基本信息
焦念东  男  硕导  中国科学院沈阳自动化研究所
电子邮件: ndjiao@sia.cn
通信地址: 沈阳市南塔街114号
邮政编码: 110016

研究领域

微纳米机器人,微纳米操作,微纳米机器人在生物医疗等领域的应用

招生信息

   
招生专业
081102-检测技术与自动化装置
招生方向
微纳米机器人,微纳米操作
微型机器人

教育背景

2002-09--2008-07   中科院沈阳自动化研究所   硕博连读/博士学位
学历
研究生

学位
博士

工作经历

   
工作简历
2010-01~现在, 中科院沈阳自动化研究所, 副研究员
2007-06~2009-12,中科院沈阳自动化研究所, 助理研究员

教授课程

纳米技术基础(理论及实验)

专利与奖励

   
专利成果
[1] 杨铁, 刘柱, 焦念东, 董策, 刘连庆. 一种纺丝机变刚度自动换筒上线装置. CN: CN211594598U, 2020-09-29.

[2] 杨铁, 焦念东, 刘柱, 刘连庆. 一种纺丝机的自动换筒及变刚度自适应调整机构. CN: CN208815166U, 2019-05-03.

[3] 焦念东, 杨铁, 刘柱, 刘连庆. 一种纺丝机自动上线机构. CN: CN208790933U, 2019-04-26.

[4] 于鹏, 刘柱, 周磊, 杨洋, 王栋, 刘连庆, 焦念东. 一种用于原子力显微镜的扫描探针夹持装置. 中国: CN105092900B, 2018-01-02.

[5] 刘连庆, 于鹏, 刘静怡, 魏阳杰, 刘柱, 杨洋, 焦念东. 一种基于最强边缘梯度拉普拉斯算子累加的自动聚焦算法. 中国: CN106534661A, 2017-03-22.

[6] 焦念东, 刘增磊, 王越超, 刘连庆. 原子力显微镜针尖基底微小距离控制方法. 中国: CN104345739A, 2015-02-11.

[7] 于鹏, 刘柱, 周磊, 杨洋, 王栋, 刘连庆, 焦念东. 一种用于原子力显微镜的扫描探针夹持装置. 中国: CN203825035U, 2014-09-10.

[8] 焦念东, 刘增磊, 刘连庆. 通过施加电流实现原子力显微镜纳米沉积的方法. 中国: CN103879955A, 2014-06-25.

[9] 王越超, 王栋, 董再励, 鲁鹏, 周磊, 焦念东. 一种高精度高频正弦波有效值实时检测方法. 中国: CN103149415A, 2013-06-12.

[10] 焦念东, 王志迁, 董再励. 一种纳流控芯片及基于AFM的加工方法和应用. 中国: CN102539503A, 2012-07-04.

[11] 董再励, 王栋, 周磊, 刘柱, 黄富强, 焦念东. 一种基于模型的压电陶瓷扫描器迟滞性前馈校正方法. 中国: CN102486477A, 2012-06-06.

[12] 焦念东, 王栋, 董再励. 一种纳米管道的封装方法. 中国: CN102211007A, 2011.10.12.

[13] 焦念东, 王志迁, 董再励. 基于AFM的纳米级电极加工方法. 中国: CN102211755A, 2011-10-12.

[14] 焦念东, 王志迁, 董再励. 基于AFM的纳米沟道加工方法. 中国: CN102211754A, 2011-10-12.

[15] 焦念东, 王志迁, 董再励. 一种纳流控芯片. 中国: CN201993335U, 2011-09-28.

[16] 席 宁, 董再励, 田孝军, 焦念东, 王越超, 刘连庆. 基于纳米操作的实时力感与可视图像人机交互方法及系统. 中国: CN100484866, 2009-05-06.

[17] 席宁, 董再励, 田孝军, 刘连庆, 焦念东. 基于纳米扫描探针形变的微作用力建模方法. 中国: CN1755345, 2006-04-05.

出版信息

   
发表论文
[1] Hu, Xingyue, Ge, Zhixing, Wang, Xiaodong, Jiao, Niandong, Tung, Steve. Multifunctional thermo-magnetically actuated hybrid soft millirobot based on 4D printing. COMPOSITES PART B-ENGINEERING[J]. 2022, 228: http://dx.doi.org/10.1016/j.compositesb.2021.109451.
[2] Xie, Shuangxi, Qin, Lili, Li, Guangxi, Jiao, Niandong. Robotized algal cells and their multiple functions. SOFT MATTER[J]. 2021, 17(11): 3047-3054, http://dx.doi.org/10.1039/d0sm02096f.
[3] Lin, Daojing, Jiao, Niandong, Wang, Zhidong, Liu, Lianqing. A Magnetic Continuum Robot With Multi-Mode Control Using Opposite-Magnetized Magnets. IEEE ROBOTICS AND AUTOMATION LETTERS[J]. 2021, 6(2): 2485-2492, http://dx.doi.org/10.1109/LRA.2021.3061376.
[4] Wang, Xiaodong, Dai, Liguo, Jiao, Niandong, Tung, Steve, Liu, Lianqing. Superhydrophobic photothermal graphene composites and their functional applications in microrobots swimming at the air/water interface. CHEMICAL ENGINEERING JOURNAL[J]. 2021, 422: http://dx.doi.org/10.1016/j.cej.2021.129394.
[5] Wu, Junfeng, Ma, Shuang, Li, Mengyue, Hu, Xingyue, Jiao, Niandong, Tung, Steve, Liu, Lianqing. Enzymatic/Magnetic Hybrid Micromotors for Synergistic Anticancer Therapy. ACS APPLIED MATERIALS & INTERFACES[J]. 2021, 13(27): 31514-31526, http://dx.doi.org/10.1021/acsami.1c07593.
[6] Daojing Lin, Jingyi Wang, Niandong Jiao, Zhidong Wang, Lianqing Liu. A Flexible Magnetically Controlled Continuum Robot Steering in the Enlarged Effective Workspace with Constraints for Retrograde Intrarenal Surgery. Advanced Intelligent Systems[J]. 2021, 3(10): n/a-n/a, [7] 孙强, 王敬依, 张颖, 焦念东. 毫米级潜艇形机器人在低雷诺数液体中的3D运动及微操作方法研究. 机器人[J]. 2020, 42(1): 89-99, http://lib.cqvip.com/Qikan/Article/Detail?id=00002GGH4L587JP0MPDO8JP16PR.
[8] Dai, Liguo, Lin, Daojing, Wang, Xiaodong, Jiao, Niandong, Liu, Lianqing. Integrated Assembly and Flexible Movement of Microparts Using Multifunctional Bubble Microrobots. ACS APPLIED MATERIALS & INTERFACES[J]. 2020, 12(51): 57587-57597, [9] Wang, Xiaodong, Jiao, Niandong, Tung, Steve, Liu, Lianqing. Photoresponsive Graphene Composite Bilayer Actuator for Soft Robots. ACS APPLIED MATERIALS & INTERFACES[J]. 2019, 11(33): 30290-30299, http://dx.doi.org/10.1021/acsami.9b09491.
[10] Yang, Yongliang, Zeng, Bixi, Sun, Zhiyong, Esfahani, Amir Monemian, Hou, Jing, Jiao, NianDong, Liu, Lianqing, Chen, Liangliang, Basson, Marc D, Dong, Lixin, Yang, Ruiguo, Xi, Ning. Optimization of Protein-Protein Interaction Measurements for Drug Discovery Using AFM Force Spectroscopy. IEEE TRANSACTIONS ON NANOTECHNOLOGY[J]. 2019, 18: 509-517, http://ir.sia.cn/handle/173321/24733.
[11] Wang, Jingyi, Jiao, Niandong, Wang, Xiaodong, Lin, Daojing, Tung, Steve, Liu, Lianqing. An electromagnetic anglerfish-shaped millirobot with wireless power generation. BIOMEDICAL MICRODEVICES[J]. 2019, 21(1): http://ir.sia.cn/handle/173321/24156.
[12] Dai, Liguo, Ge, Zhixing, Jiao, Niandong, Liu, Lianqing. 2D to 3D Manipulation and Assembly of Microstructures Using Optothermally Generated Surface Bubble Microrobots. SMALL[J]. 2019, 15(45): https://www.webofscience.com/wos/woscc/full-record/WOS:000487479800001.
[13] Wang, Jingyi, Jiao, Niandong, Tung, Steve, Liu, Lianqing. Target clamping and cooperative motion control of ant robots. BIOINSPIRATION & BIOMIMETICS[J]. 2019, 14(6): https://www.webofscience.com/wos/woscc/full-record/WOS:000493113400002.
[14] Dai, Liguo, Jiao, Niandong, Liu, Lianqing. Assembly and movement control of micro-objects in open chips using a single actuator. JOURNAL OF MICROMECHANICS AND MICROENGINEERING[J]. 2018, 28(11): http://ir.sia.cn/handle/173321/22774.
[15] Wang Xiaodong, Jiao Niandong, Tung Steve, Liu Lianqing, Haliyo S, Sill A, Arai F, Fatikow S. Locomotion of Microstructures Driven by Algae Cells. 2018 INTERNATIONAL CONFERENCE ON MANIPULATION, AUTOMATION AND ROBOTICS AT SMALL SCALES (MARSS)null. 2018, http://apps.webofknowledge.com/CitedFullRecord.do?product=UA&colName=WOS&SID=5CCFccWmJJRAuMzNPjj&search_mode=CitedFullRecord&isickref=WOS:000448192500023.
[16] Zhang, Yu, Yang, Yong, Liu, Na, Yu, Fanhua, Yu, Haibo, Jiao, Niandong. Large-Scale Assembly and Mask-Free Fabrication of Graphene Transistors via Optically Induced Electrodeposition. CRYSTALS[J]. 2018, 8(6): http://www.corc.org.cn/handle/1471x/2173643.
[17] Liu, Zenglei, Gao, Ailian, Xie, Shuangxi, Jiao, Niandong, Liu, Lianqing. Characteristics Analysis for Nanosoldering with Atomic Force Microscope. NANO[J]. 2018, 13(4): https://www.webofscience.com/wos/woscc/full-record/WOS:000431138000007.
[18] Xie, Shuangxi, Wang, Xiaodong, Jiao, Niandong, Tung, Steve, Liu, Lianqing. Programmable micrometer-sized motor array based on live cells. LAB ON A CHIP[J]. 2017, 17(12): 2046-2053, https://www.webofscience.com/wos/woscc/full-record/WOS:000403212300002.
[19] Wang, Jingyi, McMullen, Carlton, Yao, Ping, Jiao, Niandong, Kim, Min, Kim, JinWoo, Liu, Lianqing, Tung, Steve. 3D-printed peristaltic microfluidic systems fabricated from thermoplastic elastomer. MICROFLUIDICS AND NANOFLUIDICS[J]. 2017, 21(6): https://www.webofscience.com/wos/woscc/full-record/WOS:000404213400005.
[20] 焦念东, 解双喜. 微观世界里的特种兵——藻类细胞机器人. 科技导报[J]. 2017, 35(16): 92-, [21] Dai, Liguo, Jiao, Niandong, Wang, Xiaodong, Liu, Lianqing. A Micromanipulator and Transporter Based on Vibrating Bubbles in an Open Chip Environment. MICROMACHINES[J]. 2017, 8(4): http://ir.sia.cn/handle/173321/20421.
[22] Wang, Jingyi, Jiao, Niandong, Tung, Steve, Liu, Lianqing. Automatic Path Tracking and Target Manipulation of a Magnetic Microrobot. MICROMACHINES[J]. 2016, 7(11): http://www.irgrid.ac.cn/handle/1471x/1142457.
[23] Xie, Shuangxi, Jiao, Niandong, Tung, Steve, Liu, Lianqing. Controlled regular locomotion of algae cell microrobots. BIOMEDICAL MICRODEVICES[J]. 2016, 18(3): http://www.irgrid.ac.cn/handle/1471x/1142376.
[24] Zhou, Peilin, Yu, Haibo, Shi, Jialin, Jiao, Niandong, Wang, Zhidong, Wang, Yuechao, Liu, Lianqing. A rapid and automated relocation method of an AFM probe for high-resolution imaging. NANOTECHNOLOGY[J]. 2016, 27(39): http://www.irgrid.ac.cn/handle/1471x/1142415.
[25] Xie, Shuangxi, Jiao, Niandong, Tung, Steve, Liu, Lianqing. Fabrication of SWCNT-Graphene Field-Effect Transistors. MICROMACHINES[J]. 2015, 6(9): 1317-1330, http://www.irgrid.ac.cn/handle/1471x/1008401.
[26] 周培林, 于海波, 赵增旭, 焦念东, 刘连庆. 面向AFM的纳米目标快速重定位方法. 中国科学:技术科学[J]. 2014, 44(11): 1145-1153, http://www.irgrid.ac.cn/handle/1471x/921595.
[27] Jingyi Wang, Niandong Jiao, Steve Tung, Lianqing Liu. Magnetic microrobot and its application in a microfluidic system. Robotics and Biomimetics[J]. 2014, 1(1): 1-8, http://www.irgrid.ac.cn/handle/1471x/1035158.
[28] Xie ShuangXi, Liu ZengLei, Jiao NianDong, Tung, Steve, Liu LianQing. Fabrication and characteristic detection of graphene nanoelectrodes. SCIENCE CHINA-TECHNOLOGICAL SCIENCES[J]. 2014, 57(10): 1950-1955, http://www.irgrid.ac.cn/handle/1471x/852535.
[29] Yao Ping, Liu Zhu, Liu Bin, Liu Lianqing, Jiao Niandong, Dong Zaili, Tung Steve, IEEE. Telemedicine Utilizing Integrated Microfluidic System for Insulin Detection. 2013 IEEE 3RD ANNUAL INTERNATIONAL CONFERENCE ON CYBER TECHNOLOGY IN AUTOMATION, CONTROL AND INTELLIGENT SYSTEMS (CYBER)null. 2013, 149-152, [30] Liu Zenglei, Jiao Niandong, Wang Zhidong, Dong Zaili, Liu Lianqing. Atomic force microscope deposition assisted by electric field. Advanced Materials Researchnull. 2013, 69-73, http://www.irgrid.ac.cn/handle/1471x/720219.
[31] 袁帅, 王越超, 席宁, 于海波, 焦念东, 于鹏, 刘连庆. 机器人化微纳操作研究进展. 科学通报[J]. 2013, 58(S2): 28-39, http://www.irgrid.ac.cn/handle/1471x/834544.
[32] 刘增磊, 焦念东, 刘志华, 王志东, 刘连庆. 基于AFM的纳米线沉积加工方法. 科学通报[J]. 2013, 58(S2): 200-206, http://www.irgrid.ac.cn/handle/1471x/834545.
[33] Liu, Zenglei, Jiao, Niandong, Xu, Ke, Wang, Zhidong, Dong, Zaili, Liu, Lianqing. Nanodot deposition and its application with atomic force microscope. JOURNAL OF NANOPARTICLE RESEARCH[J]. 2013, 15(6): http://www.irgrid.ac.cn/handle/1471x/720187.
[34] Liu ZengLei, Jiao NianDong, Liu LianQing, Wang ZhiDong, IEEE. A Current Assisted Deposition Method Based on Contact Mode Atomic Force Microscope. 2013 IEEE 3RD ANNUAL INTERNATIONAL CONFERENCE ON CYBER TECHNOLOGY IN AUTOMATION, CONTROL AND INTELLIGENT SYSTEMS (CYBER)null. 2013, 287-290, [35] 张晓龙, 高宏伟, 焦念东, 刘连庆. 基于数控雕刻机的微流控芯片制作方法. 微纳电子技术[J]. 2013, 50(10): 635-638,661, http://ir.sia.ac.cn/handle/173321/14037.
[36] Yu, Zhang, Liu LianQing, Jiao NianDong, Ning, Xi, Wang YueChao, Dong ZaiLi. Modification of zigzag graphene nanoribbons by patterning vacancies. ACTA PHYSICA SINICA[J]. 2012, 61(13): https://www.webofscience.com/wos/woscc/full-record/WOS:000306677600053.
[37] Liu Zenglei, Jiao Niandong, Wang Zhidong, Dong Zaili. Analysis on 3-dimensional spatial electric field of AFM based anodic oxidation. 2012 7th IEEE International Conference on Nano/Micro Engineered and Molecular Systems, NEMS 2012null. 2012, 547-552, http://www.irgrid.ac.cn/handle/1471x/509424.
[38] Yu, Zhang, Liu LianQing, Jiao NianDong, Ning, Xi, Wang YueChao, Dong ZaiLi. Modification of zigzag graphene nanoribbons by patterning vacancies. ACTA PHYSICA SINICA[J]. 2012, 61(13): https://www.webofscience.com/wos/woscc/full-record/WOS:000306677600053.
[39] Wang, Z, Wang, D, Jiao, N, Tung, S, Dong, Z. Nanochannel system fabricated by MEMS microfabrication and atomic force microscopy. IET NANOBIOTECHNOLOGY[J]. 2011, 5(4): 108-113, http://www.irgrid.ac.cn/handle/1471x/443062.
[40] Wang, Z Q, Jiao, N D, Tung, S, Dong, Z L. Atomic force microscopy-based repeated machining theory for nanochannels on silicon oxide surfaces. APPLIED SURFACE SCIENCE[J]. 2011, 257(8): 3627-3631, http://dx.doi.org/10.1016/j.apsusc.2010.11.091.
[41] WANG ZhiQian, JIAO NianDong, TUNG Steve, DONG ZaiLi. Research on the atomic force microscopy-based fabrication of nanochannels on silicon oxide surfaces. 中国科学通报:英文版. 2010, 3466-3471, http://lib.cqvip.com/Qikan/Article/Detail?id=35952206.
[42] Jiao NianDong, Wang YueChao, Xi Ning, Dong ZaiLi. AFM based anodic oxidation and its application to oxidative cutting and welding of CNT. SCIENCE IN CHINA SERIES E-TECHNOLOGICAL SCIENCES[J]. 2009, 52(11): 3149-3157, http://www.irgrid.ac.cn/handle/1471x/442893.
[43] Jiao NianDong, Wang YueChao, Xi Ning, Dong ZaiLi. AFM based anodic oxidation and its application to oxidative cutting and welding of CNT. SCIENCE IN CHINA SERIES E-TECHNOLOGICAL SCIENCES[J]. 2009, 52(11): 3149-3157, http://www.irgrid.ac.cn/handle/1471x/442893.
[44] 焦念东, 刘连庆, 王越超, 席宁, 董再励, 田孝军. 具有实时视觉/触觉反馈的纳米操作系统. 高技术通讯. 2006, 16(1): 36-40, http://lib.cqvip.com/Qikan/Article/Detail?id=21108410.

科研活动

   
科研项目
( 1 ) 纳米管道芯片制作技术研究, 主持, 国家级, 2009-04--2011-03
( 2 ) 面向45nm晶圆3D测量装备AFM开发, 参与, 省级, 2010-11--2012-12
( 3 ) 基于原子力显微镜(AFM)微观电场的纳米焊接方法研究, 主持, 国家级, 2012-01--2014-12
( 4 ) 利用原子力显微镜微观电场进行纳米焊接的方法研究, 主持, 省级, 2011-09--2013-08
( 5 ) 机器人化病毒三维拾取及动力学分析, 参与, 部委级, 2013-01--2015-12
( 6 ) 基于原子力显微镜的可控纳米焊接新功能开发, 主持, 部委级, 2013-01--2013-12
( 7 ) 类生理环境中微型机器人控制机理及细胞操作方法研究, 主持, 市地级, 2015-01--2016-12
( 8 ) 基于系统科学的细胞多维信息实时自动获取与分析方法研究, 参与, 国家级, 2015-01--2019-12
( 9 ) 藻类细胞机器人的运动控制方法研究, 主持, 国家级, 2016-01--2019-12
( 10 ) 面向非麻醉肾结石治疗的微型机器人诊断 方法研究, 主持, 市地级, 2017-09--2019-09
( 11 ) 基于生命-机电融合的类生命驱动和感知方法研究, 参与, 国家级, 2018-01--2021-12
( 12 ) 类生命机器人基础理论与技术研究, 参与, 部委级, 2018-01--2021-12
参与会议
(1)Locomotion of Microstructures Driven by Algae cells   2018-07-04
(2)Trapping and Dynamical Analysis of Swimming Algae Cells based on Optically-Induced Dielectrophoresis   2017-04-09
(3)A nanochannel system fabricated by MEMS microfabrication and atomic force microscopy   Zhiqian Wang, Steve Tung, Niandong   2011-09-15
(4)Electric field assisted fabrication on Si and HOPG surfaces by AFM   Nian-Dong Jiao   2008-06-27