Zhao D., Li J., Li S., Xin, X., Hu M., Price M., Rosser S., Bi, C.* &Zhang, X.* (2020) Glycosylase base editors enable C-to-A and C-to-G base changes. Nature Biotechnology, https://doi.org/10.1038/s41587-020-0592-2 一区
Zhao D, Zhu X, Zhou H, Sun N, Wang T, Bi, C.* &Zhang, X.*. CRISPR-based metabolic pathway engineering. Metab Eng. (2020) Nov 2:S1096-7176(20)30159-2. doi: 10.1016/j.ymben.2020.10.004. PMID: 33152516. 一区
Chen J, Fan F, Qu G, Tang J, Xi Y, Bi C, Sun Z, Zhang X*. Identification of Absidia orchidis steroid 11β-hydroxylation system and its application in engineering Saccharomyces cerevisiae for one-step biotransformation to produce hydrocortisone. Metab Eng. (2020) Jan;57:31-42. doi: 10.1016/j.ymben.2019.10.006. Epub 2019 Oct 24. PMID: 31669370. 一区
Yu Y, Shao M, Li D, Fan F, Xu H, Lu F, Bi C, Zhu X, Zhang X. Construction of a carbon-conserving pathway for glycolate production by synergetic utilization of acetate and glucose in Escherichia coli. Metab Eng. (2020) Sep;61:152-159. doi: 10.1016/j.ymben.2020.06.001. Epub 2020 Jun 10. PMID: 32531344. 一区
Liu L, Zhao D, Ye L, Zhan T, Xiong B, Hu M, Bi, C.* &Zhang, X.*. A programmable CRISPR/Cas9-based phage defense system for Escherichia coli BL21(DE3). Microb Cell Fact. (2020) Jul 3;19(1):136. doi: 10.1186/s12934-020-01393-2. PMID: 32620105; PMCID: PMC7332536. 二区
Li Z, Xin X, Xiong B, Zhao D, Zhang X*, Bi C*. Engineering the Calvin-Benson-Bassham cycle and hydrogen utilization pathway of Ralstonia eutropha for improved autotrophic growth and polyhydroxybutyrate production. Microb Cell Fact. 2020 Dec 11;19(1):228. doi: 10.1186/s12934-020-01494-y. PMID: 33308236; PMCID: PMC7733298. 二区
Xie Q, Li S, Zhao D, Ye L, Li Q, Zhang X, Zhu L*, Bi C*. Manipulating the position of DNA expression cassettes using location tags fused to dCas9 (Cas9-Lag) to improve metabolic pathway efficiency. Microb Cell Fact. 2020 Dec 14;19(1):229. doi: 10.1186/s12934-020-01496-w. PMID: 33317552. 二区
Zhan T, Chen Q, Zhang C, Bi, C.* &Zhang, X.*. Constructing a Novel Biosynthetic Pathway for the Production of Glycolate from Glycerol in Escherichia coli. ACS Synth Biol. 2020 Sep 18;9(9):2600-2609. doi: 10.1021/acssynbio.0c00404. Epub 2020 Sep 1. PMID: 32794740. 二区
Gong Z, Wang H, Tang J, Bi C, Li Q, Zhang X. Coordinated Expression of Astaxanthin Biosynthesis Genes for Improved Astaxanthin Production in Escherichia coli. J Agric Food Chem. (2020) Dec 16;68(50):14917-14927. doi: 10.1021/acs.jafc.0c05379. Epub 2020 Dec 8. PMID: 33289384. 二区
Yu S, Price M., Wang Y, Rosser S., Bi, C.*, and Wang M.* (2020) CRISPR-dCas9 Mediated Cytosine Deaminase Base Editing in Bacillus subtilis. ACS Synthetic Biology 2020 9 (7), 1781-1789 二区
Xin, X., Li, J., Zhao, D., Li, S., Xie, Q., Li, Z., Bi, C.* &Zhang, X*. (2019). Double-check base editing (DBE) for efficient A to G conversions. ACS synthetic biology. (2019).10.1021/acssynbio. 9b00284.
Wang, W., He, P., Zhao, D., Ye, L., Dai, L., Zhang, X*., Bi, C*. (2019). Construction of Escherichia coli cell factories for crocin biosynthesis. Microbial cell factories, 18(1), 120. 二区
Wu, T., Li, S, Zhang, X*,Bi, C*. (2019). Engineering an Artificial Membrane Vesicle Trafficking System (AMVTS) for the Excretion of β-Carotene in Escherichia coli. ACS Synth. Biol.2019.8.1037-1046 二区
Wu, Z., Wang, J., Zhang, Zhang, X*,Bi, C*. (2019). Engineering an electroactive Escherichia coli for the microbial electrosynthesis of succinate by increasing the intracellular FAD pool. Biochemical Engineering Journal. 146(132-142) 二区
Wu, Z., Wang, J., Liu, J., Wang, Y., Bi, C*., Zhang, X*. (2019). Engineering an electroactive Escherichia coli for the microbial electrosynthesis of succinate from glucose and CO 2. Microbial cell factories, 18(1), 15. 二区
Li, Z., Xiong, B., Liu, L., Li, S., Xin, X., Li, Z., Zhang, X*, Bi, C*. (2019). Development of an autotrophic fermentation technique for the production of fatty acids using an engineered Ralstonia eutropha cell factory. Journal of industrial microbiology & biotechnology, 1-8. 二区
Ye, L., Zhu, X., Wu, T., Wang, W., Zhao, D., Bi, C. *., Zhang, X*. (2018). Optimizing the localization of astaxanthin enzymes for improved productivity. Biotechnology for biofuels, 11(1), 278. 一区
Xiong, B., Li, Z., Liu, L., Zhao, D., Zhang, X*., Bi, C*. (2018). Genome editing of Ralstonia eutropha using an electroporation-based CRISPR-Cas9 technique. Biotechnology for Biofuels, 11(1), 172. 一区
Wu, T., Li, S., Zhang, B., Bi C*, Zhang X*. (2018). Engineering Saccharomyces cerevisiae for the production of the valuable monoterpene ester geranyl acetate. Microbial cell factories, 17(1), 85. 二区
Wu, T., Ye, L., Zhao, D., Li, S., Li, Q., Zhang, B*., Bi, C*. (2018). Engineering membrane morphology and manipulating synthesis for increased lycopene accumulation in Escherichia coli cell factories. 3 Biotech, 8(6), 269. 三区
Feng, X., Zhao, D., Zhang, X., Ding, X*., & Bi, C*. (2018). CRISPR/Cas9 assisted Multiplex Genome Editing Technique in Escherichia coli. Biotechnology journal, 1700604. 二区
Zhao, D., Feng, X., Zhu, X., Wu, T., Zhang, X*., and Bi, C*. (2017) CRISPR/Cas9-assisted gRNA-free one-step genome editing with no sequence limitations and improved targeting efficiency, Scientific Reports. 2017.16624. 三区
Zhu X, Zhao D, Qiu H, Fan F, Man S, Bi C*, Zhang X*(2017). The CRISPR/Cas9-facilitated multiplex pathway optimization (CFPO) technique and its application to improve the Escherichia coli xylose utilization pathway. Metab Eng. 43:37-45. 一区
Wu T, Ye L, Zhao D, Li S, Li Q, Bi C*, Zhang X*. (2017) Membrane engineering - A novel strategy to enhance the production and accumulation of β-carotene in Escherichia coli. Metab Eng., 43: 85-91. 一区
Li Q, Fan F, Gao X, Yang C, Bi C, Tang J, Liu T, Zhang X*. (2017) Balanced activation of IspG and IspH to eliminate MEP intermediate accumulation and improve isoprenoids production in Escherichia coli. Metab Eng.08.005 一区
Ye L, He P, Li Q, Zhang X*, Bi C*. (2017) Type IIs restriction based combinatory modulation technique for metabolic pathway optimization. Microb Cell Fact. 16:47. 二区
Xiao M, Zhu X, Xu H, Tang J, Liu R, Bi C, Fan F*, Zhang X*. (2017) A novel point mutation in RpoB improves osmotolerance and succinic acid production in Escherichia coli. BMC Biotechnology. 17:10 二区
Li J, Zhu, X Chen, J Zhao, D., Zhang X*, Bi, C*. (2017) Construction of a novel anaerobic pathway in Escherichia coli for propionate production. BMC biotechnology17(1), 38. 二区
Zhao D, Yuan S, Xiong B, Sun H, Ye L, Li J, Zhang X*, Bi C*. (2016) Development of a fast and easy method for Escherichia coli genome editing with CRISPR/Cas9 Microb Cell Fact. 15:205. 二区
Ye L, Zhang C, Bi C, Li Q*, Zhang X*. (2016) Combinatory Optimization of Chromosomal Integrated Mevalonate Pathway for β-carotene Production in Escherichia coli. Microb Cell Fact. 2016, 15:202.6 二区
Li S, Ding W, Zhang X, Jiang H*, Bi C*. (2016) Development of a modularized two-step (M2S) chromosome integration technique for integration of multiple transcription units in Saccharomyces cerevisiae. Biotechnol Biofuels. 2016, 9:232 一区
Sun H, Zhao D, Xiong B, Zhang C*, Bi C*. (2016). Engineering Corynebacterium glutamicum for violacein hyper production. Microb Cell Fact.15(1), 148. 二区
C. Bi, J. Mueller, Y. Yeh, N. J. Hillson, H. R. Beller, S. R. Chhabra, and S. W. Singer. (2013) Developing and Applying a Broad-Host Synthetic Biology Tool Box for Metabolic Engineering of Ralstonia eutropha for Hydrocarbon Production. Microb Cell Fact, 12:107 二区
C. Bi, S. W. Jones, Dan R. Hess, B. P. Tracy, and E. T. Papoutsakis. (2011) SpoIIE is necessary for asymmetric division, sporulation, and the expression of σF, σE, and σG but does not control solvent production in Clostridium acetobutylicum. J Bacter. 193 no. 19 5130-5137 二区
C. Bi, J. D Rice, J. F Preston. (2009) Complete fermentation of xylose and methylglucuronoxylose derived from methylglucuronoxylan by Enterobacter asburiae strain JDR-1. Applied and Environmental Microbilogy. (1),395-404 二区
C. Bi, X. Zhang, L. O. Ingram, J. F Preston. (2009) Genetic engineering Enterobacter asburiae strain JDR-1 for efficient ethanol production from hemicellulose hydrolysate. Applied and Environmental Microbilogy. (9),5743-5749 二区
C. Bi, X. Zhang, L. O. Ingram, J. F Preston. (2009) Genetic engineering of Enterobacter asburiae strain JDR-1 for efficient latic acid production from hemicellulose hydrolysate. Biotechnology Letters. (31) 1551-1557 三区
Y Yuan , C. Bi , SA. Nicolaou ,K A. Zingaro ,M Ralston ,ET. Papoutsakis Overexpression of the Lactobacillus plantarum peptidoglycan biosynthesis murA2 gene increases the tolerance of Escherichia coli to alcohols and enhances ethanol production. Applied Microbiology and Biotechnology. 2014. 98:8399–8411. 二区
G. Linshiz, N. Stawski, S. Poust, C. Bi, J. D. Keasling, and N. J. Hillson. PaR-PaR:Cross-Platform Laboratory Automation system. ACS Synth. Biol, 2014,3,515-524 二区
Y. Yeh, J. Muller, C. Bi, N. J. Hillson, H. R. Beller, S. R. Chhabra, and S. W. Singer. Functionalizing Bacterial Cell Surfaces with a Phage Protein. ChemComm, 2013,49, 910-912一区
G. Linshiz, N. Stawski, S. Poust, C. Bi, J. D. Keasling, and N. J. Hillson. PaR-PaR Laboratory Automation platform. ACS Synth. Biol, 2012,2,216-222 二区
G. Linshiz, E. Jensen,N. Stawski, C. Bi, J. D. Keasling, and N. J. Hillson.End-to-end automated microfluidic platform for synthetic biology: from design to functional analysis. Journal of Biological Engineering. 2016. 10:3 二区
发表论文
[1] 朱欣娜, 戴住波, 樊飞宇, 赵东东, 毕昌昊, 张学礼. 微生物细胞工厂. 科学通报[J]. 2023, 68(13): 1626-1636, http://lib.cqvip.com/Qikan/Article/Detail?id=7109794730.[2] Bo Li, Dongdong Zhao, Yaqiu Li, Yuanzhao Yang, Xiagu Zhu, Ju Li, Changhao Bi, Xueli Zhang. Obtaining the best igRNAs for bystander-less correction of all ABE-reversible pathogenic SNVs using high-throughput screening. MOLECULAR THERAPY. 2023, 31(4): 1167-1176, http://dx.doi.org/10.1016/j.ymthe.2023.01.028.[3] 蔡韬, 刘玉万, 朱蕾蕾, 苏浩, 王钰, 王国坤, 张玲玲, 朱之光, 盛翔, 毕昌昊, 马红武, 田朝光, 张学礼, 吴洽庆, 孙媛霞, 江会锋, 马延和. 二氧化碳人工生物转化. 生物工程学报[J]. 2022, 38(11): 4101-4114, http://lib.cqvip.com/Qikan/Article/Detail?id=7108545586.[4] Xinna Zhu, Feiyu Fan, Huanna Qiu, Mengyao Shao, Di Li, Yong Yu, Changhao Bi, Xueli Zhang. New xylose transporters support the simultaneous consumption of glucose and xylose in Escherichia coli. mLife[J]. 2022, 1(2): 156-170, http://lib.cqvip.com/Qikan/Article/Detail?id=7107676535.[5] 杨超, 董兴啸, 张学礼, 毕昌昊. 基因组编辑技术在工业生物领域中的应用现状及展望. 生物工程学报[J]. 2022, 38(11): 4132-4145, http://lib.cqvip.com/Qikan/Article/Detail?id=7108545588.[6] Zhao, Dongdong, Zhu, Xinna, Zhou, Hang, Sun, Naxin, Wang, Ting, Bi, Changhao, Zhang, Xueli. CRISPR-based metabolic pathway engineering. METABOLIC ENGINEERINGnull. 2021, 63: 148-159, http://dx.doi.org/10.1016/j.ymben.2020.10.004.[7] 于勇, 朱欣娜, 毕昌昊, 张学礼. 大肠杆菌细胞工厂的创建技术. 生物工程学报[J]. 2021, 37(5): 1564-1577, http://lib.cqvip.com/Qikan/Article/Detail?id=7105268541.[8] Zhu, Tong, Yao, Die, Li, Di, Xu, Hongtao, Jia, Shiru, Bi, Changhao, Cai, Jun, Zhu, Xinna, Zhang, Xueli. Multiple strategies for metabolic engineering of Escherichia coli for efficient production of glycolate. BIOTECHNOLOGY AND BIOENGINEERING[J]. 2021, 118(12): 4699-4707, http://dx.doi.org/10.1002/bit.27934.[9] Yang, Chao, Li, Zhi, Zhao, Dongdong, Chen, Jing, Zhu, Xinna, Zhang, Xueli, Bi, Changhao. Engineering an efficient H2 utilizing Escherichia coli platform by modulation of endogenous hydrogenases. BIOCHEMICAL ENGINEERING JOURNAL[J]. 2021, 166: http://dx.doi.org/10.1016/j.bej.2020.107851.[10] 赵东东, 宗媛, 尹蕾, 毕昌昊, 王金, 高彩霞, 张学礼. 基因组编辑技术及未来发展. 生命科学[J]. 2021, 33(12): 1462-1468, http://lib.cqvip.com/Qikan/Article/Detail?id=7106780128.[11] Xi, Yongyan, Zhan, Tao, Xu, Hongtao, Chen, Jing, Bi, Changhao, Fan, Feiyu, Zhang, Xueli. Characterization of JEN family carboxylate transporters from the acid-tolerant yeast Pichia kudriavzevii and their applications in succinic acid production. MICROBIAL BIOTECHNOLOGY[J]. 2021, 14(3): 1130-1147, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8085920/.[12] Zhao, Dongdong, Li, Ju, Li, Siwei, Xin, Xiuqing, Hu, Muzi, Price, Marcus A, Rosser, Susan J, Bi, Changhao, Zhang, Xueli. Glycosylase base editors enable C-to-A and C-to-G base changes. NATURE BIOTECHNOLOGY[J]. 2021, 39(1): 35-40, http://dx.doi.org/10.1038/s41587-020-0592-2.[13] Li, Zhongkang, Xin, Xiuqing, Xiong, Bin, Zhao, Dongdong, Zhang, Xueli, Bi, Changhao. Engineering the Calvin-Benson-Bassham cycle and hydrogen utilization pathway of Ralstonia eutropha for improved autotrophic growth and polyhydroxybutyrate production. MICROBIAL CELL FACTORIES[J]. 2020, 19(1): http://dx.doi.org/10.1186/s12934-020-01494-y.[14] Zhan, Tao, Chen, Qian, Zhang, Chao, Bi, Changhao, Zhang, Xueli. Constructing a Novel Biosynthetic Pathway for the Production of Glycolate from Glycerol in Escherichia coli. ACS SYNTHETIC BIOLOGY[J]. 2020, 9(9): 2600-2609, https://www.webofscience.com/wos/woscc/full-record/WOS:000574922400039.[15] Gong, Zhongkuo, Wang, Honglei, Tang, Jinlei, Bi, Changhao, Li, Qingyan, Zhang, Xueli. Coordinated Expression of Astaxanthin Biosynthesis Genes for Improved Astaxanthin Production in Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY[J]. 2020, 68(50): 14917-14927, http://dx.doi.org/10.1021/acs.jafc.0c05379.[16] Hu, Muzi, Xiong, Bin, Li, Zhongkang, Liu, Li, Li, Siwei, Zhang, Chunzhi, Zhang, Xueli, Bi, Changhao. A novel gene expression system for Ralstonia eutropha based on the T7 promoter. BMC MICROBIOLOGY[J]. 2020, 20(1): http://dx.doi.org/10.1186/s12866-020-01812-9.[17] Zhao, Dongdong, Li, Ju, Li, Siwei, Xin, Xiuqing, Hu, Muzi, Price, Marcus A, Rosser, Susan J, Bi, Changhao, Zhang, Xueli. New base editors change C to A in bacteria and C to G in mammalian cells. NATURE BIOTECHNOLOGY. 2020, https://www.webofscience.com/wos/woscc/full-record/WOS:000550630500002.[18] Xie, Qianwen, Li, Siwei, Zhao, Dongdong, Ye, Lijun, Li, Qingyan, Zhang, Xueli, Zhu, Li, Bi, Changhao. Manipulating the position of DNA expression cassettes using location tags fused to dCas9 (Cas9-Lag) to improve metabolic pathway efficiency. MICROBIAL CELL FACTORIES[J]. 2020, 19(1): http://dx.doi.org/10.1186/s12934-020-01496-w.[19] Chen, Jing, Fan, Feiyu, Qu, Ge, Tang, Jinlei, Xi, Yongyan, Bi, Changhao, Sun, Zhoutong, Zhang, Xueli. Identification of Absidia orchidis steroid 11 beta-hydroxylation system and its application in engineering Saccharomyces cerevisiae for one-step biotransformation to produce hydrocortisone. METABOLIC ENGINEERING[J]. 2020, 57: 31-42, https://www.webofscience.com/wos/woscc/full-record/WOS:000506206200004.[20] Yu, Yong, Shao, Mengyao, Li, Di, Fan, Feiyu, Xu, Hongtao, Lu, Fuping, Bi, Changhao, Zhu, Xinna, Zhang, Xueli. Construction of a carbon-conserving pathway for glycolate production by synergetic utilization of acetate and glucose in Escherichia coli. METABOLIC ENGINEERING[J]. 2020, 61: 152-159, http://dx.doi.org/10.1016/j.ymben.2020.06.001.[21] Jing Chen, Feiyu Fan, Ge Qu, Jinlei Tang, Yongyan Xi, Changhao Bi, Zhoutong Sun, Xueli Zhang. Identification of Absidia orchidis steroid 11β-hydroxylation system and its application in engineering Saccharomyces cerevisiae for one-step biotransformation to produce hydrocortisone. METABOLIC ENGINEERING. 2020, 57: 31-42, http://dx.doi.org/10.1016/j.ymben.2019.10.006.[22] Liu, Li, Zhao, Dongdong, Ye, Lijun, Zhan, Tao, Xiong, Bin, Hu, Muzi, Bi, Changhao, Zhang, Xueli. A programmable CRISPR/Cas9-based phage defense system forEscherichia coliBL21(DE3). MICROBIAL CELL FACTORIES[J]. 2020, 19(1): https://doaj.org/article/637ec06a8a48437a80e75c10ce47fef6.[23] Yu, Sili, Price, Marcus A, Wang, Yu, Liu, Yang, Guo, Yanmei, Ni, Xiaomeng, Rosser, Susan J, Bi, Changhao, Wang, Meng. CRISPR-dCas9 Mediated Cytosine Deaminase Base Editing in Bacillus subtilis. ACS SYNTHETIC BIOLOGY[J]. 2020, 9(7): 1781-1789, https://www.webofscience.com/wos/woscc/full-record/WOS:000551555500027.[24] Li Di, Li Yang, Xu JiaoYang, Li QingYan, Tang JinLei, Jia ShiRu, Bi ChangHao, Dai ZhuBo, Zhu XinNa, Zhang XueLi. Engineering CrtW and CrtZ for improving biosynthesis of astaxanthin in Escherichia coli. CHINESE JOURNAL OF NATURAL MEDICINES[J]. 2020, 18(9): 666-676, http://lib.cqvip.com/Qikan/Article/Detail?id=7102969903.[25] Liu, Yan, Pan, Chao, Ye, Lijun, Si, Yue, Bi, Changhao, Hua, Xiaoting, Yu, Yunsong, Zhu, Li, Wang, Hengliang. Nonclassical Biofilms Induced by DNA Breaks in Klebsiella pneumoniae. MSPHERE[J]. 2020, 5(3): https://doaj.org/article/740db1498f7441bc8ae5b7aef620a781.[26] Wu, Zaiqiang, Wang, Junsong, Liu, Jun, Wang, Yan, Bi, Changhao, Zhang, Xueli. Engineering an electroactive Escherichia coli for the microbial electrosynthesis of succinate from glucose and CO2. MICROBIAL CELL FACTORIES[J]. 2019, 18(1): https://doaj.org/article/b1c9dbe392c942618bd9a6d33d726ed9.[27] Zaiqiang Wu, Dongdong Zhao, Siwei Li, Junsong Wang, Changhao Bi, Xueli Zhang. Combinatorial modulation of initial codons for improved zeaxanthin synthetic pathway efficiency in Escherichia coli. MICROBIOLOGYOPEN[J]. 2019, 8(12): n/a-n/a, https://doaj.org/article/501f5bb8bfd34844a071dff4391b1b63.[28] Wu, Tao, Li, Siwei, Ye, Lijun, Zhao, Dongdong, Fan, Feiyu, Li, Qinyan, Zhang, Bolin, Bi, Changhao, Zhang, Xueli. Engineering an Artificial Membrane Vesicle Trafficking System (AMVTS) for the Excretion of beta-Carotene in Escherichia coil. ACS SYNTHETIC BIOLOGY[J]. 2019, 8(5): 1037-1046, https://www.webofscience.com/wos/woscc/full-record/WOS:000468697000014.[29] Li, Zhongkang, Xiong, Bin, Liu, Li, Li, Siwei, Xin, Xiuqing, Li, Zhi, Zhang, Xueli, Bi, ChangHao. Development of an autotrophic fermentation technique for the production of fatty acids using an engineered Ralstonia eutropha cell factory (vol 46, pg 783, 2019). JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGYnull. 2019, 46(6): 791-791, [30] Wu, Zaiqiang, Wang, Junsong, Zhang, Xueli, Bi, Changhao. Engineering an electroactive Escherichia coli for the microbial electrosynthesis of succinate by increasing the intracellular FAD pool. BIOCHEMICAL ENGINEERING JOURNAL[J]. 2019, 146: 132-142, http://dx.doi.org/10.1016/j.bej.2019.03.015.[31] Li, Zhongkang, Xiong, Bin, Liu, Li, Li, Siwei, Xin, Xiuqing, Li, Zhi, Zhang, Xueli, Bi, ChangHao. Development of an autotrophic fermentation technique for the production of fatty acids using an engineered Ralstonia eutropha cell factory. JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY[J]. 2019, 46(6): 783-790, [32] Huang, Chaoyong, Ding, Tingting, Wang, Jingge, Wang, Xueqin, Guo, Liwei, Wang, Jialei, Zhu, Lin, Bi, Changhao, Zhang, Xueli, Ma, Xiaoyan, Huo, YiXin. CRISPR-Cas9-assisted native end-joining editing offers a simple strategy for efficient genetic engineering in Escherichia coli. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY[J]. 2019, 103(20): 8497-8509, https://www.webofscience.com/wos/woscc/full-record/WOS:000491439700020.[33] Wang, Wen, He, Ping, Zhao, Dongdong, Ye, Lijun, Dai, Longhai, Zhang, Xueli, Sun, Yuanxia, Zheng, Jing, Bi, Changhao. Construction of Escherichia coli cell factories for crocin biosynthesis. MICROBIAL CELL FACTORIES[J]. 2019, 18(1): http://dx.doi.org/10.1186/s12934-019-1166-1.[34] Xin, Xiuqing, Li, Ju, Zhao, Dongdong, Li, Siwei, Xie, Qianwen, Li, Zhongkang, Fan, Feiyu, Bi, Changhao, Zhang, Xueli. Double-Check Base Editing for Efficient A to G Conversions. ACS SYNTHETIC BIOLOGY[J]. 2019, 8(12): 2629-2634, https://www.webofscience.com/wos/woscc/full-record/WOS:000504805800003.[35] Chen, Jing, Tang, Jinlei, Xi, Yongyan, Dai, Zhubo, Bi, Changhao, Chen, Xi, Fan, Feiyu, Zhang, Xueli. Production of 14 alpha-hydroxysteroids by a recombinant Saccharomyces cerevisiae biocatalyst expressing of a fungal steroid 14 alpha-hydroxylation system. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY[J]. 2019, 103(20): 8363-8374, [36] Guo, JinYing, Hu, KunLe, Bi, ChangHao, Li, QingYan, Zhang, XueLi. Construction of an alternative glycerol-utilization pathway for improved beta-carotene production in Escherichia coli. JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY[J]. 2018, 45(8): 697-705, https://www.webofscience.com/wos/woscc/full-record/WOS:000440994500004.[37] Wu, Tao, Ye, Lijun, Zhao, Dongdong, Li, Siwei, Li, Qingyan, Zhang, Bolin, Bi, Changhao. Engineering membrane morphology and manipulating synthesis for increased lycopene accumulation in Escherichia coli cell factories. 3 BIOTECH[J]. 2018, 8(6): https://www.webofscience.com/wos/woscc/full-record/WOS:000433250900003.[38] Ye, Lijun, Zhu, Xinna, Wu, Tao, Wang, Wen, Zhao, Dongdong, Bi, Changhao, Zhang, Xueli. Optimizing the localization of astaxanthin enzymes for improved productivity. BIOTECHNOLOGY FOR BIOFUELS[J]. 2018, 11(1): https://doaj.org/article/a1468afa791141129ec252e95028534b.[39] Xiong, Bin, Li, Zhongkang, Liu, Li, Zhao, Dongdong, Zhang, Xueli, Bi, Changhao. Genome editing of Ralstonia eutropha using an electroporation-based CRISPR-Cas9 technique. BIOTECHNOLOGY FOR BIOFUELS[J]. 2018, 11(1): https://doaj.org/article/af6d8195c3d04342aa590e457cd118b1.[40] 张学礼, 仇焕娜, 赵东东, 满淑丽, 毕昌昊, 朱欣娜. 大肠杆菌染色体上严谨型启动子的构建. 微生物学通报[J]. 2018, 45(8): 1693-1704, http://lib.cqvip.com/Qikan/Article/Detail?id=675941437.[41] Feng, Xu, Zhao, Dongdong, Zhang, Xueli, Ding, Xiang, Bi, Changhao. CRISPR/Cas9 Assisted Multiplex Genome Editing Technique in Escherichia coli. BIOTECHNOLOGY JOURNAL[J]. 2018, 13(9): https://www.webofscience.com/wos/woscc/full-record/WOS:000443381400014.[42] Wu, Tao, Li, Siwei, Zhang, Bolin, Bi, Changhao, Zhang, Xueli. Engineering Saccharomyces cerevisiae for the production of the valuable monoterpene ester geranyl acetate. MICROBIAL CELL FACTORIES[J]. 2018, 17(1): https://doaj.org/article/5636cb1d5ee54ba69b6a4bfde9f5e485.[43] Zhao, Dongdong, Feng, Xu, Zhu, Xinna, Wu, Tao, Zhang, Xueli, Bi, Changhao. CRISPR/Cas9-assisted gRNA-free one-step genome editing with no sequence limitations and improved targeting efficiency. SCIENTIFIC REPORTS[J]. 2017, 7(1): https://doaj.org/article/d91e1517d7464a529c16b5432ef2445f.[44] Wu, Tao, Ye, Lijun, Zhao, Dongdong, Li, Siwei, Li, Qingyan, Zhang, Bolin, Bi, Changhao, Zhang, Xueli. Membrane engineering - A novel strategy to enhance the production and accumulation of beta-carotene in Escherichia coli. METABOLIC ENGINEERING[J]. 2017, 43: 85-91, https://www.webofscience.com/wos/woscc/full-record/WOS:000410479600010.[45] 孙宏年, 毕昌昊, 张春枝. 紫色杆菌素在谷氨酸棒状杆菌中异源表达. 大连工业大学学报[J]. 2017, 36(2): 79-83, http://lib.cqvip.com/Qikan/Article/Detail?id=672167542.[46] Li, Qingyan, Fan, Feiyu, Gao, Xiang, Yang, Chen, Bi, Changhao, Tang, Jinlei, Liu, Tao, Zhang, Xueli. Balanced activation of IspG and IspH to eliminate MEP intermediate accumulation and improve isoprenoids production in Escherichia coli. METABOLIC ENGINEERING[J]. 2017, 44: 13-21, http://dx.doi.org/10.1016/j.ymben.2017.08.005.[47] Tao Wu, Lijun Ye, Dongdong Zhao, Siwei Li, Qingyan Li, Bolin Zhang, Changhao Bi, Xueli Zhang. Membrane engineering - A novel strategy to enhance the production and accumulation of β-carotene in Escherichia coli. METABOLIC ENGINEERING. 2017, 43: 85-91, http://dx.doi.org/10.1016/j.ymben.2017.07.001.[48] Xiao, Mengyong, Zhu, Xinna, Bi, Changhao, Ma, Yanhe, Zhang, Xueli. Improving Succinate Productivity by Engineering a Cyanobacterial CO2 Concentrating System (CCM) in Escherichia coli. BIOTECHNOLOGY JOURNAL[J]. 2017, 12(9): https://www.webofscience.com/wos/woscc/full-record/WOS:000411380100008.[49] Ye, Lijun, He, Ping, Li, Qingyan, Zhang, Xueli, Bi, Changhao. Type IIs restriction based combinatory modulation technique for metabolic pathway optimization. MICROBIAL CELL FACTORIES[J]. 2017, 16(1): https://www.webofscience.com/wos/woscc/full-record/WOS:000397738100001.[50] Zhu, Xinna, Zhao, Dongdong, Qiu, Huanna, Fan, Feiyu, Man, Shuli, Bi, Changhao, Zhang, Xueli. The CRISPR/Cas9-facilitated multiplex pathway optimization (CFPO) technique and its application to improve the Escherichia coli xylose utilization pathway. METABOLIC ENGINEERING[J]. 2017, 43: 37-45, http://dx.doi.org/10.1016/j.ymben.2017.08.003.[51] Li Qingyan, Fan Feiyu, Gao Xiang, Yang Chen, Bi Changhao, Tang Jinlei, Liu Tao, Zhang Xueli. Balanced activation of IspG and IspH to eliminate MEP intermediate accumulation and improve isoprenoids production in Escherichia coli. METABOLIC ENGINEERING[J]. 2017, [52] Xiao, Mengyong, Zhu, Xinna, Xu, Hongtao, Tang, Jinlei, Liu, Ru, Bi, Changhao, Fan, Feiyu, Zhang, Xueli. A novel point mutation in RpoB improves osmotolerance and succinic acid production in Escherichia coli. BMC BIOTECHNOLOGY[J]. 2017, 17(1): http://dx.doi.org/10.1186/s12896-017-0337-6.[53] Li, Jing, Zhu, Xinna, Chen, Jing, Zhao, Dongdong, Zhang, Xueli, Bi, Changhao. Construction of a novel anaerobic pathway in Escherichia coli for propionate production. BMC BIOTECHNOLOGY[J]. 2017, 17(1): http://dx.doi.org/10.1186/s12896-017-0354-5.[54] Li, Siwei, Ding, Wentao, Zhang, Xueli, Jiang, Huifeng, Bi, Changhao. Development of a modularized two-step (M2S) chromosome integration technique for integration of multiple transcription units in Saccharomyces cerevisiae. BIOTECHNOLOGY FOR BIOFUELS[J]. 2016, 9(1): http://dx.doi.org/10.1186/s13068-016-0645-4.[55] Zhao, Dongdong, Yuan, Shenli, Xiong, Bin, Sun, Hongnian, Ye, Lijun, Li, Jing, Zhang, Xueli, Bi, Changhao. Development of a fast and easy method for Escherichia coli genome editing with CRISPR/Cas9. MICROBIAL CELL FACTORIES[J]. 2016, 15: http://124.16.173.210/handle/834782/2288.[56] Linshiz, Gregory, Jensen, Erik, Stawski, Nina, Bi, Changhao, Elsbree, Nick, Jiao, Hong, Kim, Jungkyu, Mathies, Richard, Keasling, Jay D, Hillson, Nathan J. End-to-end automated microfluidic platform for synthetic biology: from design to functional analysis. JOURNAL OF BIOLOGICAL ENGINEERING[J]. 2016, 10(1): http://dx.doi.org/10.1186/s13036-016-0024-5.[57] Lijun Ye, Chunzhi Zhang, Changhao Bi, Qingyan Li, Xueli Zhang. Combinatory optimization of chromosomal integrated mevalonate pathway for β-carotene production in Escherichia coli. MICROBIAL CELL FACTORIES. 2016, 15(1): http://dx.doi.org/10.1186/s12934-016-0607-3.[58] Sun, Hongnian, Zhao, Dongdong, Xiong, Bin, Zhang, Chunzhi, Bi, Changhao. Engineering Corynebacterium glutamicum for violacein hyper production. MICROBIAL CELL FACTORIES[J]. 2016, 15(1): http://124.16.173.210/handle/834782/2932.[59] Ye, Lijun, Zhang, Chunzhi, Bi, Changhao, Li, Qingyan, Zhang, Xueli. Combinatory optimization of chromosomal integrated mevalonate pathway for beta-carotene production in Escherichia coli. MICROBIAL CELL FACTORIES[J]. 2016, 15: http://124.16.173.210/handle/834782/2289.[60] Linshiz, Gregory, Stawski, Nina, Goyal, Garima, Bi, Changhao, Poust, Sean, Sharma, Monica, Mutalik, Vivek, Keasling, Jay D, Hillson, Nathan J. PR-PR: Cross-Platform Laboratory Automation System. ACS SYNTHETIC BIOLOGY[J]. 2014, 3(8): 515-524, http://124.16.173.210/handle/834782/2267.[61] Yuan, Yongbo, Bi, Changhao, Nicolaou, Sergios A, Zingaro, Kyle A, Ralston, Matthew, Papoutsakis, Eleftherios T. Overexpression of the Lactobacillus plantarum peptidoglycan biosynthesis murA2 gene increases the tolerance of Escherichia coli to alcohols and enhances ethanol production. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY[J]. 2014, 98(19): 8399-8411, https://www.webofscience.com/wos/woscc/full-record/WOS:000342072500030.[62] 毕昌昊. Developing and Applying a Broad-Host Synthetic Biology Tool Box for Metabolic Engineering of Ralstonia eutropha for Hydrocarbon Production.. Microb Cell Fact. 2013, [63] Linshiz, Gregory, Stawski, Nina, Poust, Sean, Bi, Changhao, Keasling, Jay D, Hilson, Nathan J. PaR-PaR Laboratory Automation Platform. ACS SYNTHETIC BIOLOGY[J]. 2013, 2(5): 216-222, https://www.webofscience.com/wos/woscc/full-record/WOS:000321074300004.[64] Yeh, YiChun, Mueller, Jana, Bi, Changhao, Hillson, Nathan J, Beller, Harry R, Chhabra, Swapnil R, Singer, Steven W. Functionalizing bacterial cell surfaces with a phage protein. CHEMICAL COMMUNICATIONS[J]. 2013, 49(9): 910-912, https://www.webofscience.com/wos/woscc/full-record/WOS:000312944700019.[65] 毕昌昊. SpoIIE is necessary for asymmetric division, sporulation, and the expression of σF, σE, and σG but does not control solvent production in Clostridium acetobutylicum.. J. Bacteriol.. 2011, [66] 毕昌昊. Genetic engineering Enterobacter asburiae strain JDR-1 for efficient ethanol production from hemicellulose hydrolysate. Applied and Environmental Microbilogy. 2009, [67] Bi, Changhao, Zhang, Xueli, Ingram, Lonnie O, Preston, James F. Genetic Engineering of Enterobacter asburiae Strain JDR-1 for Efficient Production of Ethanol from Hemicellulose Hydrolysates. APPLIED AND ENVIRONMENTAL MICROBIOLOGY[J]. 2009, 75(18): 5743-5749, http://124.16.173.210/handle/311007/371.[68] Bi, Changhao, Rice, John D, Preston, James F. Complete Fermentation of Xylose and Methylglucuronoxylose Derived from Methylglucuronoxylan by Enterobacter asburiae Strain JDR-1. APPLIED AND ENVIRONMENTAL MICROBIOLOGY[J]. 2009, 75(2): 395-404, https://www.webofscience.com/wos/woscc/full-record/WOS:000262197700014.[69] 毕昌昊. Genetic engineering of Enterobacter asburiae strain JDR-1 for efficient latic acid production from hemicellulose hydrolysate. Biotechnology Letters. 2009, [70] 袁玉华, 毕昌昊, 李菊, 耿运琪, 陈启民. 影响HIV—GP41N端1/2在E.coli中表达的两段氨基酸序列界定. 南开大学学报:自然科学版[J]. 2004, 37(1): 64-68, http://lib.cqvip.com/Qikan/Article/Detail?id=9348361.[71] 袁玉华, 毕昌昊, 李菊, 王学谦, 耿运琪, 陈启民. HIV gp41基因分段低温诱导表达. 中国病毒学[J]. 2004, 19(2): 179-181, http://lib.cqvip.com/Qikan/Article/Detail?id=9449886.[72] 袁玉华, 毕昌昊, 李菊, 王学谦, 耿运琪, 陈启民. HIV-1gp41不同片段表达对E.coli细胞毒性作用分析. 科学通报[J]. 2004, 49(2): 173-176, http://lib.cqvip.com/Qikan/Article/Detail?id=9111190.[73] Bo Li, Dongdong Zhao, Yaqiu Li, Yuanzhao Yang, Xiagu Zhu, Ju Li, Changhao Bi, Xueli Zhang. Obtaining the best igRNAs for bystander-less correction of all ABE-reversible pathogenic SNVs using high-throughput screening. MOLECULAR THERAPY. http://dx.doi.org/10.1016/j.ymthe.2023.01.028.[74] Naxin Sun, Dongdong Zhao, Siwei Li, Ziteng Zhang, Changhao Bi, Xueli Zhang. Reconstructed glycosylase base editors GBE2.0 with enhanced C-to-G base editing efficiency and purity. MOLECULAR THERAPY.