电子邮件: wujianqiang@mail.kib.ac.cn
通信地址: 中科院昆明植物研究所,昆明市蓝黑路132号
邮政编码: 650201
研究领域
2)植物与寄生植物的相互作用。包括寄主对寄生植物产生的抵御反应分子机理与生态学意义,以及寄生植物寻找寄主、形成吸器、转运寄主营养分子及生物大分子的机理。
招生信息
招生专业
招生方向
教育背景
学历
研究生
学位
博士学位
工作经历
2012.04–至今: 中国科学院昆明植物研究所,副所长,研究员,课题组长,****,万人领军(WRLJ),博士生导师
2007.01–2012.04: 课题负责人( Group Leader) , 分子生态学研究室, 德国马普化学生态学研究所
1998.10 –2001.08: 中国科学院昆明植物研究所,分析化学研究室,研究实习员
工作简历
社会兼职
2020-10-01-2025-09-30,中国科学院昆明植物研究所学术委员会,副主任,
2020-10-01-2024-12-31,云南省真菌多样性与绿色发展重点实验室,学术委员会委员,
2020-09-30-2024-12-30,云南省野生资源植物研发重点实验室,学术委员会委员,
2020-08-01-2025-12-31,Plant Diversity 主编,
2019-06-30-2024-07-30,中国植物生理与植物分子生物学学会常务理事,兼青年工作委员会委员(第十二届),
2017-10-01-2022-10-31,中国化学生态学学会第四届化学生态专业委员会委员,
2017-10-01-2022-10-31,中国昆虫学会第十届理事会化学生态专业委员会委员,
2014-01-01-今,Frontiers in Ecology and Evolution 编委,
2011-01-01-2023-12-31,Journal of Integrative Plant Biology 编委, JIPB编委
教授课程
专利与奖励
2008 年 6 月, Otto Hahn 奖章, 德国马普学会
奖励信息
发表的论文
1. Shen, G., Zhang, J., Lei, Y., Xu, Y., Wu, J.* (2023) Between-Plant Signaling. Annual Review of Plant Biology (in press)
https://www.ncbi.nlm.nih.gov/pubmed/36626804
2. Ma, C., Li, R., Sun, Y., Zhang, M., Li, S., Xu, Y., Song, J., Li, J., Qi, J., Wang, L.*, Wu, J.* (2022) ZmMYC2s play important roles in maize responses to simulated herbivory and jasmonate. Journal of Integrative Plant Biology 65:1041-1058.
https://www.ncbi.nlm.nih.gov/pubmed/36349965
2022
3. Xue, N., Zhan, C., Song, J., Li, Y., Zhang J., Qi, J., Wu, J.* (2022) The glutamate receptor-like 3.3 and 3.6 mediate systemic resistance to insect herbivores in Arabidopsis. Journal of Experimental Botany 73:7611-7627.
https://www.ncbi.nlm.nih.gov/pubmed/36214841
4. Xu, Y., Zhang, J., Ma, C., Lei, Y., Shen, G., Jin, J. J., Eaton, D. A., Wu, J.* (2022) Comparative genomics of orobanchaceous species with different parasitic lifestyles reveals the origin and stepwise evolution of plant parasitism. Molecular Plant 15:1384-1399.
https://www.ncbi.nlm.nih.gov/pubmed/35854658
5. Song, J.#, Bian, J.#, Xue, N., Yu, X, Wu, J.* (2022) Inter-species mRNA transfer among green peach aphids, dodder parasites, and cucumber host plants. Plant Diversity 44:1-10.
https://pubmed.ncbi.nlm.nih.gov/35281124
2021
6. Xu, Y.#, Lei, Y.#, Su, Z., Zhao, M., Zhang, J., Shen, G., Wang, L., Li, J., Qi, J., Wu, J.* (2021) A chromosome-scale Gastrodia elata genome and large-scale comparative genomic analysis indicate convergent evolution by gene loss in mycoheterotrophic and parasitic plants. Plant Journal 108:1609-1623.
https://pubmed.ncbi.nlm.nih.gov/34647389/
7. Lei, Y., Xu, Y., Zhang, J., Song, J., Wu, J.* (2021) Herbivory-induced systemic signals are likely evolutionarily conserved in euphyllophytes. Journal of Experimental Botany 72: 7274-7284.
https://www.ncbi.nlm.nih.gov/pubmed/34293107
8. Malook, S.U., Xu, Y., Qi, J, Li, J., Wang, L., Wu, J.* (2021) Mythimna separata herbivory primes maize resistance in systemic leaves. Journal of Experimental Botany 72:3792-3805.
https://pubmed.ncbi.nlm.nih.gov/33647931/
9. Zhang, J., Xu, Y., Xie, J., Zhuang, H., Liu, H., Shen, G.*, Wu, J.* (2021) The parasite Cuscuta campestris enables transfer of bidirectional systemic nitrogen signals between host plants. Plant Physiology 185:1395–1410.
https://pubmed.ncbi.nlm.nih.gov/33793912/
10. Zhang, C., Li, J., Li, S., Ma, C., Liu, H., Wang, L., Qi, J.*, Wu, J.* (2021) ZmMPK6 and ethylene signaling negatively regulate the accumulation of anti-insect metabolites DIMBOA and DIMBOA-Glc in maize inbred line A188. New Phytologist 229:2273-2287.
https://pubmed.ncbi.nlm.nih.gov/32996127
2020
11. Shen, G.#, Liu, N. #, Zhang, J., Xu, Y., Baldwin, I.T., Wu, J.* (2020) Cuscuta australis (dodder) parasite eavesdrops on the host plants’FT signals to flower. Proceedings of National Academy of Sciences of the USA 117: 23125-23130
https://www.ncbi.nlm.nih.gov/pubmed/32868415
12. Li, S., Zhang, J., Liu, H., Liu, N., Shen, G., Zhuang, H., Wu, J.* (2020) Dodder-transmitted mobile signals prime host plants for enhanced salt tolerance. Journal of Experimental Botany 71:1171-1184
https://www.ncbi.nlm.nih.gov/pubmed/31665509
13. Zhang, C., Lei, Y., Lu, C., Wang, L.*, Wu, J.* (2020) MYC2, MYC3, and MYC4 function additively in wounding-induced jasmonic acid biosynthesis and catabolism. Journal of Integrative Plant Biology 62:1159-1175
https://www.ncbi.nlm.nih.gov/pubmed/31876387
14. Liu, N., Shen, G., Xu Y., Liu, H., Zhang, J., Li, S., Li, J., Zhang, C., Qi, J., Wang, L., Wu, J.* (2020) Extensive inter-plant protein transfer between Cuscuta parasites and their host plants. Molecular Plant 13:573-585
https://www.ncbi.nlm.nih.gov/pubmed/31812691
2019
15. Qin. Y., Zhang, J., Hettenhausen, C., Liu, H., Li, S., Shen, G., Cao, G., Wu, J.* (2019) The host jasmonic acid pathway regulates the transcriptomic changes of dodder and host plant under the scenario of caterpillar feeding on dodder. BMC Plant Biology 19:540.
https://www.ncbi.nlm.nih.gov/pubmed/31801469
16. Gao, L., Shen, G., Zhang, L., Qi, J., Zhang, C., Ma, C., Li, J., Wang, L., Malook, S.U., Wu, J.* (2019) An efficient system composed of maize protoplast transfection and HPLC-MS for studying the biosynthesis and regulation of maize benzoxazinoids. Plant Methods 15:144.
https://www.ncbi.nlm.nih.gov/pubmed/31798670
17. Malook, S.#, Qi, J.#, Hettenhausen, C.#, Xu, Y., Zhang, C., Zhang, J., Lu, C., Li, J., Wang, L., Wu, J.* (2019) The oriental armyworm (Mythimna separata) feeding induces systemic defense responses within and between maize leaves. Philosophical Transactions of the Royal Society B 374: 20180307
https://www.ncbi.nlm.nih.gov/pubmed/30967023
2018
18. Wu, J.* (2018) miRNAs as a secret weapon in the battlefield of haustoria, the interface between parasites and host plants. Molecular Plant 11, 354–356.
https://www.ncbi.nlm.nih.gov/pubmed/29462721
19. Qi, J., Malook, S., Shen, G., Gao, L., Zhang, C., Li, J., Zhang, J., Wang, L., Wu, J.* (2018) Current understanding of maize and rice defense against insect herbivores. Plant Diversity 40: 189-195.
https://www.sciencedirect.com/science/article/pii/S2468265918300696
20. Sun, G. #, Xu, Y. #, Liu, H. #, Sun, T., Zhang, J., Hettenhausen, C., Shen, G., Qi, J., Qin, Y., Li, J., Wang, L., Chang, W., Guo, Z., Baldwin, I.T., Wu, J.* (2018) Large-scale gene losses underlie the genome evolution of parasitic plant Cuscuta australis. Nature Communications 9:2683.
https://www.ncbi.nlm.nih.gov/pubmed/29992948
21. Zhuang, H., Li, J., Song, J., Hettenhausen, C., Schuman, M., Sun, G., Zhang, C., Li, J., Song, D., Wu, J.* (2018) Aphid (Myzus persicae) feeding on the parasitic plant dodder (Cuscuta australis) activates defense responses in both the parasite and soybean host. New Phytologist 218: 1586-1596.
https://www.ncbi.nlm.nih.gov/pubmed/29575001
22. Lei, Y., Xu, Y., Hettenhausen, C., Lu, C., Shen, G., Zhang, C., Li, J., Song, J., Lin, H.*, Wu, J.* (2018). Comparative analysis of alfalfa (Medicago sativa L.) leaf transcriptomes reveals genotype-specific salt tolerance mechanisms. BMC Plant Biology 18:35
https://www.ncbi.nlm.nih.gov/pubmed/29448940
23. Lu, C., Qi, J., Hettenhausen, C., Lei, Y., Zhang, J., Zhang, M., Zhang C., Song J., Li, J., Cao, G., Malook, S.U., Wu, J.* (2018) Elevated CO2 differentially affects tobacco and rice defense against lepidopteran larvae via the jasmonic acid signaling pathway. Journal of Integrative Plant Biology 60: 412-431
https://www.ncbi.nlm.nih.gov/pubmed/29319235
24. Qi, J., Zhang, M., Lu, C., Hettenhausen, C., Tan, Q., Cao, G., Zhu, X., Wu, G., Wu, J.* (2018) Ultraviolet-B enhances the resistance of multiple plant species to lepidopteran insect herbivory through the jasmonic acid pathway. Scientific Reports 8:277
https://www.ncbi.nlm.nih.gov/pubmed/29321619
2017
25. Song, J., Liu, H., Zhuang, H., Zhao, C., Xu, Y., Wu, S., Qi, J., Li, J., Hettenhausen, C.*, Wu, J.* (2017) Transcriptomics and alternative splicing analyses reveal large differences between maize lines B73 and Mo17 in response to aphid Rhopalosiphum padi Infestation. Frontiers in Plant Science 8:1738.
https://www.ncbi.nlm.nih.gov/pubmed/29067035
26. Hettenhausen, C.#, Li, J. #, Zhuang, H., Sun, H., Xu, Y., Qi, J., Zhang, J., Lei, Y., Qin, Y., Sun, G., Wang, L., Baldwin, I.T., Wu, J.* (2017) The stem parasitic plant Cuscuta australis (dodder) transfers herbivory-induced signals among plants. Proceedings of National Academy of Sciences of the USA 114: E6703-E6709.
https://www.ncbi.nlm.nih.gov/pubmed/28739895
27. Lei, Y., Liu, Q., Hettenhausen, C., Cao, G., Tan, Q., Zhao, W., Lin, H.*, Wu, J.* (2017) Salt-tolerant and -sensitive alfalfa (Medicago sativa) cultivars have large variations in defense responses to the lepidopteran insect Spodoptera litura under normal and salt stress condition. PLoS One 12: e0181589.
https://www.ncbi.nlm.nih.gov/pubmed/28719628
2016
28. Sun, T., Renner, S., Xu, Y., Qin, Y., Wu, J.*, Sun, G.* (2016) Two hAT transposon genes were transferred from Brassicaceae to broomrapes and are actively expressed in some recipients. Scientific Reports 6:30192.
https://www.ncbi.nlm.nih.gov/pubmed/27452947
29. Luo, J., Wei, K., Wang, S., Zhao, W., Ma, C., Hettenhausen, C., Wu, J., Cao, G., Sun, G., Baldwin, I. T., Wu, J.*, Wang, L*. (2016) COI1-regulated hydroxylation of jasmonoyl-L-isoleucine impairs Nicotiana attenuata’s resistance to the generalist herbivore Spodoptera litura. Journal of Agricultural and Food Chemistry 64, 2822-2831
http://www.ncbi.nlm.nih.gov/pubmed/26985773
30. Qi, J. #, Sun, G. #, Wang, L. #, Zhao, C. #, Hettenhausen, C., Schuman, M.C., Baldwin, I.T., Li, J., Song, J., Liu, Z., Xu, G., Lu, X., Wu, J.* (2016) Oral secretions from Mythimna separata insects specifically induce defense responses in maize as revealed by high-dimensional biological data. Plant Cell & Environment 39, 1749-1766
http://www.ncbi.nlm.nih.gov/pubmed/26991784
31. Hettenhausen, C#., Sun, G. #, He, Y., Zhuang, H., Sun, T., Qi, J., Wu, J.* (2016) Genome-wide identification of calcium-dependent protein kinases in soybean and analyses of their transcriptional responses to insect herbivory and drought stress. Scientific Reports, 6: 18973.
http://www.ncbi.nlm.nih.gov/pubmed/26733237
2015
32. Hettenhausen, C., Schuman, M.C., Wu, J.* (2015) MAPK signaling – a key element in plant defense response to insects. Insect Science 22, 157-164. http://www.ncbi.nlm.nih.gov/pubmed/24753304
33. Li, J., Hettenhausen, C., Sun, G., Zhuang, H., Li, J. H.*, Wu, J.* (2015) The parasitic plant Cuscuta australis is highly insensitive to abscisic acid-induced suppression of hypocotyl elongation and seed germination. PLoS One, 10: e0135197.
http://www.ncbi.nlm.nih.gov/pubmed/26258814
2014
34. Hettenhausen, C., Heinrich, M., Baldwin, I.T., Wu, J.* (2014) Fatty acid-amino acid conjugates are essential for systemic activation of salicylic acid-induced protein kinase and accumulation of jasmonic acid in Nicotiana attenuata. BMC Plant Biology, 14, 326.
http://www.ncbi.nlm.nih.gov/pubmed/25430398
35. Zhang, D., Qi, J., Yue, J., Huang, J., Sun, T., Li, S., Wen, J., Hettenhausen, C., Wu, J., Wang, L., Zhuang, H., Wu, J.* and Sun, G.* (2014), Root parasitic plant Orobanche aegyptiaca and shoot parasitic plant Cuscuta australis obtained Brassicaceae-specific strictosidine synthase-like genes by horizontal gene transfer. BMC Plant Biology 14, 19.
http://www.ncbi.nlm.nih.gov/pubmed/24411025
2013
36. Wang, L., Wu, J.* (2013) The essential role of jasmonic acid in plant-herbivore interactions - using the wild tobacco Nicotiana attenuata as a model. Journal of Genetics and Genomics 40, 597-606.
http://www.ncbi.nlm.nih.gov/pubmed/24377866
37. Hettenhausen, C., Baldwin, I.T., Wu, J.* (2013) Nicotiana attenuata MPK4 suppresses a novel JA signaling-independent defense pathway against the specialist insect Manduca sexta but is not required for the resistance to the generalist Spodoptera littoralis. New Phytologist 199, 787-99.
http://www.ncbi.nlm.nih.gov/pubmed/23672856
38. Yang, D.H., Baldwin, I.T., Wu, J.* (2013) Silencing brassinosteroid receptor BRI1 impairs herbivory-elicited accumulation of jasmonic acid-isoleucine and diterpene glycosides, but not jasmonic acid and trypsin proteinase inhibitors in Nicotiana attenuata. Journal of Integrative Plant Biology 55, 514-526.
http://www.ncbi.nlm.nih.gov/pubmed/23347255
39. Heinrich, M., Hettenhausen, C., Lange, T., Wünsche, H., Fang, J., Baldwin, I.T., Wu, J.* (2013) High levels of jasmonic acid antagonize the biosynthesis of gibberellins and inhibit the growth of Nicotiana attenuata stems. Plant Journal 73, 591-606.
http://www.ncbi.nlm.nih.gov/pubmed/23190261
40. Hettenhausen, C., Yang, D.H., Baldwin, I.T., Wu, J.* (2013) Calcium-dependent protein kinases, CDPK4 and CDPK5, affect early steps of jasmonic acid biosynthesis in Nicotiana attenuata. Plant Signaling & Behavior 8, e22784
http://www.ncbi.nlm.nih.gov/pubmed/23221744
2012
41. Yang, D.H., Hettenhausen, C., Baldwin, I.T., Wu, J.* (2012) Silencing Nicotiana attenuata calcium-dependent protein kinases, CDPK4 and CDPK5, strongly upregulates wound- and herbivory-induced jasmonic acid accumulations. Plant Physiology 159, 1591-607
http://www.ncbi.nlm.nih.gov/pubmed/22715110
42. Hettenhausen, C., Baldwin, I.T., Wu, J.* (2012) Silencing MPK4 in Nicotiana attenuata enhances photosynthesis and seed production but compromises abscisic acid-induced stomatal closure and guard cell-mediated resistance to Pseudomonas syringae pv. tomato DC3000. Plant Physiology 158, 759-76
http://www.ncbi.nlm.nih.gov/pubmed/22147519
43. Shi, C., Baldwin, I.T., Wu, J.* (2012) Arabidopsis nonsense-mediated mRNA decay factors, UPF1, UPF2, and UPF3, are involved in plant development and wounding- and pathogen-induced responses. Journal of Integrative Plant Biology 54, 99-114.
http://www.ncbi.nlm.nih.gov/pubmed/22353561
44. Heinrich, M., Baldwin, I.T., Wu, J.* (2012) Three MAPK kinases, MEK1, SIPKK and NPK2, are not involved in activation of SIPK after wounding and herbivore feeding but important for accumulation of trypsin proteinase inhibitors. Plant Molecular Biology Reporter 30, 731-40.
http://www.springerlink.com/content/ph4hq3w1318k5503/
2011
45. Meldau, S., Baldwin, I.T., Wu, J.* (2011) For security and stability: SGT1 in plant defense and development. Plant Signaling & Behavior 6, 1479-82.
http://www.ncbi.nlm.nih.gov/pubmed/21897126
46. Yang D.H., Hettenhausen C., Baldwin, I.T., Wu, J.* (2011) The multifaceted function of BAK1/SERK3: plant immunity to pathogens and responses to insect herbivores. Plant Signaling & Behavior 6, 1322-4.
http://www.ncbi.nlm.nih.gov/pubmed/21852758
47. Heinrich, M., Baldwin, I.T., Wu, J.* (2011) Two mitogen-activated protein kinase kinases, MKK1 and MEK2, are involved in wounding- and specialist lepidopteran herbivore Manduca sexta-induced responses in Nicotiana attenuata. Journal of Experimental Botany 62, 4355-65.
http://www.ncbi.nlm.nih.gov/pubmed/21610019
48. Wünsche, H., Baldwin, I.T., Wu, J.* (2011) S-Nitrosoglutathione reductase (GSNOR) mediates resistance of Nicotiana attenuata to the specialist insect herbivore Manduca sexta. Journal of Experimental Botany 62, 4605-16.
http://www.ncbi.nlm.nih.gov/pubmed/21622839
49. Wünsche, H., Baldwin, I.T., Wu, J.* (2011) Silencing NOA1 elevates herbivory-induced JA accumulation and compromises most of carbon-based defense metabolites in Nicotiana attenuata. Journal of Integrative Plant Biology 53, 619-31.
http://www.ncbi.nlm.nih.gov/pubmed/21457460
50. Yang, D.H., Hettenhausen, C., Baldwin, I.T., Wu, J.* (2011) BAK1 regulates the accumulation of jasmonic acid and the levels of trypsin proteinase inhibitors in Nicotiana attenuata’s responses to herbivory. Journal of Experimental Botany 62, 641-52.
http://www.ncbi.nlm.nih.gov/pubmed/20937731
51. Meldau, S., Baldwin, I.T., Wu, J.* (2011) SGT1 regulates wounding- and herbivory-induced jasmonic acid accumulation and Nicotiana attenuata’s resistance to the specialist lepidopteran herbivore Manduca sexta. New Phytologist 189, 1143-56.
http://www.ncbi.nlm.nih.gov/pubmed/21118264
2010
52. Wu, J.*, Baldwin, I.T.* (2010) New insights into plant responses to the attack from insect herbivores. Annual Review of Genetics 44, 1-24.
http://www.ncbi.nlm.nih.gov/pubmed/20649414
2009
53. Wu, J., Baldwin, I.T.* (2009) Herbivory-induced signaling in plants: perception and action. Plant Cell & Environment 32, 1161-74.
http://www.ncbi.nlm.nih.gov/pubmed/19183291
2008
54. Wu, J., Hettenhausen, C., Schuman, M.C., and Baldwin, I.T.* (2008) A comparison of two Nicotiana attenuata accessions reveals large differences in Manduca sexta-induced signaling events. Plant Physiology 146, 927-39.
http://www.ncbi.nlm.nih.gov/pubmed/18218965
2007
55. Wu, J., Hettenhausen, C., Meldau, S., and Baldwin, I.T.* (2007). Herbivory rapidly activates MAPK signaling in attacked and unattacked leaf regions but not between leaves of Nicotiana attenuata. Plant Cell 19, 1096-1122.
http://www.ncbi.nlm.nih.gov/pubmed/17400894
56. Wu, J., Kang, J.H., Hettenhausen, C., and Baldwin, I.T.* (2007). Nonsense-mediated mRNA decay (NMD) silences the accumulation of aberrant trypsin proteinase inhibitor mRNA in Nicotiana attenuata. Plant Journal 51, 693-706.
http://www.ncbi.nlm.nih.gov/pubmed/17587303
2006
57. Wu, J., Hettenhausen, C., Baldwin, I.T.* (2006). Evolution of proteinase inhibitor defenses in North American allopolyploid species of Nicotiana. Planta 224, 750-760.
发表论文
科研活动
1.国家基金委-云南省联合基金,U1502263 “玉米丝裂原活化蛋白激酶(MAPK)信号系统抗虫功能及分子机理研究”、2016.01-2019.12,在研、主持。
2.国家自然科学基金面上项目,31470369、大气CO2浓度升高对野生烟草抗虫能力的影响及分子机理研究、2015/01-2018/12、80万元、在研、主持。
3.中国科学院先导专项B项目子课题,XDB11050200、玉米识别不同昆虫信息流的分子机理及其抗虫信号流传递与调控网络研究、2014/07-2019/06、500万元、在研、主持。
4.德国马普学会国际合作项目、Host-parasitic plant interactions、2013/10-2018/09、100万元、在研、主持。
5.云南省高端人才计划,2012HA016、玉米不同品种抗蚜虫比较、2012/12-2015/11、200万元、在研、主持。
6.云南省海外高层次人才,2012年、50万元。
7.中共中央组织部,青年****、大豆CDPK基因家族分析、2012/12-2014/12、200万元。
科研项目
参与会议
1. National Congress of Plant Biology, Changchun, China, Oct. 9-12, 2015
2. International Symposium on “From Ecosystems to Modern Agriculture”, Lanzhou,China, June 26-27, 2015
3. 13th Congress on Parasitic Plants, Kunming, China, 5-10 July 2015
4. 3rd International Conference on Plant Metabolism, Xiamen, China, July 2-5, 2014
5. 10th Solanaceae Conference (SOL 2013), Beijing, China, Oct. 13-17, 2013
6. The important roles of MAPKs in plant defense against herbivores. Invited talk, Institute of Zoology, Chinese Academy of Sciences, Beijing, China, Jun 4, 2013
7. Herbivory-induced signaling in plants – MAPKs go ahead. Invited talk, Institute of Botany, Chinese Academy of Sciences, Beijing, China, Nov. 12, 2012
8. Herbivory-induced signaling in plants – MAPKs go ahead. Invited talk, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China, Nov. 14, 2012
9. MPK4 in stress signaling. Invited talk, Huazhong Agricultural University, Wuhan, China, Jul. 18, 2012
10. Functions of MAPK signaling in plant resistance to herbivores. Invited lecture, Chinese Academy of Forestry, Beijing, China, Dec. 27, 2011
11. MPK4 in Nicotiana attenuata: a multifaceted MAPK involved in biotic and abiotic resistance. 2nd International Symposium on Integrative Plant Biology, Invited lecture, Lanzhou, China, Aug. 26-28, 2011
12. Herbivory-Induced Signaling in Plants: Perception and Action. Invited lecture, Anhui Agricultural University, Feb 21, 2011
13. When an herbivore takes a bite, does the plant know? Invited plenary lecture, International Conference on Plant Vascular Biology and Agriculture, Chongqing, China, June 21-24, 2009
14. NaCDPK1 mediates heat resistance in Nicotiana attenuata. Max Planck Institute for Chemical Ecology, Jena, Germany, Sept. 25-26, 2008
15. MAP kinases regulate Nicotiana attenuata's defense responses to herbivory. Department of Life Sciences, Nanjing University, Nanjing, China, June 6, 2008
16. Genetic modifications of Nicotiana attenuata reveal functions of plant secondary metabolites in resistance to herbivory; Invited plenary lecture, International Conference on Plant Secondary Metabolism, Kunming, China, June 8-10, 2008
17. MAP kinases regulate defense responses to herbivory in Nicotiana attenuata; Max Planck Institute for Chemical Ecology, Jena, Germany, Sept. 2007
18. The evolution of proteinase inhibitor defense mechanisms during polyploidy speciation in Nicotiana native to North America, Workshop DFG-SPP 1152 “Evolution of metabolic diversity”, Halle, Germany, Oct. 2004
19. The evolution of herbivory-specific expression of proteinase inhibitors during polyploidy speciation in Nicotiana native to North America; Botanikertagung 2004/Deutsche Botanische Gesellschaft, Vereinigung für Angewandte Botanik, Braunschweig, Germany, Sept. 2004
合作情况
德国马普学会伙伴小组,中国科学院大连化物所,浙江大学,云南农业大学,安徽农业大学
项目协作单位
德国马普学会伙伴小组,中国科学院大连化物所,浙江大学,云南农业大学,安徽农业大学
指导学生
已指导学生
庄会富 博士研究生 071010-生物化学与分子生物学
宋娟 博士研究生 071010-生物化学与分子生物学
路承凯 博士研究生 071010-生物化学与分子生物学
张翠萍 博士研究生 071010-生物化学与分子生物学
李莎兰 博士研究生 071010-生物化学与分子生物学
张井雄 博士研究生 071010-生物化学与分子生物学
穆梦花 硕士研究生 085238-生物工程
刘念 博士研究生 071010-生物化学与分子生物学
卞金鸽 硕士研究生 071010-生物化学与分子生物学
许宇星 博士研究生 071010-生物化学与分子生物学
陈思霖 博士研究生 071010-生物化学与分子生物学
周士钊 硕士研究生 071010-生物化学与分子生物学
现指导学生
薛娜 博士研究生 071010-生物化学与分子生物学
马灿容 博士研究生 071010-生物化学与分子生物学
粟忠祥 硕士研究生 085238-生物工程
杨建翔 博士研究生 071010-生物化学与分子生物学
展澈 博士研究生 071010-生物化学与分子生物学
赵漫 博士研究生 071010-生物化学与分子生物学
郑茜杰 博士研究生 071010-生物化学与分子生物学
李文兴 硕士研究生 071010-生物化学与分子生物学
冯泽瑞 博士研究生 071010-生物化学与分子生物学
张书涵 硕士研究生 071010-生物化学与分子生物学
张立坚 博士研究生 071010-生物化学与分子生物学
郑天胤 博士研究生 071010-生物化学与分子生物学
郑维 博士研究生 071010-生物化学与分子生物学
荣德庆 博士研究生 071010-生物化学与分子生物学
博士研究生
1.路承凯(2014.09-现在),中国科学院昆明植物研究所
2.张井雄(2014.09-现在),中国科学院昆明植物研究所
3.雷云霆(2014.04-现在),四川大学联合培养
4.张翠萍(2013.09-现在),中国科学院昆明植物研究所
5.李娟(2013.01-2016.06),华中农业大学联合培养
6.宋娟(2013.09-现在),中国科学院昆明植物研究所
7.庄会付(2013.09-现在),中国科学院昆明植物研究所
8. Dahai Yang (04.2007-03.2011), Functions of protein kinases, calcium-cependent protein kinases (CDPKs) and BRI1-associated kinase 1 (BAK1), in wild tobacco (Nicotiana attenuata) immunity to herbivore and pathogen. Max Planck Institute for Chemical Ecology.
9. Hendrik Wünsche (07.2008-06.2011), Involvement of two nitric oxide-associated genes, NOA1 and GSNOR, in Nicotiana attenuata's resistance to the specialist insect herbivore Manduca sexta. Max Planck Institute for Chemical Ecology.
10. Christian Hettenhausen (02.2007-12.2011), Mitogen-activated protein kinase 4 (MPK4) functions in development and resistance to biotic and abiotic stresses in Nicotiana attenuata. Max Planck Institute for Chemical Ecology.
11. Stefan Meldau (01.2007-03.2012), Early herbivory-induced responses in plants. Max Planck Institute for Chemical Ecology. 11. Maria Heinrich (01.2009-07.2012), Functions of MAPKKs in plant resistance to herbivore in Nicotiana attenuata. Max Planck Institute for Chemical Ecology.
硕士研究生
1.刘念(2015.09-现在),中国科学院昆明植物研究所
2.Chuan Shi (05.2010-06.2011), Die Bedeutung der nonsense-mediated mRNA decay Proteine UPF1, UPF2 und UPF3 im Hinblick auf die Pflanzenentwicklung und der abiotischen und biotischen Stressantwort.
本科论文指导
1. Yvonn Stampnik (11.2008-05.2009), BAK1 regulates herbivore feeding-induced jasmonic acid accumulation and secondary metabolite contents in Nicotiana attenuata
2. Christian Hettenhausen (10.2004-07.2006), Characterization of a trypsin protease inhibitor-deficient ecotype of Nicotiana attenuata collected from Arizona.
3. Stefan Meldau (01.2005-12.2006), MAP kinase signaling mediates plant defense against herbivores.