基本信息
崔晓菊 女 硕导 中国科学院大连化学物理研究所
电子邮件: cuixiaoju@dicp.ac.cn
通信地址: 辽宁省大连市沙河口区中山路457号
邮政编码: 116023
电子邮件: cuixiaoju@dicp.ac.cn
通信地址: 辽宁省大连市沙河口区中山路457号
邮政编码: 116023
研究领域
1. 碳一分子的温和催化转化
研究甲烷、一氧化碳、甲醇以及二氧化碳等碳一分子在温和条件下的催化转化,利用热催化、电催化、或热/电协同耦合技术来实现温和条件下碳一分子高效转化制高附加值化学品。
2. 二维材料及其杂化结构的可控制备
研究石墨烯、过渡金属硫化物、氮化硼等二维材料限域杂原子等的可控制备,调控催化剂的电子特性和活性中心,开发高活性和高稳定性的能源小分子催化转化材料。
招生信息
硕士研究生:化学、材料、化工等相关专业,认真踏实、勤奋努力。
招生专业
070304-物理化学080501-材料物理与化学0703J1-纳米科学与技术
招生方向
碳一分子的温和催化转化二维材料及其杂化结构的可控制备
教育背景
2012-09--2017-06 中国科学院大连化学物理研究所 理学博士2008-09--2012-06 四川大学 工学学士
学历
博士研究生
学位
理学博士
工作经历
崔晓菊,中科院大连化物所副研究员,中科院大连化物所“优秀青年博士人才”,主要从事碳一分子的催化转化研究。以第一/通讯作者在Nat. Commun.、Chem、Angew. Chem. Int. Ed.、Energy Environ. Sci.、Adv. Mater.等国际知名刊物上发表论文11篇(其中影响因子大于10论文9篇),参与发表论文8篇,申请国内发明专利12件。主持国家自然科学基金面上及青年项目、中科院洁净能源创新研究院合作基金、大连化物所科研创新基金等,作为骨干承担科技部国家重点研发计划、重大研究计划系统集成项目和中科院稳定支持青年团队计划等。先后荣获辽宁省“百千万人才工程”万层次,大连市青年科技之星、中科院“优秀博士学位论文”,国家“博士后创新人才支持计划”以及中科院“三好学生标兵”、博士研究生国家奖学金、“延长石油优秀博士生奖学金”等多项荣誉及奖励。
工作简历
2020-01~现在, 中国科学院大连化学物理研究所, 副研究员2017-07~2019-12,厦门大学, 博士后
专利与奖励
奖励信息
(1) 大连市青年科技之星, 市地级, 2021(2) 大连市青年才俊, 市地级, 2020(3) 辽宁省“百千万人才工程”万层次, 省级, 2020(4) 中国博士后科学基金会博士后创新人才支持计划优秀创新成果, , 国家级, 2020(5) 中科院优秀博士学位论文, 省级, 2018(6) 国家博士后创新人才支持计划, 国家级, 2017
专利成果
( 1 ) 一种利用氧气将乙烯直接催化转化为乙二醇的方法及其催化剂, 发明专利, 2021, 第 3 作者, 专利号: 202111370967.5( 2 ) 一种光催化甲烷转化材料及其制备方法, 发明专利, 2021, 第 3 作者, 专利号: 202111077401.3( 3 ) 一种光催化甲烷转化制乙酸催化剂及其制备方法, 发明专利, 2021, 第 3 作者, 专利号: 202110401189.5( 4 ) 一种电催化水汽变换反应制备高纯氢气的催化剂和装置, 专利授权, 2021, 第 2 作者, 专利号: CN110835765B( 5 ) 一种杂原子掺杂的碳封装金属纳米颗粒的制备方法, 发明专利, 2017, 第 2 作者, 专利号: CN105598443B( 6 ) 一种石墨烯内嵌单分散金属原子的制备方法, 发明专利, 2015, 第 2 作者, 专利号: CN104925784A
出版信息
发表论文
[1] Zhang Mo, Chen Ruixue, Wang Suheng, Tu Yunchuan, Cui Xiaoju, Deng Dehui. Direct electrocatalytic conversion of crude syngas to ethylene via a multi-process coupled device. EES Catalysis[J]. 2023, 250-, https://pubs.rsc.org/en/content/articlelanding/2023/EY/D3EY00005B.[2] Wei, Huifang, Liu, Huan, Yu, Liang, Zhang, Mo, Zhang, Yunlong, Fan, Jinchang, Cui, Xiaoju, Deng, Dehui. Alloying Pd with Cu boosts hydrogen production via room-temperature electrochemical water-gas shift reaction. NANO ENERGY[J]. 2022, 102: http://dx.doi.org/10.1016/j.nanoen.2022.107704.[3] Jinchang Fan, Suxia Liang, Kaixin Zhu, Jun Mao, Xiaoju Cui, Chao Ma, Liang Yu, Dehui Deng. Boosting room-temperature conversion of methane via confining Cu atoms in ultrathin Ru nanosheets. CHEM CATALYSIS[J]. 2022, 2(9): 2253-2261, http://dx.doi.org/10.1016/j.checat.2022.07.025.[4] Zhu, Kaixin, Liang, Suxia, Cui, Xiaoju, Huang, Rui, Wan, Ningbo, Hua, Lei, Li, Haiyang, Chen, Hongyu, Zhao, Zhenchao, Hou, Guangjin, Li, Mingrun, Jiang, Qike, Yu, Liang, Deng, Dehui. Highly efficient conversion of methane to formic acid under mild conditions at ZSM-5-confined Fe-sites. Nano Energy[J]. 2021, 82: http://dx.doi.org/10.1016/j.nanoen.2020.105718.[5] Tu, Yunchuan, Tang, Wei, Yu, Liang, Liu, Zheyi, Liu, Yanting, Xia, Huicong, Zhang, Haiwei, Chen, Shiyun, Wu, Jia, Cui, Xiaoju, Zhang, Jianan, Wang, Fangjun, Hu, Yangbo, Deng, Dehui. Inactivating SARS-CoV-2 by electrochemical oxidation. Science Bulletin[J]. 2021, 66(7): 720-726, https://www.sciengine.com/doi/10.1016/j.scib.2020.12.025.[6] Cui Xiaoju, Jiang Qiaorong, Wang Chunsheng, Wang Suheng, Jiang Zhiyuan, Li Xueai, Deng Dehui. Encapsulating FeCo alloys by single layer graphene to enhance microwave absorption performance. Materials Today Nano[J]. 2021, 16: https://www.sciencedirect.com/science/article/pii/S2588842021000304.[7] Cui, Xiaoju, Huang, Rui, Deng, Dehui. Catalytic conversion of C1 molecules under mild conditions. EnergyChem[J]. 2021, 3(1): http://dx.doi.org/10.1016/j.enchem.2020.100050.[8] Cui, Xiaoju, Ren, Pengju, Ma, Chao, Zhao, Jia, Chen, Ruixue, Chen, Shiming, Rajan, N Pethan, Li, Haobo, Yu, Liang, Tian, Zhongqun, Deng, Dehui. Robust Interface Ru Centers for High-Performance Acidic Oxygen Evolution. Advanced Materials[J]. 2020, 32(25): https://www.webofscience.com/wos/woscc/full-record/WOS:000533213700001.[9] Chen, Ruixue, Su, HaiYan, Liu, Deyu, Huang, Rui, Meng, Xianguang, Cui, Xiaoju, Tian, ZhongQun, Zhang, Dong H, Deng, Dehui. Highly Selective Production of Ethylene by the Electroreduction of Carbon Monoxide. Angewandte Chemie International Edition[J]. 2020, 59(1): 154-160, http://dx.doi.org/10.1002/anie.201910662.[10] Xiaoju Cui, HaiYan Su, Ruixue Chen, Liang Yu, Jinchao Dong, Chao Ma, Suheng Wang, Jianfeng Li, Fan Yang, Jianping Xiao, Mengtao Zhang, Ding Ma, Dehui Deng, Dong H Zhang, Zhongqun Tian, Xinhe Bao. Room-temperature electrochemical water–gas shift reaction for high purity hydrogen production. Nature Communications[J]. 2019, 10(1): 1-8, https://doaj.org/article/7e86fe681d154b96b17b6ae9ef5689a9.[11] Meng, Xianguang, Cui, Xiaoju, Rajan, N Pethan, Yu, Liang, Deng, Dehui, Bao, Xinhe. Direct Methane Conversion under Mild Condition by Thermo-, Electro-, or Photocatalysis. Chem[J]. 2019, 5(9): 2296-2325, http://dx.doi.org/10.1016/j.chempr.2019.05.008.[12] Wang, Suheng, Li, Haobo, He, Mengqi, Cui, Xiaoju, Hua, Lei, Li, Haiyang, Xiao, Jianping, Yu, Liang, Rajan, N Pethan, Xie, Zhaoxiong, Deng, Dehui. Room-temperature conversion of ethane and the mechanism understanding over single iron atoms confined in graphene. Journal of Energy Chemistry[J]. 2019, 36(9): 47-50, http://lib.cqvip.com/Qikan/Article/Detail?id=7003010285.[13] Wang, Junying, Cui, Xiaoju, Li, Haobo, Xiao, Jianping, Yang, Jiang, Mu, Xiaoyu, Liu, Haixia, Sun, YuanMing, Xue, Xuhui, Liu, Changlong, Zhang, XiaoDong, Deng, Dehui, Bao, Xinhe. Highly efficient catalytic scavenging of oxygen free radicals with graphene-encapsulated metal nanoshields. Nano Research[J]. 2018, 11(5): 2821-2835, http://dx.doi.org/10.1007/s12274-017-1912-9.[14] Cui, Xiaoju, Li, Haobo, Wang, Yan, Hu, Yuanli, Hua, Lei, Li, Haiyang, Han, Xiuwen, Liu, Qingfei, Yang, Fan, He, Limin, Chen, Xiaoqi, Li, Qingyun, Xiao, Jianping, Deng, Dehui, Bao, Xinhe. Room-Temperature Methane Conversion by Graphene-Confined Single Iron Atoms. Chem[J]. 2018, 4(8): 1902-1910, http://dx.doi.org/10.1016/j.chempr.2018.05.006.[15] Tu, Yunchuan, Li, Haobo, Deng, Dehui, Xiao, Jianping, Cui, Xiaoju, Ding, Ding, Chen, Mingshu, Bao, Xinhe. Low charge overpotential of lithium-oxygen batteries with metallic Co encapsulated in single-layer graphene shell as the catalyst. Nano Energy[J]. 2016, 30: 877-884, http://dx.doi.org/10.1016/j.nanoen.2016.08.066.[16] Cui, Xiaoju, Ren, Pengju, Deng, Dehui, Deng, Jiao, Bao, Xinhe. Single layer graphene encapsulating non-precious metals as high-performance electrocatalysts for water oxidation. Energy & Environmental Science[J]. 2016, 9(1): 123-129, http://cas-ir.dicp.ac.cn/handle/321008/171440.[17] Cui, Xiaoju, Xiao, Jianping, Wu, Yihui, Du, Peipei, Si, Rui, Yang, Huaixin, Tian, Huanfang, Li, Jianqi, Zhang, WenHua, Deng, Dehui, Bao, Xinhe. A Graphene Composite Material with Single Cobalt Active Sites: A Highly Efficient Counter Electrode for Dye-Sensitized Solar Cells. Angewandte Chemie International Edition[J]. 2016, 55(23): 6708-6712, http://ir.sinap.ac.cn/handle/331007/25634.[18] Deng, Dehui, Chen, Xiaoqi, Yu, Liang, Wu, Xing, Liu, Qingfei, Liu, Yun, Yang, Huaixin, Tian, Huanfang, Hu, Yongfeng, Du, Peipei, Si, Rui, Wang, Junhu, Cui, Xiaoju, Li, Haobo, Xiao, Jianping, Xu, Tao, Deng, Jiao, Yang, Fan, Duchesne, Paul N, Zhang, Peng, Zhou, Jigang, Sun, Litao, Li, Jianqi, Pan, Xiulian, Bao, Xinhe. A single iron site confined in a graphene matrix for the catalytic oxidation of benzene at room temperature. Science Advances[J]. 2015, 1(11): https://www.webofscience.com/wos/woscc/full-record/WOS:000216604200001.[19] 崔晓菊. 石墨烯限域 3d 过渡金属的催化性能研究.
科研活动
科研项目
( 1 ) 基于限域催化体系的甲烷低温高效转化, 参与, 国家任务, 2022-01--2023-12( 2 ) 石墨烯限域金属单原子催化甲烷低温选择氧化, 负责人, 国家任务, 2021-01--2023-12( 3 ) 甲烷和氧气直接催化转化制乙酸, 负责人, 国家任务, 2023-01--2026-12( 4 ) 甲烷C-H的低温高效催化活化和定向转化, 参与, 国家任务, 2022-12--2027-11( 5 ) 基于数据库和人工智能的催化材料数智化设计方法及软件, 参与, 国家任务, 2022-12--2027-11