
电子邮件: bree@siom.ac.cn
通信地址: 上海市嘉定区清河路390号
邮政编码: 201800
研究领域
激光薄膜制备技术
激光与薄膜相互作用研究
短波长薄膜制备技术
招生信息
招生专业
招生方向
激光薄膜与激光相互作用
短波长薄膜技术
教育背景
2003-09--2006-06 上海光机所 硕士
1999-09--2003-06 浙江大学 学士
学历
研究生
学位
博士
工作经历
工作简历
2012-10~2017-09,上海光机所, 副研究员
2007-10~2012-09,上海光机所, 助理研究员
2006-07~2007-09,上海光机所, 研究实习员
社会兼职
2022-01-01-今,光学精密工程, 编委
2020-01-15-今,SPIE Laser Damage, 国际组委会委员
2019-03-22-今,光学薄膜标准化技术委员会, 副主任委员
专利与奖励
第一发明人专利
(1) 基于复合材料的平板型激光分束膜及其设计方法,ZL202011266263.9。
(2) 基于类三明治结构界面和复合材料的二向色镜及其制备方法,ZL202010876602.9。
(3) 基于离子束辅助纳米叠层解决电子束沉积薄膜龟裂的方法,ZL202010327812.2。
(4) 基于混合物单层膜的光学镀膜元件面形补偿方法,ZL202010190180.X。
(5) 一种大尺寸光学元件镀膜夹具和装夹方法,ZL202010170308.6。
(6) 渐变界面纳米薄层提升反射膜激光损伤阈值的方法,ZL201910655317.1。
(7) 提升多层激光薄膜元件环境稳定性的镀膜方法,ZL201810140020.7。
(8) 综合沉积镀膜设备及综合镀膜方法,ZL201810140027.9。
(9) 解决电子束沉积多层膜龟裂的临界层应力的调控方法,ZL201710380376.3。
(10) 降低氧化铪-氧化硅多层膜表面粗糙度的方法,ZL201710000723.5。
(11) 光控-晶控综合膜厚监控方法,ZL201310451684.2。
(12) 提高薄膜光谱性能的膜厚监控方法,ZL201110094660.7。
(13) 一种用于溶液环境中竖直摆放光学元件的夹具,ZL202021875436.2。
(14) 光学元件透射光谱自动面扫描测量装置,ZL200820155743.6。
(15) 计算机控制镀膜装置,ZL200510026448.1。
(16) 光学膜厚监控系统,ZL200510024987.1。
(17) 基于类三明治结构界面和复合材料的二向色镜及其制备方法,PCT/CN2021/110731。
(18) 一种用于溶液环境中竖直摆放光学元件的夹具,CN202010903575.X。
出版信息
第一/通讯作者论文
(1)Plasma-enhanced atomic-layer-deposited HfO2–SiO2 nanolaminates for broadband antireflection coatings,Optical Materials,2024, 150: 115282. |
(2)Comparative Study of Plasma-Enhanced-Atomic-Layer-Deposited Al2O3/HfO2/SiO2 and HfO2/Al2O3/SiO2 Trilayers for Ultraviolet Laser Applications,ACS Applied Materials & Interfaces,2024, 16: 31756-31767. |
(3)Neural network modeling and prediction of HfO2 thin film properties tuned by thermal annealing,High Power Laser Science and Engineering,2024, 12: e21. |
(4)Hybrid-material-based mirror coatings for picosecond laser applications,Optics & Laser Technology,2024, 171: 110466. |
(5)Controlling lateral thickness distributions of magnetron sputtering deposited coatings using shadow masks,Optical Materials Express,2024, 14(1): 101-115. |
(6)Study of short-wavelength pass dichroic laser mirror coatings with hafnia–silica mixture layers,Optics & Laser Technology,2024, 170: 110277. |
(7)Picosecond laser-induced damage of HfO2-Al2O3 mixture-based mirror coatings in atmosphere and vacuum environments,Optical Materials Express,2023, 13(3): 667-677. |
(8)Optical and femtosecond laser-induced damage-related properties of Ta2O5-based oxide mixtures,Journal of Alloys and Compounds,2023, 957: 170352. |
(9)Effect of annealing on the properties of plasma-enhanced atomic layer deposition grown HfO2 coatings for ultraviolet laser applications,Journal of Alloys and Compounds,2023, 946: 169443. |
(10)Effect of subsurface impurity defects on laser damage resistance of beam splitter coatings,High Power Laser Science and Engineering,2023, 11: e61. |
(11)Effect of annealing on the properties of HfO2-Al2O3 mixture coatings for picosecond laser applications, Applied Surface Science, 2022, 579: 152192. |
(12)Effects of film thickness and annealing temperature on the properties of molybdenum carbide films prepared using pulsed direct-current magnetron sputtering, Materials Research Express, 2022. 9(2): 026403. |
(13)Plate laser beam splitter with mixture-based quarter-wave coating design,Optics & Laser Technology,2022, 155: 108399. |
(14)激光薄膜吸收损耗控制研究进展,光学学报,2022, 42(7): 0700001. |
(15)A nodule dome removal strategy to improve the laser-induced damage threshold of coatings,High Power Laser Science and Engineering,2022, 10: e30. |
(16)Dichroic laser mirrors with mixture layers and sandwich-like-structure interfaces, Photonics Research, 2021, 9(2): 229-236 (Editor’s Pick). |
(17)HfO2/SiO2 anti-reflection films for UV lasers via plasma-enhanced atomic layer deposition, Journal of Alloys and Compounds, 2021, 859: 157875. |
(18)Research to improve the optical performance and laser-induced damage threshold of hafnium oxide/silica dichroic coatings, Optical Materials, 2021, 113: 110890. |
(19)Al2O3 anti-reflection coatings with graded-refractive index profile for laser applications, Optical Materials Express, 2021. 11(3): 875-883. |
(20)Nanolaminate-based design for UV laser mirror coatings, Light: Science & Applications, 2020, 9: 20. |
(21)Strategy to improve the long-term stability of low-stress e-beam coatings. Optical Materials Express, 2020. 10(11): 2738-2748. |
(22)Effects of water adsorption on properties of electron-beam HfO2/SiO2 high-reflection coatings, Thin Solid Films, 2020, 697(1): 137826. |
(23)Laser resistance dependence of interface for high-reflective coatings studied by capacitance-voltage and absorption measurement, Optics Letters, 2018, 43(18): 4538-4541. |
(24)Influence of deposition temperature and SiO2 overcoat layer on laser resistance of 532-nm high-reflection coating, Optical Engineering, 2018, 57(12): 0-121902. |
(25)Environmental stability investigation on electron-beam deposited coatings with dense capping layer, Optical Engineering, 2018, 57(8): 0-086114. |
(26)Study on Brewster angle thin film polarizer using hafnia-silica mixture as high-refractive-index material, Optical Engineering, 2018, 57(2): 0-025101. |
(27)Improving the laser-induced damage threshold of 532-nm antireflection coating using plasma ion cleaning, Optical Engineering, 2017, 56(1): 0-011003. |
(28)Multilayer deformation planarization by substrate pit suturing, Optics Letters, 2016, 41(15): 3403-3406. |
(29)Improving laser damage resistance of 355 nm high-reflective coatings by co-evaporated interfaces, Optics Letters, 2016, 41(6): 1253-1256. |
(30)Laser advances drive development of specialized optical coatings, Laser Focus World, 2016, 52(7): 39-42. |
(31)Laser-resistance sensitivity to substrate pit size of multilayer coatings, Scientific Reports, 2016, 6: 27076. |
(32)Impact of substrate pits on laser-induced damage performance of 1064-nm high-reflective coatings, Optics Letters, 2015, 40(7): 1330-1333. |
(33)Experimental demonstration of laser damage caused by interface coupling effects of substrate surface and coating layers, Optics Letters, 2015, 40(16): 3731-3734. |
(34)Influence of SiO2 overcoat layer and electric field distribution on laser damage threshold and damage morphology of transport mirror coatings, Optics Communications, 2014, 319: 75-79. |
(35)Study on high-reflective coatings of different designs at 532 nm, Chinese Optics Letters, 2014, 12(8): 0-083101. |
(36)Effect of Advanced Plasma Source bias voltage on properties of HfO2 films prepared by plasma ion assisted electron evaporation from metal hafnium, Thin Solid Films, 2013, 540: 17-22. |
(37)Reduction in thickness error of optical coatings by dividing thick layers and monitoring with multiple witness glasses, Vacuum, 2013, 97: 44-48. |
(38)Theoretical and experimental research on spectral performance and laser induced damage of Brewster's thin film polarizers, Applied Surface Science, 2011, 257(15): 6884-6888. |
(39)Influence of APS bias voltage on properties of HfO2 and SiO2 single layer deposited by plasma ion-assisted deposition, Chinese Optics Letters, 2011, 9(2): 0-023101. |
(40)Preparation of high performance thin-film polarizers, Chinese Optics Letters, 2010, 8(6): 624-626. |
(41)激光薄膜吸收损耗控制研究进展, 光学学报, 2022, 42(7): 0700001(封面论文). |
(42)惯性约束聚变激光驱动装置用大尺寸偏振薄膜研究综述, 光学学报, 2019, 39(10): 1-12.(封面论文) |
(43)高性能偏振膜的研制, 光学精密工程, 2016, 24(12): 2908-2915. |
(44)Coupling effect of subsurface defect and coating layer on the laser induced damage threshold of dielectric coating, Laser-Induced Damage in Optical Materials: 2014, Colorado, United States, 2014-9-15至2014-9-17. |
(45)Improving the environmental stability of e-beam coatings by employing a PIAD capping layer, Pacific Rim Laser Damage 2018, Yokohama, Japan, 2018-4-24至2018-4-27. |
(46)Study of hafina-silica mixed coatings with different compositions prepared by E-beam co-evaporation, Pacific Rim Laser Damage 2015, Shanghai, China, 2015-5-17至2015-5-20. |
(47)Influence of deposition temperature and precursor pulse time on properties of SiO2, HfO2 monolayers deposited by PEALD, Pacific Rim Laser Damage 2019 and Thin Film Physics and Applications 2019, Qingdao, China, 2019-5-19至2019-5-22. |
(48)Study on the laser-induced damage performance of HfO2, Sc2O3, Y2O3, Al2O3 and SiO2 monolayer coatings, Laser-Induced Damage in OpticalMaterials: 2013, Colorado, United States, 2013-9-22至2013-9-25. |
(49)Research on the laser damage performance of high reflection coatings at 355 nm, Pacific Rim Laser Damage 2013, Shanghai, China, 2013-5-19至2013-5-22. (Invited) |
(50)Photo-thermal tomography of optical coatings based on surface thermal lensing technology, Laser-Induced Damage in Optical Materials: 2011, Colorado, United States, 2011-9-18至2011-9-21. |
(51)Effects of electric field distribution and pulse duration on the ultra-short pulse laser damage resistance of laser coatings, Laser-Induced Damage in Optical Materials: 2010, Colorado, United States, 2010-9-27至2010-9-29. |
(52)光学薄膜膜厚自动控制系统的研究, 光子学报, 2007, 36(2): 308-311. |
(53)膜厚监控误差及监控片不均匀对膜厚监控的影响, 光学学报, 2006, 26(7): 1107-1111. |
(54)PDP真空紫外荧光粉余辉测试仪, 光学仪器, 2004, 26(1): 39-43. |
科研活动
指导学生
已指导学生
邢焕彬 硕士研究生 080300-光学工程
赵泽成 硕士研究生 080502-材料学
武振清 硕士研究生 085202-光学工程
杜文云 博士研究生 080300-光学工程
陈上林 硕士研究生 085400-电子信息
张雪晨 硕士研究生 085400-电子信息
刘天宝 博士研究生 080300-光学工程
赵洋 硕士研究生 085400-电子信息
郝凌云 硕士研究生 085400-电子信息
高程 硕士研究生 085400-电子信息
现指导学生
林泽晟 博士研究生 080300-光学工程
温家慧 博士研究生 085408-光电信息工程
宋洪萱 博士研究生 080300-光学工程
夏鑫涛 硕士研究生 085400-电子信息
曹隆荀 博士研究生 080300-光学工程
黄凯 博士研究生 080300-光学工程
奖励信息
国家技术发明奖二等奖
中国青年科技奖特别奖
全国巾帼建功标兵
中国专利优秀奖
中国科学院青年科学家奖
上海市技术发明奖一等奖
安徽省科学技术一等奖
上海市巾帼创新奖
上海市三八红旗手标兵
上海市青年五四奖章标兵