电子邮件: zhangyy003@igsnrr.ac.cn
通信地址: 北京市朝阳区大屯路甲11号
邮政编码: 100101
研究领域
水循环系统多过程模拟;环境水文学;人类活动效应
工作经历
2020.12-至今 中国科学院 陆地水循环及地表过程重点实验室 研究员
2011.12-2020.12 中国科学院 陆地水循环及地表过程重点实验室 副研究员
2010.7-2011.12 中国科学院 陆地水循环及地表过程重点实验室 助理研究员
2008.7-2010.6 中国科学院地理科学与资源研究所自然地理专业博士后;
出版信息
以第一或通讯作者在Hydrology and Earth System Sciences、Journal of Hydrology、Journal of Geophysical Research、中国科学和地理学报等水文和地学领域知名期刊发表学术论文70余篇,其中SCI论文41篇(TOP\一区17篇和二区12篇)(详见https://publons.com/researcher/2505155/yongyong-zhang/);编写专著2部,授权国家发明专利2项和软件著作权16项。
l 主要论文
[1] Zhang Yongyong*, Hou Jinjin, Ma Guoxia, Zhai Xiaoyan, Lv Aifeng, Wang Wei, Wang Zhonggen. Regional differences of water regulation services of terrestrial ecosystem in the Tibetan Plateau: insights from multiple land covers. Journal of Cleaner Production, 2021, 283:125216.
[2] Zhai Xiaoyan, Zhang Yongyong*, Zhang Yongqiang, Guo Liang, Liu Ronghua. Simulating flash flood hydrographs and behavior metrics across China: implications for flash flood management. Science of the Total Environment, 2021, 763:142977.
[3] Zhang Yongyong*, Xia Jun, Shao Quanxi, Li Lu, Yen Haw, Zhai Xiaoyan, Zhao Tongtiegang, Lin Kairong. Uncertainty analysis for integrated water system simulations using GLUE with different acceptability thresholds. Science China: Technological Sciences, 2020. Doi: 10.1007/s11431-020-1752-0
[4] Zhang Yongyong*, Chen Qiutan, Xia Jun. Investigation on flood event variations at space and time scales in the Huai River Basin of China using flood behavior classification. Journal of Geographical Sciences, 2020, 30(12):2073-2095.
[5] Yang Moyuan, Zhang Yongyong*, Pan Xingyao. Improving the Horton infiltration equation by considering soil moisture variation. Journal of Hydrology, 2020, 586:124864.
[6] Wang Wei, Zhang Yongyong*, Tang Qiuhong. Impact assessment of climate change and human activities on streamflow signatures in the Yellow River Basin using the Budyko hypothesis and derived differential equation. Journal of Hydrology, 2020, 591: 125460.
[7] Zhou Yujian, Zhang Yongyong*, Liang Tao, Wang Linqing. Shifting of phytoplankton assemblages in a regulated Chinese river basin after streamflow and water quality changes. Science of the Total Environment, 2019, 654:948-959.
[8] Zhang Yongyong*, Pang Xuan, Xia Jun, Shao Quanxi, Yu Entao, Zhao Tongtiegang, She Dunxian, Sun Jianqi, Yu Jingjie, Pan Xinyao, Zhai Xiaoyan. Regional patterns of extreme precipitation and urban signatures in metropolitan areas. Journal of Geophysical Research: Atmosphere, 2019, 124: 641–663.
[9] Zhang Yongyong*, Xia Jun, Yu Jingjie, Randall Mark, Zhang Yichi, Zhao Tongtiegang, Pan Xingyao, Zhai Xiaoyan, Shao Quanxi. Simulation and assessment of urbanization impacts on runoff metrics: insights from landuse changes. Journal of Hydrology, 2018, 560:247-258.
[10] Zhang Yongyong*, Shao Quanxi. Uncertainty and its propagation estimation for an integrated water system model: An experiment from water quantity to quality simulations. Journal of Hydrology, 2018, 565:623-635.
[11] Zhai Xiaoyan, Zhang Yongyong*. Impact assessment of projected climate change on diffuse phosphorous loss in Xin'anjiang catchment, China. Environmental Science and Pollution Research, 2018, 25:4570-4583.
[12] Zhai Xiaoyan, Guo Liang, Liu Ronghua, Zhang Yongyong*. Rainfall threshold determination for flash flood warning in mountainous catchments with consideration of antecedent soil moisture and rainfall pattern. Natural Hazards, 2018, 94(2):605-625.
[13] Xia Jun*, Zhang Yongyong*, Xiong Lihua, He Shan, Wang Longfeng, Yu Zhongbo. Opportunities and challenges of the Sponge City construction related to urban water issues in China. Science China: Earth Sciences, 2017, 60(4): 652–658. (ESI高被引论文、期刊年度热点论文和最佳论文)
[14] Zhang Yongyong*, Shao Quanxi, Zhao Tongtiegang. Comprehensive assessment of dam impacts on flow regimes with consideration of interannual variations. Journal of Hydrology, 2017, 552:447-459.
[15] Zhang Yongyong*, Gao Yang, Yu Qiang. Diffuse nitrogen loss simulation and impact assessment of stereoscopic agriculture pattern by integrated water system model and consideration of multiple existence forms. Journal of Hydrology, 2017, 552:660-673.
[16] Zhai Xiaoyan, Xia Jun, Zhang Yongyong*. Integrated approach of hydrological and water quality dynamic simulation for anthropogenic disturbance assessment in the Huai River Basin, China. Science of the Total Environment, 2017, 598 (15):749-764.
[17] Zhang Yongyong*, Shao Quanxi*, Ye Aizhong, Xing Hongtao and Xia Jun. Integrated water system simulation by considering hydrological and biogeochemical processes: model development, with parameter sensitivity and autocalibration. Hydrology and Earth System Sciences, 2016, 20:529–553.
[18] Zhang Yongyong*, Shao Quanxi*, Taylor John A. A balanced calibration of water quantity and quality by multi-objective optimization for integrated water system model. Journal of Hydrology, 2016, 538:802-816.
[19] Zhang Yongyong*, Shao Quanxi, Zhang Shifeng*, Zhai Xiaoyan, She Dunxian. Multi-metric calibration of hydrological model to capture overall flow regimes. Journal of Hydrology, 2016, 539:525-538.
[20] Zhang Yongyong*, Zhou Yujian, Shao Quanxi*, Liu Hongbin, Lei Qiuliang, Zhai Xiaoyan, Wang Xuelei. Diffuse nutrient losses and the impact factors determining their regional differences in four catchments from North to South China. Journal of Hydrology, 2016, 543:577-594.
[21] Zhang Yongyong*, Zhai Xiaoyan, Shao Quanxi, Yan Ziqi. Assessing temporal and spatial flow regime alterations in the regulated Huai River Basin, China. Journal of Hydrology, 2015, 529:384-397.
[22] Zhang Yongyong*, Fu Guobin, Sun Boyang, Zhang Shifeng*, Men Baohui. Simulation and classification of the impacts of projected climate change on flow regimes in the arid Hexi Corridor of Northwest China. Journal of Geophysical Research: Atmosphere, 2015, 120: 7429-7453.
[23] Zhai Xiaoyan, Zhang Yongyong*, Wang Xuelei, Xia Jun. Non-point source pollution modeling using Soil and Water Assessment Tool and its parameter sensitivity analysis in Xin’anjiang Catchment, China. Hydrological Processes, 2014, 28:1627-1640.
[24] Xia Jun, Zhang Yongyong*, Zhao Changsen, Stuart E. Bunn. Bioindicator assessment framework of river ecosystem health and the detection of factors influencing the health of the Huai River Basin, China. Journal of Hydrologic Engineering, 2014, 19(8), 04014008.
[25] Zhang Yongyong*, Xia Jun, Shao Quanxi, Zhai Xiaoyan. Water quantity and quality simulation by improved SWAT in highly regulated Huai River Basin of China. Stochastic Environmental Research & Risk Assessment, 2013, 27:11-27.
[26] Zhang Yongyong, Zhang Shifeng*, Xia Jun, Hua Dong. Temporal and spatial variation of the main water balance components in the Three Rivers Source Region, China from 1960 to 2000. Environmental Earth Science, 2013, 68:973-983.
[27] Zhang Yongyong*, Arthington Angela H., Bunn Stuart E., Mackay Stephen, Xia Jun, Kennard Mark. Classification of flow regimes for environmental flow assessment in regulated rivers: the Huai River Basin, China. River Research and Applications, 2012, 28: 989-1005.
[28] Zhang Yongyong*, Xia Jun, Shao Quanxi, Zhang Xiang. Experimental and simulation studies on the impact of sluice regulation on water quantity and quality processes. Journal of Hydrologic Engineering, 2012, 16(4):467-477.
[29] Zhang Yongyong, Zhang Shifeng*, Zhai Xiaoyan, Xia Jun. Runoff variation and its response to climate change in the Three Rivers Source Region. Journal of Geographical Sciences, 2012, 22(5): 781-794.
[30] Wang Zhonggen, Ficklin Darren L., Zhang Yongyong*, Zhang Minghua. Impact of climate change on streamflow in the arid Shiyang River Basin of northwest China. Hydrological Processes, 2012, 26: 2733–2744.
[31] Zhang Yongyong, Xia Jun*, Chen Junfeng, Zhang Minghua. Water quantity and quality optimization modeling of dams operation based on SWAT in Wenyu River Catchment, China. Environmental Monitoring and Assessment, 2011, 173:409–430.
[32] Zhang Yongyong, Shao Quanxi, Xia Jun*, Bunn Stuart E., Zuo Qiting. Changes of flow regimes and precipitation in Huai River Basin in the last half century. Hydrological Processes, 2011, 25:246–257.
[33] Zhang Yongyong, Xia Jun*, Liang Tao, Shao Quanxi. Impact of water projects on river flow regimes and water quality in Huai River Basin. Water Resources Management, 2010, 24(5): 889-908.(2010年中国百篇最具影响国际学术论文)
[34] 张永勇*, 谭香, 李发东, 阮宏威, 于静洁, 高扬, 翟晓燕. 咸海中下游流域水质空间分布特征及其与土地覆被的关系. 中国生态农业学报, 2021, 29(2): 1-10.
[35] 杨琴, 张永勇*.沙颍河流域(河南段)非点源氨氮污染模拟与时空特征分析. 环境科学研究, 2021, 34(2): 28-36.
[36] 张永勇*, 陈秋潭. 淮河中上游流域洪水主要类型及其时空分布特征. 地理科学进展, 2020, 39(4): 627-635.
[37] 夏军, 张永勇*, 穆兴民, 左其亭, 周宇建, 赵广举. 中国生态水文学发展趋势与重点方向. 地理学报, 2020, 75(3): 445-457.
[38] 王未, 张永勇*. 黄河流域径流情势区域变化特征分析. 水资源与水工程学报, 2020, 31(3): 59-65.
[39] 庞璇, 张永勇*, 潘兴瑶, 杨默远. 城市雨洪模拟与年径流总量控制目标评估:以北京市未来科技城为例. 资源科学, 2019, 41(4): 803-813.
[40] 杨琴, 汤秋鸿, 张永勇*.淮河流域(河南段)水质时空变化特征及其与土地利用类型的相关性分析. 环境科学研究, 2019, 32(9): 1519-1530.
[41] 翟晓燕, 郭良, 刘荣华, 张永勇*, 王雅莉. 前期土壤湿度和降雨对小流域山洪预警指标的影响评估. 地理研究, 2019, 38(12): 2957-2965.
[42] 陈秋潭, 张永勇*. 淮河中上游流域基流时空变化特征及闸坝调控影响. 南水北调与水利科技, 2019, 17(6): 10-19.
[43] 姜倩妮, 李占玲, 张永勇*. GLUE框架下似然函数对水文模型不确定性的影响. 水资源与水工程学报, 2018, (1): 25-30.
[44] 张永勇*, 花瑞祥, 夏瑞.气候变化对淮河流域水量水质影响分析.自然资源学报, 2017, 32(1): 114-126.
[45] 左其亭, 陈豪, 张永勇*, 窦明, 刘静. 淮河中上游轮虫群落结构分析及水质评价.环境工程学报, 2017, 11(1): 165-173.
[46] 刘昌明, 张永勇*, 王中根, 王月玲, 白鹏. 维护良性水循环的城镇化LID模式:海绵城市规划方法与技术初步探讨. 自然资源学报, 2016, 31(5): 719-731.
[47] 周宇建, 张永勇*,花瑞祥,左其亭,陈豪. 淮河中上游浮游植物时空分布特征及关键环境影响因子识别.地理研究, 2016, 35(9): 1626-1636.
[48] 张永勇*, 李宗礼, 刘晓洁. 近千年淮河流域河湖水系连通演变特征.南水北调与水利科技, 2016, 14(4) :77-83.
[49] 张永勇*, 花瑞祥. 基于水动力-水质模型的湖库安全纳污能力量化. 华北水利水电大学学报(自然科学版) , 2016, 37(5): 33-39.
[50] 花瑞祥, 张永勇*, 刘威, 杨逸航.不同评价方法对水库水质评价的适应性分析.南水北调与水利科技, 2016, 14(4) : 183-189.
[51] 张永勇*, 王中根, 于静洁, 翟晓燕. 流域COD减排核证研究-以淮河中上游为例.自然资源学报, 2014, 29(5):819-829.
[52] 张永勇*, 张士锋, 翟晓燕, 孟秀敬, 王中根. 气候变化下石羊河流域径流模拟与影响量化.资源科学, 2013, 35(3):601-609.
[53] 张永勇*, 夏军, 翟晓燕. 闸坝的水文水环境效应及其量化方法探讨. 地理科学进展, 2013, 32(1):105-113.
[54] 孙波扬, 张永勇*, 门宝辉, 张士锋. 分布式水循环模型的参数优化算法比较及应用.资源科学, 2013, 35(11):2217-2223.
[55] 张永勇*, 张士锋, 翟晓燕, 夏军. 三江源区径流演变及其对气候变化的响应. 地理学报, 2012, 67(1):71-82.
[56] 张永勇*, 夏军, 陈军峰, 孟德娟. 基于SWAT模型的闸坝水量水质优化调度模式研究.水力发电学报, 2010, 29(5):159-164.
[57] Zhang Yongyong*, Xia Jun, Wang Zhonggen. Integrated water resources carrying capacity in Tongzhou District, Beijing City. Journal of Resources and Ecology, 2010, 1(3):253-258.
[58] 张永勇*, 王中根, 于磊, 夏军, 陈向东. SWAT水质模块的扩展及其在海河流域典型区的应用.资源科学, 2009, 31 (1):94-100.
[59] 张永勇*, 王中根, 夏军, 柳文华, 刘晓洁. 基于水循环过程的水量水质联合评价方法. 自然资源学报, 2009, 24(7): 1308-1314.
[60] 张永勇*, 陈军峰, 夏军, 孟德娟. 温榆河流域闸坝群对河流水量水质影响研究.自然资源学报, 2009, 24(10):1697-1705.
[61] 张永勇*, 夏军, 王纲胜, 蒋艳, 赵长森. 淮河流域闸坝联合调度对河流水质影响分析. 武汉大学学报, 2007,40(4): 31-35.
[62] 张永勇*, 夏军, 王中根. 区域水资源承载力理论与方法探讨. 地理科学进展, 2007, 26(2):126-132.
l 专著
[1] 张永勇,夏军,程绪水,张翔. 多闸坝流域水文环境效应研究及应用. 中国水利水电出版社, 2011.
[2] 夏军,张永勇,吴时强,夏瑞,周杰. 气候变化对河湖水环境生态影响及其对策. 中国水利水电出版社, 2013.
科研活动
[1] 国家自然科学基金面上项目(42071041)“流域水-氮循环耦合模拟的不确定性来源解析与影响量化”(2021.1~2024.12)
[2] 国家自然科学基金面上项目(41671024)“农业流域水-氮循环相互作用机制及其系统均衡模拟”(2017.1~2020.12)
[3] 国家自然科学基金青年-面上连续资助项目(41271005)“多闸坝重污染河流水量水质演变及其生态效应量化”(2013.1~2016.12)
[4] 国家自然科学基金面上项目(青年基金)(40901025)“多闸坝重污染流域闸坝群水文及水环境效应量化研究”(2010.1~2012.12)
[5] 国家重点研发计划项目(2016YFC0400902)专题 “多源雨洪信息综合挖掘与预测预报方法(淮河流域)”(2016.7~2020.12)
[6] 中国科学院A类战略性先导科技专项子课题(XDA23040301) “长江经济带干流典型城市群水文效应与源头综合调控技术”(2019.1~2023.12)
[7] 中国科学院青年创新促进会科研专项(2014041)(2014.1~2017.12)
[8] 中科院地理资源所秉维优秀青年人才计划(2015RC201)“多闸坝河流生态水文响应机制与环境流量研究”(2015.12~2018.12)