General

Shengkai Wang, PhD, Professor and Group Leader
wangshengkai at ime.ac.cn 010-82995593 
Room A412, No.3  Bei-tucheng West Street, Chaoyang District, Beijing

Education
2008.10-2011.9 The University of Tokyo  Ph.D.
2006.9-2008.9  Harbin Institute of Technology, M. Eng.
2002.9-2006.8  Harbin Institute of Technology, B. Eng.

Work experience
2020.7- present, Professor, Group leader, IMECAS
2020.1- present, Director of Youth Innovation Promotion Association, IMECAS
2015.8- 2020.7, Associate Professor, Group leader, IMECAS

2015.4-2015.7, The University of Tokyo, Visiting scholar.
2013.10-2015.3  Associate professor, IMECAS
2011.10-2013.9  Assistant Professor, IMECAS

Research

Research Interests

1. Semiconductor surface interface science SiC MOSFET Power Electronic Devices

2. Bionic intelligent device and bionic neural network application

 

80+ papers80+ patents

Book chapters
1. S. K. Wang, H. G. Liu, “Passivation and Characterization in High-k/III-V Interfaces”, in book entitled “Nanoscale Semiconductor Devices, MEMS, and Sensors: Outlook and Challenges”, Springer Publisher, New York, USA, 2017.

 

Peer-reviewed Journal (First author)

1. S.-K. Wang*, Q. Huang, J. Zhao, Y. Zhou, X. L. Zhao, P. L. Yao, X. Y. Liu, X. L. Liang, Electro-chemiresistive Functionalization of SWCNT-TFT by PCz and Its “Electronic Hourglass” Application with Zero-static Power Consumption, ACS Applied Energy Materials, 2,11(2019) 8253. https://doi.org/10.1021/acsaem.9b01716
2. S.-K. Wang, B. Sun, M.-M. Cao, H.-D. Chang, Y.-Y. Su, H.-O. Li, and H.-G. Liu*, “Modification of Al2O3/InP interfaces using sulfur and nitrogen passivations,” J. Appl. Phys., 121 (2017) 184104.
3. S.-K. Wang, L. Ma, H.-D. Chang, B. Sun, Y.-Y. Su, L. Zhong, H.-O. Li, Z. Jin, X.-Y. Liu, and H.-G. Liu*, “Positive Bias Temperature Instability Degradation of Buried InGaAs Channel nMOSFETs with InGaP Barrier Layer and Al2O3 Dielectric,” Chin. Phys. Lett., 34 (2017) 057301.
4. S. K. Wang*, “Turbo charging the channel (Invited feature)”, Compound Semiconductor, 1, 22-30, (2016).
5. S. K. Wang*, M. Cao, B. Sun, H. Li, H. G. Liu, “Reducing the interface trap density in Al2O3/InP stacks by low-temperature thermal process”, Appl. Phys. Express 8, 091201 (2015).
6. S. K. Wang, H.-G. Liu*, and A. Toriumi, “Kinetic Study of GeO Disproportionation into GeO2/Ge System Using X-ray Photoelectron Spectroscopy”, Appl. Phys. Lett. 101, 5 (2012)
7. S. K. Wang*, K. Kita, T. Nishimura, K. Nagashio, and A. Toriumi, “Isotope tracing study of GeO desorption mechanism from GeO2/Ge stack using 73Ge and 18O”, Jpn. J. Appl. Phys. 50, 04DA01 (2011).
8. S. K. Wang*, K. Kita, T. Nishimura, K. Nagashio, and A. Toriumi, “Kinetic Effects of O-vacancy Generated by GeO2/Ge Interfacial Reaction”, Jpn. J. Appl. Phys. 50, 10PE04-1 (2011). Selected as the Spotlight paper of Japanese Journal of Applied Physics 2011.
9. S. K. Wang*, K. Kita, C. H. Lee, T. Tabata, T. Nishimura, K. Nagashio, and A. Toriumi, “Desorption kinetics of GeO from GeO2/Ge structure”, J. Appl. Phys. 108, 054104 (2010).

 

Peer-reviewed Journal (Corresponding author)

1. Y. Xu, S. K. Wang*, P. L. Yao, Y. H. Wang, D. P. Chen, An air-plasma enhanced low-temperature wafer bonding method using high-concentration water glass adhesive layer, Appl. Surf. Sci. 500 (2019) 144007.
2. X. Y. Liu*, J. L. Hao, N. N. You, Y. Bai, S. K. Wang*, High pressure microwave plasma oxidation of 4H-SiC with low interface trap density, AIP Advances, 9 (2019) 125150..
3. X. Y. Liu*, J. L. Hao, N. N. You, Y. Bai, Y. D. Tang, C. Y. Yang, S. K. Wang*, High mobility SiC MOSFET with low Dit using high pressure microwave plasma oxidation, Chin. Phys. B, https://doi.org/10.1088/1674-1056/ab68c0.
4. Y. Xu, S. K. Wang*, Y. Wang, and D. Chen, “A modified low-temperature wafer bonding method using spot pressing bonding technique and water glass adhesive layer,” Jpn. J. Appl. Phys., 57 (2018) 02BD01.
5. Z. Y. Peng, S. K. Wang*, Y. Bai, Y. D. Tang, X. M. Chen, C. Z. Li, K. A. Liu, X. Y. Liu*, “High Temperature 1MHz Capacitance-Voltage Method for Evaluation of Border Traps in 4H-SiC MOS System”, J. Appl. Phys. 123 (2018) 135302.
6. X. Yang, S. K. Wang*, X. Zhang, B. Sun, W. Zhao, H. D. Chang, Z. H. Zeng, H. G. Liu*, “Al2O3/GeOx gate stack on germanium substrate fabricated by in situ cycling ozone oxidation method”, Appl. Phys. Lett. 105 (2014) 092101.
7. L. Han, S.-K. Wang*, X. Zhang, B.-Q. Xue, W.-R. Wu, Y. Zhao, and H.-G. Liu*, “Effect of ultrathin GeOx interfacial layer formed by thermal oxidation on Al2O3 capped Ge,” Chinese Physics B, 23 (2014) 046804.

Conference paper
1.  S. K. Wang, “Germanium and III-Vs for future logic (Invited)”, Compound Semiconductor International 2017, Brussels Belgium, (March 7-8, 2017)
2.  S. K. Wang, “Rapid Growth of SiO2 on SiC with Low Dit using High Pressure Microwave Oxygen Plasma (Invited)”, 13th IEEE International Conference on ASICChongqing, China, (Oct 9-Nov 1, 2019)
3.  S. K. Wang, J. L. Hao, N. N. You, Y. Bai, X. Y. Liu, “Rapid Growth of SiO2 on SiC with Atomically Flat Interface and Low Dit using High Pressure Microwave Oxygen Plasma”, The International Conference on Silicon Carbide and Related Materials 2019, Kyoto, Japan, (Sep. 28-Oct.5, 2019)
4.  S. K. Wang, Q. Huang, J. Zhao, X. Zhao, Y. Zhou, X. Liu, X. Liang*, Hysteretic Single Walled Carbon Nanotube Thin Film Transistor for Ultralow Static Power Consumption Application, 50th International Conference on Solid State Devices and Materials, Tokyo, Japan, (Sep. 8-12, 2018).
5.  S. K. Wang, H. Chang, B. Sun, Z. Gong, H. G. Liu, M. Cao, Z. Lin, H. Li, “Coordination Number Modification at Al2O3/InP Interfaces using Sulfur and Nitride Passivations,” 7th Ieee International Nanoelectronics Conference, International Nanoelectronics Conference, Chengdu, China, (May 9-11, 2016).
6.  S. K. Wang, X. Yang, Z. J. Gong, B. Sun, W. Zhao, H. D. Chang, H. G. Liu, “Si-substrate-based High Mobility Ge-pMOSFETs Using Ozone Passivated Al2O3/GeOx Gate Dielectric”, International Conference on Solid State Devices and Materials 2014, Fukuoka, Japan, (Sep.25-29, 2014).
7.  S. K. Wang, X. L. Wang, L. Han, W. Zhao, B. Sun, W. W. Wang, C. Zhao, H. Liu, Modified Deal-Grove model for the thermal oxidation of Ge and Al2O3 capped Ge, SSDM2013.
8.  S. K. Wang
“Interfaces in Ge MOSFETs (invited)”, 8th National Functional Materials and Application ConferenceHarbin, China, (Aug.24-26, 2013).
9.  S. K. Wang, H.-G. Liu, T. Nishimura, K. Nagashio, K. Kita, and A. Toriumi, “Investigations on GeO Disproportionation Using X-ray Photoelectron Spectroscopy,” Pacific Rim Meeting on Electrochemical and Solid State Science, Honolulu, USA, (Oct. 7-12, 2012).
10.  S. K. Wang, K. Kita, K. Nagashio, T. Nishimura, and A. Toriumi, “Oxygen Vacancy Formation, Diffusion and GeO desorption in GeO2/Ge Stack”, 42th IEEE Semiconductor Interface Specialists Conference, Arlington , USA, (Dec.3-5, 2011)

 

Issued Patents

1. Shengkai Wang, Honggang Liu, Bing Sun, Hudong Chang, Composite Gate Dielectric Layer Applied to Group III-V Substrate and Method for Manufacturing the same, 2019.1.29, US 15/539,597

2. 王盛凯,刘洪刚,孙兵,常虎东,赵威一种锗纳米线叠层结构的制作方法,2016.8.17,中国,ZL 201310741585.8
3. 王盛凯,刘洪刚,孙兵,常虎东,赵威
一种锗纳米线结构的制作方法,2015.4.1,中国,ZL 201310741573.5
4. 王盛凯,刘洪刚,孙兵,常虎东,赵威
一种锗硅纳米线叠层结构的制作方法,2017.3.1,中国,ZL 201310740895.8
5. 王盛凯,刘洪刚,孙兵
一种砷化镓表面形貌控制方法,2018.12.25,中国,ZL 201611251389.2
6. 王盛凯
刘洪刚孙兵赵威薛百清一种硅基绝缘体上锗衬底结构及其制备方法,2016.12.7,中国,ZL 201210258454.X
7. 王盛凯
刘洪刚孙兵薛百清常虎东赵威卢力王虹一种控制锗纳米微结构尺寸的方法,2015.7.29,中国,ZL 201110399431.6
8. 王盛凯
李跃刘洪刚, 马磊孙兵, 常虎东, 王博一种环栅场效应晶体管及其制备方法,2019.8.20,中国,ZL 201611243062.0
9. 王盛凯
李跃, 刘洪刚, 孙兵, 常虎东, 龚著靖一种垂直集成双栅MOSFET结构及其制备方法,2019.5.31,中国,ZL 201610868474.7
10.王盛凯
李跃, 刘洪刚, 孙兵, 常虎东, 龚著靖应用于III-V族衬底的复合栅介质层及其制作方法,2018.5.8,中国,ZL 201510418996.2

 

Project undertaken:

1. NSFC general fund project (61974159) "Research on gate dielectric and interface coordination regulation of SiC MOSFET based on effective ion radius theory" (2020-2023)

2. Project of youth Promotion Association of Chinese Academy of Sciences (2017-2020)

3. Open project of ASIC National Key Laboratory: biomimetic neuron device and cell bioelectricity behavior simulation (2018-2019)

4. Three horizontal projects of China Academy of Engineering Physics (2016-2020)

5. Research on polarization behavior of binary ferroelectric oxides (2015-2016), an open project of Key Laboratory of Chinese Academy of Sciences

6. Youth fund project of NSFC (61204103) "Research on lanthanide complex high-k medium and GeO2/Ge interface regulation in Ge MOS technology" (2013-2015)

7. A key project of talent fund of Chinese Academy of Sciences - "Research on silicon-based germanium infrared detector based on photonic crystal technology" (2013-2014)

8. Japanese G-COE project "Ge CMOS interface field control research" (2009-2011)

 

Participation in scientific research projects:

1. National key research and development plan (2016yfa0202304) "material preparation and device verification of 2D atomic crystal" (2016-2021)

2. National 973 Project (2010cb327500) "Research on UHF Compound Based CMOS devices and circuits" (2010-2014)

3. National 973 Project (2011cba00600) "basic research on ultra low power consumption and high performance IC devices and processes" (2011-2015)

4. National 02 major science and technology project (2011zx02708-003) "Research on integration of high mobility CMOS new structure device and process" (2011-2014)

 

Awards and honors

1. 2019, Second Prize of Beijing Technology Invention of 2019 for “Key Technologies and Applications for High Current Density SiC Power Devices”

2. 2017-2020, Member of The Youth Innovation Promotion Association of Chinese Academy of Sciences

3. 2018, First prize of science popularization competition of Institute of microelectronics, Chinese Academy of Sciences

4. 2017, First prize of science popularization competition of Institute of microelectronics, Chinese Academy of Sciences

5. 2011, Young Researcher Award, IEEE-IWDTF2011, Japan.

6. 2009-2011, Global Center of Excellence Scholarship, Japan.

7. 2008, Outstanding graduate of Harbin University of technology - gold medal

8. 2006, Outstanding graduate of national defense science and engineering Commission


There are 3 doctoral students and 7 master students in the current research group

Employment direction of students: artificial intelligence, power electronics, scientific research