2014, http://cas-ir.dicp.ac.cn/handle/321008/143508.[23] 张旭, 孟昭旭, 马静云, AaronWheeler, 秦建华. Controllable formation and release of collagen cell building block for self-assembling functional tissues. lab on a chip industry workshop- microfluidic applicationsnull. 2014, http://cas-ir.dicp.ac.cn/handle/321008/143506.[24] 许慧, 张敏, 张旭, 秦建华. Probing the hypoxia induces invasion of glioma cells . advances in microfluidics & nanofluidics 2014null. 2014, http://cas-ir.dicp.ac.cn/handle/321008/143679.[25] 石杨, 马静云, 张旭, HongjingLi, 姜雷, 秦建华. Hypoxia Combined with Spheroid Culture in Concave Microwells Promotes Maintenance of Articular Chondrocyte Phenotype and Function. lab on a chip industry workshop- microfluidic applicationsnull. 2014, http://cas-ir.dicp.ac.cn/handle/321008/143509.[26] 张旭, 马静云, 秦建华. PATTERNED MULTICELLULAR SPHEROIDS IN 3D MATRIX FOR TUMOR INVASION AND VASCULOGENIC MIMICRY IN GLIOMA CELLS. the 17th international conference on miniaturized systems for chemistry and life sciencesnull. 2013, 513-, http://159.226.238.44/handle/321008/120185.[27] Meng, Zhaoxu, Zhang, Xu, Qin, Jianhua. A high efficiency microfluidic-based photocatalytic microreactor using electrospun nanofibrous TiO2 as a photocatalyst. NANOSCALE[J]. 2013, 5(11): 4687-4690, http://159.226.238.44/handle/321008/137946.[28] 高兴华, 张旭, 秦建华. Low Shear Stress Regulates Cell Movement annd Bone Formation of Mesenchymall Stem Cells (MSCs). 第三届国际微纳流控学进展学术会议null. 2012, 140-, http://159.226.238.44/handle/321008/117164.[29] 张旭, 高兴华, 姜雷, 秦建华. Microfluidic Based Approach to Generate Gradient Electrospinning Nanofibers. 第三届国际微纳流控学进展学术会议null. 2012, 92-, http://159.226.238.44/handle/321008/117166.[30] Zhang, Xu, Gao, Xinghua, Jiang, Lei, Qin, Jianhua. Flexible Generation of Gradient Electrospinning Nanofibers Using a Microfluidic Assisted Approach. LANGMUIR[J]. 2012, 28(26): 10026-10032, http://www.irgrid.ac.cn/handle/1471x/721381.[31] 石杨, 张旭, 秦建华. Rapid Fabrication of Concave Microwell Chip for Chondrocytes Spheroids formation and Phenotype Resumption. 第三届国际微纳流控学进展学术会议null. 2012, 84-, http://159.226.238.44/handle/321008/117170.[32] Zhang, Xu, Gao, Xinghua, Jiang, Lei, Zhang, Xulang, Qin, Jianhua. Nanofiber-modified surface directed cell migration and orientation in microsystem. BIOMICROFLUIDICS[J]. 2011, 5(3): 032007-032007-10, http://www.irgrid.ac.cn/handle/1471x/456657.[33] 高兴华, 张旭, HuiyuTong, 林炳承, 秦建华. A simple elastic membrane-based microfluidic chip for the proliferation and differentiation of mesenchymal stem cells (MSCs) under tensile stress. ELECTROPHORESIS[J]. 2011, 23(待补充): 3431-, http://www.irgrid.ac.cn/handle/1471x/456967.[34] Gao, Xinghua, Zhang, Xu, Tong, Huiyu, Lin, Bingcheng, Qin, Jianhua. A simple elastic membrane-based microfluidic chip for the proliferation and differentiation of mesenchymal stem cells under tensile stress. ELECTROPHORESIS[J]. 2011, 32(23): 3431-3436, http://dx.doi.org/10.1002/elps.201100237.[35] 高兴华, 张旭, 秦建华, 林炳承. Microstructure induced cell proliferation, orientation and differentiation of mesenchymal stem cells (MSCS). 9th asian-pacific international symposium on microscale separations and analysis & 1st asian-pacific international symposium on lab-on-chipnull. 2009, 198/2-, http://159.226.238.44/handle/321008/113762.
发表著作
(1) Vascular Tissue Engineering, Springer Nature, 2021-10, 第 其他 作者
科研活动
科研项目
( 1 ) 器官连接及功能调控系统, 负责人, 中国科学院计划, 2021-12--2022-12( 2 ) 基于器官芯片的并发性动脉粥样硬化模型构建新方法研, 负责人, 国家任务, 2022-01--2024-12