Dashan Shang Male PhD Supervisor

Institute of Microelectronics, Chinese Academy of Sciences

E-mail: shangdashan@ime.ac.cn

Address: No. 3, Beitucheng West Road, Beijing
Post code: 100029


Research Areas

1. Neuromporphic devices and computing-in-memory 

2. Neural network and deep learning 

3. Hardware AI systems


Education

2004-2007 Shanghai Institute of Ceramics, Chinese Academy of Sciences, PhD

Experience

2007-2009 Institute of Physics, Chinese Academy of Sciences,  Postdoctoral

2009-2011 Institute of Physics, Chinese Academy of Sciences,  Associated Prof. 

2011-2012 Seoul National University, Korea, Psotdoctoral

2012-2014 RWTH Aachen University, Germany, Humboldt Research Fellow

2013.11-2014.1 University of Cambridge, UK, Humboldt European Visitor

2014-1018 Institute of Physics, Chinese Academy of Sciences,  Associated Prof. 

2018-at present Institute of Microelectronics, Chinese Academy of Sciences, Prof.

Publications

   
Papers

*Corresponding author

1)      Y. Jiang, D. Wang, N. Lin, S. Shi, Y. Zhang, S. Wang, X. Chen, H. Chen, Y. Lin, K. Loong, J. Chen, Y. Li, R. Fang, D. S. Shang*, Q. Wang*, H. Yu*, Z. Wang*, Spontaneous Threshold lowering neuron using second-order diffusive memristor for self-adaptive spatial attention, Adv. Sci. DOI: 10.1002/advs.202301323 (2023).

2)      N. Jiang, J. Tang, W. Zhang, Y. Li, N. Li, X. Li, R. Fang, Z. Guo, F. Wang, J. Wang, Z. Li, C. He*, G. Zhang*, Z. Wang*, D. S. Shang*, Bio-inspired in-sensor reservoir computing for self-adaptive visual recognition with two-dimensional dual-mode phototransistors, Adv. Opt. Mater. DOI:10.1002/adom.202300271 (2023)

3)      R. Fang, W. Zhang, K. Ren, P. Zhang, X. Xu, Z. Wang, D. S. Shang*, In-materio reservoir computing based on nanowire networks: fundamental, progress, and perspective, Materials Futures DOI 10.1088/2752-5724/accd87 (2023)

4)      Z. Dai, F. Xiang, C. He, Z. Wang, W. Zhang, Y. Li, J. Yue*, D. S. Shang*, A scalable small-footprint time-space-pipelined architecture for reservoir computing, IEEE Transactions on Circuits and Systems II: Express Briefs DOI: 10.1109/TCSII.2023.3252802 (2023)

5)      S. Wang, Y. Li, D. Wang, W. Zhang, X. Chen, D. Dong, S. Wang, X. Zhang, P. Lin, C. Gallicchio, X. Xu, Q. Liu, K. T. Cheng, Z. Wang*, D. S. Shang*, M. Liu, Echo state graph neural networks with analogue random resistor arrays, Nature Machine Intelligence 5, 104 (2023)

6)      D. Wang, D. Liu, Y. Lin, A. Yuan, W. Zhang, Y. Zhao, S. Wang, X. Chen, H. Chen, Y. Zhang, Y. Jiang, S. Shi, K. Loong, J. Chen, S. Wei, Q. Wang, H. Yu, R. Xu*, D. S. Shang*, H. Zhang*, S. Zhang*, Z. Wang*, Structural plasticity-based hydrogel optical Willshaw model for one-shot on-the-fly edge learning, InfoMat DOI: 10.1002/inf2.12399 (2023)

7)      Y. Li, J. Chen, L. Wang, W. Zhang, Z. Guo, J. Wang, Y. Han, Z. Li, F. Wang, C. Dou, X. Xu, J. Yang, Z. Wang*, D. S. Shang*, An ADC-less RRAM-based computing-in-memory macro with binary CNN for efficient edge AI, IEEE Transactions on Circuits and Systems II: Express Briefs DOI: 10.1109/TCSII.2022.3233396 (2023)

8)      H. Xu, R. Fang, S. Wu, J. An, W. Zhang, C. Li, J. Lu, Y. Li, X. Xu, Y. Wang, Q. Liu, D. S. Shang*, Li-ion-based electrolyte-gated transistors with short write-read delay for neuromorphic computing, Adv. Electro. Mater. 9, 2200915 (2023)

9)      方仁瑞,任宽,郭泽钰,徐晗,张握瑜,王菲,张培文,李悦,尚大山*基于氧化物基电解质栅控晶体管突触的关联学习,无机材料学报 38, 399 (2023).

10)   H. Xu, J. Lu, Y. Li, R. Fang, W. Zhang, X. Xu, Y. Wang, Q. Liu, D. S. Shang*, Improvement of weight stability in Li-ion-based electrolyte-gated transistor synapse by silica protective process, Appl. Phys. Lett. 121, 113505 (2022).

11)   Y. Ye, C. Dou*, L. Wang, Z. Zhou, J. An, W. Li, H. Gao, X. Xu, J. Yue, J. Yang, J. Liu, D. S. Shang, J. Tian. Q. Liu, M. Liu, A 28nm hybrid 2T1R RRAM computing-in-memory macro for energy-efficient AI edge inference, IEEE Asian Solid-Sate Circuits Conference (ASSCC), Nov. 6-9, 11.1 (2022).

12)   W. Zhang, S. Wang, Y. Li, X. Xu, D. Dong, N. Jiang, F. Wang, Z. Guo, R. Fang, C. Dou, K. Ni, Z. Wang*, D. S. Shang*, M. Liu, Few-shot graph learning with robust and energy-efficient memory-augmented graph neural network (MAGNN) based on homogeneous computing-in-memory, IEEE Symposium on VLSI Technology and Circuits, IEEE Honolulu, HI, USA, C25-3, DOI: 10.1109/VLSITechnologyandCir46769.2022.9830418 (2022).

13)   W. Sun, W. Zhang, J. Yu, Y. Li, Z. Guo, J. Lai, D. Dong, X. Zheng, F. Wang, S. Fan, X. Xu*, D. S. Shang*, M. Liu, 3D reservoir computing with high area efficiency (5.12 TOPS/mm2) implemented by 3D dynamic memristor array for temporal signal processing, IEEE Symposium on VLSI Technology and Circuits, IEEE Honolulu, HI, USA, C25-2, DOI: 10.1109/VLSITechnologyandCir46769.2022.9830310 (2022).

14)   Y. Li, W. Zhang, X. Xu, Y. He, D. Dong, N. Jiang, F. Wang, Z. Guo, S. Wang, C. Dou, Y. Liu, Z. Wang*, D. S. Shang*, Mixed-precision continual learning based on computational resistance random access memory, Adv. Intel. Syst. 4, 2200026 (2022).

15)   S. Wang, H. Chen, W. Zhang, Y. Li, D. Wang, S. Shi, Y. Zhao, K. Loong, X. Chen, Y. Dong, Y. Zhang, Y. Jiang, C. Furqan, J. Chen, Q. Wang, X. Xu, G. Wang, H. Yu, D. S. Shang*, Z. Wang*, Convolutional echo state network with random memristors for spatiotemporal signal classification, Adv. Intel. Syst. 4, 2200027 (2022).

16)   J. Lu, Y. Li, Z. Xuan, H. Xu, S. Wu, Z. Wang, S. Long, Q. Liu, D. S. Shang*, One transistor one electrolyte-gated transistor for supervised learning in spiking neural networks, IEEE Electron Dev. Lett. 43, 296 (2022)

17)   Y. Li, H. Xu, J. Lu, Z. Wu, S. Wu, X. Zhang, Q. Liu, D. S. Shang*, Electrolyte-gated transistors with good retention for neuromorphic computing, Appl. Phys. Lett. 120, 021901 (2022)

18)   任宽,张握瑜,王菲,郭泽钰,尚大山*,基于忆阻器阵列的下一代储池计算,物理学报71, 140701 (2022)

19)   Y. Zhang, Y. Deng, Y. Lin, Y. Jiang, Y. Dong, X. Chen, G. Wang, D. S. Shang, Q. Wang, H. Yu, Z. Wang, Oscillator-network-based Ising machine, micromachine 13, 1016 (2022).

20)   J. Li, N. Li*, Q. Wang, Z. Wei, C. He, D. S. Shang, Y. Guo, W. Zhang, J. Tang, J. Liu, S. Wang, W. Yang, R. Yang, D. Shi, G. Zhang*, Highly Stretchable MoS2-Based Transistors with Opto-Synaptic Functionalities, Adv. Electro. Mater. 2200238 (2022).

21)   Y. Tian*, A. Wang, Y. Wei, M. Pei, R. Cao, Z. Gu, Q. Yuan, Y. Hu, J. Wang, K. Liu, D. S. Shang, J. Niu, X. An, R. Long, J. Zhang*, Large-Area Printing of Ferroelectric Surface and Super-Domain for Solar Water Splitting, Adv. Func. Mater. 32, 2111180, (2022)

22)   J. Yu, W. Zhang, D. Dong, W. Sun, J. Lai, X. Zheng, T. Gong, Y. Li, D. S. Shang, G. Xing, X. Xu, Long-term accuracy enhancement of binary neural networks based on optimized three-dimensional memristor array, micromachines 13, 308 (2022).

23)   C. Dou, X. Xu, X. Zhang, L. Wang, W. Ye, J. An, J. Yang, Q. Luo, T. Shi, J. Liu, D. S. Shang, F. Zhang, Q. Liu, M. Liu, Enabling RRAM-based brain-inspired computation by co-design of device, circuit, and system, IEEE International Electron Devices Meeting (IEDM), USA pp. 22.5.1-22.5.4 (2021)

24)   Y. Li, Z. Xuan, J. Lu, Z. Wang, X. Zhang, Z. Wu, Y. Wang, H. Xu, C. Dou, Y. Kang, Q. Liu, H. Lv, D. S. Shang,* One transistor one electrolyte-gated transistor based spiking neural network for power-efficient neuromorphic computing system, Adv. Func. Mater. 31, 2100042 (2021)

25)   J. Yu, Y. Li, W. Sun, W. Zhang, Z. Gao, D. Dong, Z. Yu, Y. Zhao, J. Lai, Q. Ding, Q. Luo, C. Dou, Q. Zuo, Y. Zhao, S. Chen, R. Zou, H. Chen, Q. Wang, H. Lv, X. Xu*, D. S. Shang*, M. Liu, Energy efficient and robust reservoir computing system using ultrathin (3.5 nm) ferroelectric tunneling junctions for temporal data learning, IEEE Symposium on VLSI Technology and Circuits, IEEE, Kyoto, Japan, T16-4, (2021)

26)   Y. S. Chai, D. S. Shang, S. H. Chun, Y. Sun, K. H. Kim, Charge-driven transtive devices via electric field control of magnetism in a helimagnet, Phys. Rev. Applied 16, 054046 (2021)

27)   L. Wang, W. Ye, J. Lai, J. Liu, J. Yang, X. Si, C. Huo, C. Dou*, X. Xu*, Q. Liu, D. S. Shang, F. Zhang, H. Lv, M. F. Chang, H. Iwai, M. Liu, A 14 nm 100Kb 2T2R transpose RRAM with >150X resistance ratio enhancement and 27.95% reduction on energy-latency product using low-power near threshold read operation and fast data-line current stabling scheme, IEEE Symposium on VLSI Technology and Circuits, IEEE, Kyoto, Japan, T13-5 (2021)

28)   L. Wang, W. Ye, C. Dou*, X. Si, X. Xu, J. Liu, D. S. Shang, J. Gao, F. Zhang, Y. Liu, M. F. Chang, Q. Liu, Efficient and robust nonvolatile computing-in-memory based on voltage division in 2T2R RRAM with input-dependent sensing control, IEEE Trans. Circuits and Systems II: Express Briefs, 68 1649 (2021).

29)   J. Tang. C. He*, J. Tang, K. Yue, Q. Zhang, Y. Liu, Q. Wang, S. Wang, N. Li, C. Shen, Y. Zhao, J. Liu, J. Yuan, Z. Wei, J. Li, K. Watanabe, T. Taniguchi, D. S. Shang, S. Wang, W. Yang, R. Yang, D. Shi, G. Zhang*, A reliable all-2D materials artificial synapse for high energy-efficient neuromorphic computing, Adv. Func. Mater. 2011083 (2021)

30)   X. Zhang, J. Lu, Z. Wang, R. Wang, J. Wei, T. Shi, C. Dou, Z. Wu, J. Zhu, D. S. Shang, G. Xing, M. Chan, Q. Liu,* M. Liu, Hybrid memristor-CMOS neurons for in-situ learning in fully hardware memristive spiking neural networks, Science Bulletin, 66 1624, (2021)

31)   Y. Li, J. K. Lu, D. S. Shang,* Q. Liu, S. Y. Wu, Z. H. Wu, X. M. Zhang, J. G. Yang, Z. R. Wang, H. B. Lv, M. Liu, Oxide-based electrolyte-gated transistors for spatiotemporal information processing, Adv. Mater. 32, 2003018 (2020)

32)   X. B. Bu, H. Xu, D. S. Shang,* Y. Li, H. B. Lv, Q. Liu, Ion-gated transistor: An enabler for sensing and computing integration, Adv. Intell. Syst. 2, 2000156 (2020)

33)   X. Zhang, Z. Wu, J. Lu, J. Wei, J. Lu, J. Zhu, J. Qiu, R. Wang, K. Lou, Y. Wang, T. Shi, C. Dou, D. Shang, Q. Liu*, M. Liu, Fully memristive SNNs with temporal coding for fast and low-power edge computing, Proc. IEEE International Electron Devices Meeting (IEDM), USA 2020 pp. 29.6.1-29.6.4

34)   C. He, J. Tang, D. S. Shang (co-first), J. Tang, X. Xi, S. Wang, N. Li, Q. Zhang, J. K. Lu, Z. Wei, Q. Wang, C. Shen, J. Li, S. Shen, J. Shen, R. Yang, D. Shi, H. Wu, S. Wang, G. Zhang*, Artificial synapse based on van der Waals heterostructures with tunable synaptic functions for neuromorphic computing, ACS Appl. Mater. & Interface 12, 11945 (2020)

35)   P. P. Lu, J. X. Shen, D. S. Shang, Y. Sun*, Nonvolatile memory and artificial synapse based on the Cu/P(VDF-TrFE)/Ni organic memtranstor, ACS Appl. Mater. & Interface 12, 4673 (2020)

36)   P. P. Lu, D. S. Shang,* C. S. Yang, Y. Sun*, An organic synaptic transistor with Nafion electrolyte, J. Phys. D: Appl. Phys. 53, 485102 (2020)

37)   Q. Luo, Y. Cheng, J. Yang, R. Cao, H. Ma, Y. Yang, R. Huang, W. Wei, Y. Zheng, T. Gong, J. Yu, X. Xu, P. Yuan, X. Li, L. Tai, H. Yu, D. S. Shang, Q. Liu, Q. Ren, H. Lv, M. Liu, A highly CMOS compatible hafnia-based ferroelectric diode, Nat. Commun. 11: 1391 (2020)

38)   J. X. Shen, P. P. Lu, D. S. Shang, Y. Sun*, Realization of complete Boolean logic functions using a single memtranstor, Phys. Rev. Applied 12, 054062 (2019)

39)   P. P. Lu, J. X. Shen, D. S. Shang, Y. Sun*, Artificial synaptic device based on a multiferroic heterostructure, J. Phys. D: Appl. Phys. 52, 465303 (2019)

40)   R. Cao, B. Song, D. S. Shang, Y. Yang, Q. Luo, S. Wu, Y. Li, Y. Wang, H. Lv, Q. Liu,* M. Liu, Improvement of endurance in HZO-based ferroelectric capacitor using Ru electrode, IEEE Electro. Dev. Lett. 40, 1744 (2019)

41)   X. Zhao. X. Zhang, D. S. Shang, Z. Wu, X. Xiao, R. Chen, C. Tang, J. Liu, W. Li, H. Lv, C. Jiang, Q. Liu,* M. Liu, Uniform, fast, and reliable LixSiOy-based resistive switching memory, IEEE Electro. Dev. Lett. 40 554 (2019)

42)   C. S. Yang, D. S. Shang,* N. Liu, E. J. Fuller, S. Agrawal, A. A. Talin, Y. Q. Li, B. G. Shen, Y. Sun, All-solid-state synaptic transistor with ultralow conductance for neuromorphic computing, Adv. Func. Mater. 28, 1804170 (2018)

43)   J. X. Shen, D. S. Shang,* Y. S. Chai, S. G. Wang, B. G. Shen, and Y. Sun, Mimic synaptic plasticity and neural network using memtranstors, Adv. Mater. 30, 1706717 (2018)

44)   K. Zhai, D. S. Shang, Y. S. Chai, G. Li, J. W. Cai, B. G. Shen, and Y. Sun*, Room-temperature nonvolatile memory based on a single-phase multiferroic hexaferrite, Adv. Func. Mater. 28, 1705771 (2018)

45)   J. Z. Cong, K. Zhai, Y. S. Chai, D. S. Shang, D. D. Khalyavin, R. D. Johnson, D. P. Kozlenko, S. E. Kichanov, A. M. Abakumov, A. A. Tsirlin, L. Dubrovinsky, X. L. Xu, Z. G. Sheng, S. V. Ovsyannikov, Y. Sun*, Spin-induced multiferroicity in the binary perovskite manganite Mn2O3, Nat. Commun. 9, 2996 (2018)

46)   尚大山*孙阳,基于忆耦器实现神经突触可塑性和神经网络模拟,物理 47, 376 (2018)

47)   申见昕,尚大山*孙阳,基于磁电耦合效应的基本电路元件和非易失性存储器,物理学报 67, 127501 (2018)

48)   C. S. Yang, D. S. Shang,* N. Liu, G. Shi, X. Shen, R. C. Ru, Y. Q. Li, and Y. Sun, A synaptic transistor based on quasi-2D molybdenum oxide, Adv. Mater. 29, 1700906 (2017)

49)   C. S. Yang, D. S. Shang,* Y. S. Chai, L. Q. Yan, B. G. Shen, and Y. Sun, Electrochemical-reaction-induced synaptic plasticity in MoOx-based solid state electrochemical cells, Phys. Chem. Chem. Phys. 19, 4190 (2017) (back cover)

50)   K. Zhai, Y. Wu, S. P. Shen, W. Tian, H. B. Cao, Y. S. Chai, B. C. Chakoumakos, D. S. Shang, L. Q. Yan, ans Y. Sun, Giant magnetoelectric effects achieved by tuning spin cone symmetry in Y-type hexaferrites, Nat. Commun. 8:51 (2017)

51)   J. X. Shen, D. S. Shang,* Y. S. Chai, Y. Wang, J. Z. Cong, S. P. Shen, L. Q. Yan, W. H. Wang, and Y. Sun, Nonvolatile Multi-level Memory and Boolean Logic Gates Based on a Single Ni/[Pb(Mg1/3Nb2/3)O3]0.7[PbTiO3]0.3/Ni Heterostructure, Phys. Rev. Applied 6, 064028 (2016)

52)   P. P. Lu, D. S. Shang,* J. X. Shen, Y. S. Chai, C. S. Yang, K. Zhai, J. Z. Cong, S. P. Shen, and Y. Sun, Nonvolatile transtance change random access memory based on magnetoelectric P(VDF-TrFE)/Metglas heterostructures, Appl. Phys. Lett. 109, 252902 (2016)

53)   C. S. Yang, D. S. Shang,* Y. S. Chai, L. Q. Yan, B. G. Shen, and Y. Sun, Moisture effects on the electrochemical reaction and resistance switching at Ag/molybdenum oxide interfaces, Phys. Chem. Chem. Phys. 18, 12466 (2016)

54)   J. Shen, J. Cong, Y. Chai, D. S. Shang, S. Shen, K. Zhai, Y. Tian, and Y. Sun, Nonvolatile memory based on nonlinear magnetoelectric effects, Phys. Rev. Appl. 6, 021001 (2016)

55)   S. P. Shen, J. C. Wu, J. D. Song, X. F. Sun, Y. F. Yang, Y. S. Chai, D. S. Shang, S. G. Wang, J. F. Scott, and Y. Sun, Quantum electric-dipole liquid on a triangular lattice, Nat. Commun. 7: 10569 (2016)

56)   D. S. Shang,* S. Lee, and Y. Sun, Memristive switching in Cu/Si/Pt cells and its improvement in vacuum environment, Solid State Ionics 295, 1 (2016)

57)   S. P. Shen, D. S. Shang,* Y. S. Chai, Y. Sun, Realization of a flux-driven memtranstor at room temperature, Chin. Phys. B 25, 027703 (2016)

58)   D. S. Shang, Y. S. Chai, Z. X. Cao, J. Lu, and Y. Sun, Towards the Complete Relational Graph of Fundamental Circuit Elements, Chin. Phys. B 24, 068402 (2015) (本文荣获2018年度中国物理学会“最有影响力论文奖”一等奖

59)   D. S. Shang,* P. Li, T. Wang, E. Carria, J. Sun, B. Shen, T. Taubner, I. Valov, R. Waser, and M. Wuttig, Understanding the conductive channel evolution in Na:WO3-x-based planar devices, Nanoscale 7 6023 (2015)

60)   D. S. Shang,* J. R. Sun, B. G. Shen, and M. Wuttig, Resistance switching in oxides with inhomogeneous conductivity, Chin. Phys. B 22, 067202 (2013) (Invited review)

61)   L. L. Wei, D. S. Shang,* J. R. Sun, S. B. Lee, Z. G. Sun, and B. G. Shen, Gradual electroforming and memristive switching in Pt/CuOx/Si/Pt systems, Nanotechnology 24, 325202 (2013)

62)   D. S. Shang,* L. Shi, J. R. Sun, and B. G. Shen, Visualization of the conductive channel in a planar resistance switching device based on electrochromic materials, J. Appl. Phys. 111, 053504 (2012).

63)   D. S. Shang,* L. Shi, J. R. Sun, and B. G. Shen, Local resistance switching at grain and grain boundary surfaces of polycrystalline tungsten oxide films, Nanotechnology 22, 254008 (2011).

64)   C. Y. Dong, D. S. Shang,* L. Shi, J. R. Sun, B. G. Shen, F. Zhu, R. W. Li, and W. Chen, Roles of silver oxide in the bipolar resistance switching devices with silver electrode, Appl. Phys. Lett. 98, 072107 (2011).

65)   D. S. Shang,* L. Shi, J. R. Sun, B. G. Shen, F. Zhuge, R. W. Li, and Y. G. Zhao, Improvement of reproducible resistance switching in polycrystalline tungsten oxide films by in situ oxygen annealing, Appl. Phys. Lett. 96, 072103 (2010).

66)   L. Shi, D. S. Shang,* J. R. Sun, and B. G. Shen, Flexible resistance memory devices based on Cu/ZnO:Mg/ITO structure, Phys. Status Solidi (Rapid Research Letters) 4, 344 (2010).

67)   D. S. Shang, J. R. Sun, L. Shi, Z. H. Wang, J. Wang, and B. G. Shen, Electronic transport and colossal electroresistance in SrTiO3:Nb-based Schottky junctions, Appl. Phys. Lett. 94, 052105 (2009).

68)   L. Shi, D. S. Shang,* J. R. Sun, and B. G. Shen, Bipolar Resistance Switching in Fully Transparent ZnO:Mg-Based Devices, Appl. Phys. Express 2, 101602 (2009).

69)   D. S. Shang,* Q. Wang, L. D. Chen, W. D. Yu, X. M. Li, J. R. Sun, and B. G. Shen, Crystallinity dependence of resistance switching in La0.7Ca0.3MnO3 films grown by pulsed laser deposition, J. Appl. Phys. 105, 063511 (2009).

70)   D. S. Shang, J. R. Sun, L. Shi, Z. H. Wang, and B. G. Shen, Resistance dependence of photovoltaic effect in Au/SrTiO3:Nb(0.5 wt %) Schottky junctions, Appl. Phys. Lett. 93, 172119 (2008).

71)   D. S. Shang, J. R. Sun, L. Shi, and B. G. Shen, Photoresponse of the Schottky junction Au/SrTiO3:Nb in different resistive states, Appl. Phys. Lett. 93, 102106 (2008).

72)   D. S. Shang, L. D. Chen, Q. Wang, Z. H. Wu, W. Q. Zhang, and X. M. Li, Reversible multilevel resistance switching of Ag-La0.7Ca0.3MnO3-Pt heterostructures, J. Mater. Res. 23, 302-307 (2008). (Outstanding Symposium Paper)

73)   D. S. Shang, L. D. Chen, Q. Wang, Z. H. Wu, W. Q. Zhang, and X. M. Li, Asymmetric fatigue and its endurance improvement in resistance switching of Ag-La0.7Ca0.3MnO3-Pt heterostructures, J. Phys. D: Appl. Phys. 40, 5373-5376 (2007).

74)   D. S. Shang, L. D. Chen, Q. Wang, W. Q. Zhang, Z. H. Wu, and X. M. Li, Temperature dependence of current-voltage characteristics of Ag-La0.7Ca0.3MnO3-Pt heterostructures, Appl. Phys. Lett. 89, 172102 (2006).

75)    D. S. Shang, Q. Wang, L. D. Chen, R. Dong, X. M. Li, and W. Q. Zhang, Effect of carrier trapping on the hysteretic current-voltage characteristics in Ag/La0.7Ca0.3MnO3/Pt heterostructures, Phys. Rev. B 73, 245427 (2006). 

Research Interests

1. Neuromporphic devices and computing-in-memory 

2. Neural network and deep learning 

3. Hardware AI systems