基本信息

杨子银  男  博导  中国科学院华南植物园
电子邮件: zyyang@scbg.ac.cn
通信地址: 广州市天河区兴科路723号中国科学院华南植物园3号楼308室
邮政编码: 510650

研究领域

Y-Tea Lab是一支年轻充满活力(Young)致力于探索中国茶奥秘(whY)的研究团队。我们的理想是让更多的人了解中国茶让更多的人爱上中国茶

本研究团队主要研究领域是茶树特色生物学基础研究与资源可持续高效利用,针对当前茶学学科和茶产业存在的核心问题,结合自身的优势,通过多学科交叉融合,开展茶叶品质化学与生物学基础研究茶叶质量安全控制与资源高效利用研究。茶叶品质化学与生物学基础研究方向主要开展茶树特征性次生代谢物生物合成、调控机制和生物学功能的基础理论研究。茶叶质量安全控制与资源高效利用研究方向主要从分子和生理途径发掘重要调控因子,建立安全有效改良和提升低质茶叶品质的集成技术体系。

培养的研究生获得中国科学院百篇优秀博士学位论文1人次、第五届植物生物学女科学家学术交流会优秀女科学家奖”1人次、中国科学院院长优秀奖1人次、教育部颁发的研究生国家奖学金12人次、中国科学院大学优秀毕业生称号8人次、中国科学院大学必和必拓奖学金1人次、中国科学院地奥二等奖学金5人次、中国科学院大学三好学生标兵荣誉称号3人次、中国科学院广州分院研究生报告会一等奖2人次和二等奖5人次、华南植物园研究生学术论坛一等奖6人次、第二届全国茶树生物学大会报告一等奖1人次、2018年全国植物科学研究生学术论坛三等奖1人次等荣誉称号。

如您有兴趣到本研究组学习工作,欢迎与我们联系:zyyang@scbg.ac.cn

 

在《饮料植物研究》分享会回看中,有本研究团队关于“茶树次生代谢研究与茶叶品质形成调控”相关工作介绍视频和本研究团队部分实验方法的视频,感兴趣的朋友可以点击如下链接观看(于202112月测试,链接有效)。

http://mp.weixin.qq.com/s?__biz=MzkyNzIxNzA1MQ==&mid=2247484088&idx=1&sn=f75ab44ea321a1bc7ac7e4aafbe49603&chksm=c22a264cf55daf5a4697c7e072225cc2e4504c279b94dccefbb68ee5399fb9999f2372cf4b87&mpshare=1&scene=23&srcid=1223LXIXKceAywksHuPsXUTu&sharer_sharetime=1640249016446&sharer_shareid=7a626d8fc47f5ce362e830646840aa17#rd


招生信息

   
招生专业
071010-生物化学与分子生物学
招生方向
植物生理学
植物生物化学
植物代谢组学

教育背景

2004-09--2007-06   浙江大学    博士学位
2002-09--2004-07   浙江大学    硕士(提前攻博)
1998-09--2002-06   江西农业大学   学士学位

工作经历

   
工作简历
2012-04~现在, 中国科学院华南植物园, 入选中国科学院“****” 研究员
2010-04~2012-03,日本静冈大学, JSPS外国人特别研究员
2009-04~2010-03,日本静冈产业创造机构-静冈大学, JST研究员
2007-07~2009-03,日本静冈大学, 博士后

专利与奖励

   
专利成果
[1] 曾兰亭, 东方, 黎健龙, 余继忠, 黄海涛, 贾永霞, 辜大川, 杨子银. 筛选适制高品质茶的原料的方法. CN: CN114184702A, 2022-03-15.

[2] 曾兰亭, 黎健龙, 杨子银, 唐劲驰, 唐颢, 周波, 陈义勇, 辜大川, 刘嘉裕. 一种多色景观茶树嫁接装置. CN: CN215188361U, 2021-12-17.

[3] 周瀛, 东方, 彭琪媛, 杨子银, 唐劲驰. 一种R型1-苯基乙醇合成酶的编码基因及其应用. CN: CN109295018B, 2021-08-10.

[4] 曾兰亭, 黎健龙, 杨子银, 唐劲驰, 唐颢, 周波, 陈义勇, 辜大川, 刘嘉裕. 一种多色景观茶树嫁接方法. CN: CN113207531A, 2021-08-06.

[5] 黎健龙, 曾兰亭, 唐劲驰, 杨子银, 唐颢, 廖茵茵, 周波, 陈义勇, 刘嘉裕. 一种茶园内种植特种花卉的新颖防虫防害技术. CN: CN113016495A, 2021-06-25.

[6] 曾兰亭, 黎健龙, 唐劲驰, 杨子银, 唐颢, 廖茵茵, 周波, 陈义勇, 刘嘉裕. 一种针对树冠茶天牛防治的喷药装置. CN: CN211581340U, 2020-09-29.

[7] 杨子银, 傅秀敏, 陈义勇, 梅鑫, 周瀛. 一种茶树花蛋白酶及其制备方法和应用. CN: CN105543199B, 2020-08-07.

[8] 曾兰亭, 黎健龙, 吴淑华, 唐劲驰, 杨子银. 用于筛选适制乌龙茶的高香型茶树资源的标志物及方法. CN: CN110749668A, 2020-02-04.

[9] 周瀛, 杨子银, 曾兰亭, 蒋跃明, 段学武. 一种番茄抗冷害基因及应用. CN: CN106754769B, 2019-08-23.

[10] 傅秀敏, 杨子银, 程思华, 杜冰, 蒋跃明, 段学武. 一种生产α-胡萝卜素的基因工程菌及其构建方法和应用. CN: CN106119234B, 2019-08-23.

[11] 傅秀敏, 杨子银, 程思华, 杜冰, 蒋跃明, 段学武. 一种生产复合类胡萝卜素的基因工程菌及其构建方法和应用. CN: CN106367410B, 2019-08-20.

[12] 杨子银, 傅秀敏. 一种提高茶叶花蜜香和氨基酸含量的方法以及利用该方法制作的茶叶. CN: CN105432814B, 2019-06-18.

[13] 曾兰亭, 黎健龙, 唐劲驰, 廖茵茵, 杨子银. 一种种植方法. CN: CN109757276A, 2019-05-17.

[14] 杨子银, 张钰乾, 傅秀敏. 一种本氏烟叶片提取物及其制备方法和应用. 中国: CN105961457A, 2016-09-28.

[15] 杨子银, 梅鑫, 傅秀敏. 一种谷氨酸脱羧酶及其编码基因和应用. 中国: CN105274083A, 2016-01-27.

发表论文

​近年来本研究组主要致力于茶叶中核心品质成分香气和氨基酸形成机制的研究与调控技术的研发,一方面进一步完善茶叶品质形成的生物学基础理论,另一方面为茶叶品质安全改良提供重要支撑。如下是关于茶叶香气、氨基酸和其他代谢物相关的部分论文。

 

(#共同第一作者,*通讯作者)

[1]      Fu, X.M., Chen, J.M., Li, J.L., Dai, G.Y., Tang, J.C., Yang, Z.Y.*. Mechanism underlying the carotenoid accumulation in shaded tea leaves. Food Chemistry X, 2022, 14: 100323.

[2]      Liao, Y.Y.#, Fu, X.M.#, Zeng, L.T., Yang, Z.Y.*. Strategies for studying in vivo biochemical formation pathways and multilevel distributions of quality or function-related specialized metabolites in tea (Camellia sinensis). Critical Reviews in Food Science and Nutrition, 2022, 62(2): 429-442.

[3]      Fu, X.M., Liao, Y.Y., Cheng, S.H., Deng, R.F., Yang, Z.Y.*. Stable isotope-labeled precursor tracing reveals that L-alanine is converted to L-theanine via L-glutamate not ethylamine in tea plants in vivo. Journal of Agricultural and Food Chemistry, 2021, 69: 15354-15361.

[4]      Yang, J.#, Gu, D.C.#, Wu, S.H., Zhou, X.C., Chen, J.M., Liao, Y.Y., Zeng, L.T., Yang, Z.Y.*. Feasible strategies for studying the involvement of DNA methylation and histone acetylation in the stress-induced formation of quality-related metabolites in tea (Camellia sinensis). Horticulture Research, 2021, 8: 253.

[5]      Liao, Y.Y.#, Tan, H.B.#, Jian, G.T., Zhou, X.C., Huo, L.Q., Jia, Y.X., Zeng, L.T., Yang, Z.Y.*. Herbivore-induced (Z) -3-hexen-1-ol is an airborne signal that promotes direct and indirect defenses in tea (Camellia sinensis) under light. Journal of Agricultural and Food Chemistry, 2021, 69: 12608-12620.

[6]      Zhou, Y., Deng, R.F., Xu, X.L., Yang, Z.Y. *. Isolation of mesophyll protoplasts from tea (Camellia sinensis) and localization analysis of enzymes involved in biosynthesis of specialized metabolites. Beverage Plant Research, 2021, 1: 2.

[7]      Yang, J. #, Zhou, X.C. #, Wu, S.H., Gu, D.C., Zeng, L.T., Yang, Z.Y. *. Involvement of DNA methylation in regulating the accumulation of the aroma compound indole in tea (Camellia sinensis) leaves during postharvest processing. Food Research International, 2021, 142: 110183.

[8]      Zeng, L.T., Zhou, X.C., Liao, Y.Y., Yang, Z.Y.*. Roles of specialized metabolites in biological function and environmental adaptability of tea plant (Camellia sinensis) as a metabolite studying model. Journal of Advanced Research, 2021, 34: 159-171.

[9]      Gu, D.C.#, Yang, J.#, Wu, S.H., Liao, Y.Y., Zeng, L.T., Yang, Z.Y.*. Epigenetic regulation of the phytohormone abscisic acid accumulation under dehydration stress during postharvest processing of tea (Camellia sinensis). Journal of Agricultural and Food Chemistry, 2021, 69: 1039-1048.

[10]   Fu, X.M., Liao, Y.Y., Cheng, S.H., Xu, X.L., Grierson, D., Yang, Z.Y.*. Nonaqueous fractionation and overexpression of fluorescent-tagged enzymes reveals the subcellular sites of L-theanine biosynthesis in tea. Plant Biotechnology Journal, 2021, 19: 98-108.

[11]   Zeng, L.T.#, Xiao, Y.Y.#, Zhou, X.C., Yu, J.Z., Jian, G.T., Li, J.L., Chen, J.M., Tang, J.C., Yang, Z.Y.*. Uncovering reasons for differential accumulation of linalool in tea cultivars with different leaf area. Food Chemistry, 2021, 345: 128752.

[12]   Zeng, L.T., Zhou, X.C., Su, X.G., Yang, Z.Y.*. Chinese oolong tea: An aromatic beverage produced under multiple stresses. Trends in Food Science and Technology, 2020, 106: 242-253.

[13]   Yu, Z.M., Yang, Z.Y.*. Understanding different regulatory mechanisms of proteinaceous and non- proteinaceous amino acid formation in tea (Camellia sinensis) provides new insights into the safe and effective alteration of tea flavor and function. Critical Reviews in Food Science and Nutrition, 2020, 60: 844-858.

[14]   Zhou, Y.#, Zeng, L.T.#, Hou, X.L., Liao, Y.Y., Yang, Z.Y.*. Low temperature synergistically promotes wounding-induced indole accumulation by INDUCER OF CBF EXPRESSION-mediated alterations of jasmonic acid signaling in Camellia sinensis. Journal of Experimental Botany, 2020, 71: 2172-2185.

[15]   Fu, X.M.#, Cheng, S.H.#, Liao, Y.Y., Xu, X.L., Wang, X.C., Hao, X.Y., Xu, P., Dong, F., Yang, Z.Y.*. Characterization of Ltheanine hydrolase in vitro and subcellular distribution of its specific product ethylamine in tea (Camellia sinensis). Journal of Agricultural and Food Chemistry, 2020, 68: 10842-10851.

[16]   Zhou, Y., Deng, R.F., Xu, X.L., Yang, Z.Y.*. Enzyme catalytic efficiencies and relative gene expression levels of (R)-linalool synthase and (S)-linalool synthase determine the proportion of linalool enantiomers in Camellia sinensis var. sinensis. Journal of Agricultural and Food Chemistry, 2020, 68: 10109-10117.

[17]   Zeng, L.T., Wang, X.Q., Tan, H.B., Liao, Y.Y., Xu, P., Kang, M., Dong, F., Yang, Z.Y.*. Alternative pathway to the formation of trans-cinnamic acid derived from L-phenylalanine in tea (Camellia sinensis) plants and other plants. Journal of Agricultural and Food Chemistry, 2020, 68: 3415-3424.

[18]   Liao, Y.Y., Zeng, L.T., Tan, H.B., Cheng, S.H., Dong, F, Yang, Z.Y.*. Biochemical pathway of benzyl nitrile derived from L-phenylalanine in tea (Camellia sinensis) and its formation in response to postharvest stresses. Journal of Agricultural and Food Chemistry, 2020, 68: 1397-1404.

[19]   Mei, X., Xu, X.L., Yang, Z.Y.*. Characterization of two tea glutamate decarboxylase isoforms involved in GABA production. Food Chemistry, 2020, 305: 125440.

[20]   Li, J.L.#, Zeng, L.T.#, Liao, Y.Y., Tang, J.C.*, Yang, Z.Y.*. Evaluation of the contribution of trichomes to metabolite compositions of tea (Camellia sinensis) leaves and their products. LWT-Food Science and Technology, 2020, 122: 109023.

[21]   Zeng, L.T., Watanabe, N., Yang, Z.Y.*. Understanding the biosyntheses and stress response mechanisms of aroma compounds in tea (Camellia sinensis) to safely and effectively improve tea aroma. Critical Reviews in Food Science and Nutrition, 2019, 59: 2321-2334.

[22]   Zeng, L.T.#, Tan, H.B.#, Liao, Y.Y., Jian, G.T., Kang, M., Dong, F., Watanabe, N., Yang, Z.Y.*. Increasing temperature changes the flux into the multiple biosynthetic pathways for 2-phenylethanol in model systems of tea (Camellia sinensis) and other plants. Journal of Agricultural and Food Chemistry, 2019, 67: 10145-10154.

[23]   Zeng, L.T.#, Wang, X.Q.#, Xiao, Y.Y., Gu, D.C., Liao, Y.Y., Xu, X.L., Jia, Y.X., Deng, R.F., Song, C.K., Yang, Z.Y.*. Elucidation of (Z)-3-Hexenyl-β-glucopyranoside enhancement mechanism under stresses from the oolong tea manufacturing process. Journal of Agricultural and Food Chemistry, 2019, 67: 6541-6550.

[24]   Liao, Y.Y.#, Yu, Z.M.#, Liu, X.Y., Zeng, L.T., Cheng, S.H., Li, J.L., Tang, J.C., Yang, Z.Y.*. Effect of major tea insect attack on the formation of quality-related non-volatile specialized metabolites in tea (Camellia sinensis) leaves. Journal of Agricultural and Food Chemistry, 2019, 67: 6716-6724.

[25]   Cheng, S.H.#, Fu, X.M.#, Liao, Y.Y., Xu, X.L., Zeng, L.T., Tang, J.C., Li, J.L., Lai, J.H., Yang, Z.Y.*. Differential accumulation of specialized metabolite L-theanine in green and T albino-induced yellow tea (Camellia sinensis) leaves. Food Chemistry, 2019, 276: 93-100.

[26]   Liao, Y.Y., Fu, X.M., Zhou, H.Y., Rao, W., Zeng, L.T., Yang, Z.Y.*. Visualized analysis of within-tissue spatial distribution of specialized metabolites in tea (Camellia sinensis) using desorption electrospray ionization imaging mass spectrometry. Food Chemistry, 2019, 292: 204-210.

[27]   Wang, X.Q.#, Zeng, L.T.#, Liao, Y.Y., Zhou, Y., Xu, X.L., Dong, F., Yang, Z.Y.*. An alternative pathway for the formation of aromatic aroma compounds derived from L-phenylalanine via phenylpyruvic acid in tea (Camellia sinensis (L.) O. Kuntze) leaves. Food Chemistry, 2019, 270: 17-24.

[28]   Zeng, L.T., Wang, X.W., Zeng, L., Liao, Y.Y., Gu, D.C., Dong, F., Yang, Z.Y.*. Formation of and changes in phytohormone levels in response to stress during the manufacturing process of oolong tea (Camellia sinensis). Postharvest Biology and Technology, 2019, 157: 110974.

[29]   Zhou, Y.#, Liu, X.Y.#, Yang, Z.Y.*. Characterization of terpene synthase from tea green leafhopper being involved in formation of geraniol in tea (Camellia sinensis) leaves and potential effect of geraniol on insect-derived endobacteria. Biomolecules, 2019, 9: 808.

[30]   Zeng, L.T.#, Zhou, Y.#, Fu, X.M., Liao, Y.Y., Yuan, Y.F., Jia, Y.X., Dong, F., Yang, Z.Y.*. Biosynthesis of jasmine lactone in tea (Camellia sinensis) leaves and its formation in response to multiple stresses. Journal of Agricultural and Food Chemistry, 2018, 66: 3899-3909.

[31]   Cheng, S.H.#, Fu, X.M.#, Wang, X.Q., Liao, Y.Y., Zeng, L.T., Dong, F., Yang, Z.Y.*. Studies on the biochemical formation pathway of the amino acid L-theanine in tea (Camellia sinensis) and other plants. Journal of Agricultural and Food Chemistry, 2017, 65: 7210-7216.

[32]   Chen, Y.Y.#, Fu, X.M.#, Mei, X., Zhou, Y., Cheng, S.H., Zeng, L.T., Dong, F., Yang, Z.Y.*. Proteolysis of chloroplast proteins is responsible for accumulation of free amino acids in dark-treated tea (Camellia sinensis) leaves. Journal of Proteomics, 2017, 157: 10-17.

[33]   Zeng, L.T.#, Zhou, Y.#, Fu, X.M., Mei, X., Cheng, S.H., Gui, J.D., Dong, F., Tang, J.C., Ma, S.Z., Yang, Z.Y.*. Does oolong tea (Camellia sinensis) made from a combination of leaf and stem smell more aromatic than leaf-only tea? Contribution of the stem to oolong tea aroma. Food Chemistry, 2017, 237: 488-498.

[34]   Zhou, Y.#, Zeng, L.T.#, Liu, X.Y., Gui, J.D., Mei, X., Fu, X.M., Dong, F., Tang, J.C., Zhang, L.Y., Yang, Z.Y.*. Formation of (E)-nerolidol in tea (Camellia sinensis) leaves exposed to multiple stresses from tea manufacturing process. Food Chemistry, 2017, 231: 78-86.

[35]   Mei, X.#, Liu, X.Y.#, Zhou, Y., Wang, X.Q., Zeng, L.T., Fu, X.M., Li, J.L., Tang, J.C., Dong, F., Yang, Z.Y.*. Formation and emission of linalool in tea (Camellia sinensis) leaves infested by tea green leafhopper (Empoasca (Matsumurasca) onukii Matsuda). Food Chemistry, 2017, 237: 356-363.

[36]   Zeng, L.T.#, Zhou, Y.#, Gui, J.D., Fu, X.M., Mei, X., Zhen, Y.P., Ye, T.X., Du, B., Dong, F., Watanabe, N., Yang, Z.Y.*. Formation of volatile tea constituent indole during the oolong tea manufacturing process. Journal of Agricultural and Food Chemistry, 2016, 64: 5011-5019.

[37]   Gui, J.D.#, Fu, X.M.#, Zhou, Y., Katsuno, T., Mei, X., Deng, R.F., Xu, X.L., Zhang, L.Y., Dong, F., Watanabe, N., Yang, Z.Y.*. Does enzymatic hydrolysis of glycosidically bound volatile compounds really contribute to the formation of volatile compounds during the oolong tea manufacuring process? Journal of Agricultural and Food Chemistry, 2015, 63: 6905-6914.

[38]   Yang, Z.Y.#, Baldermann, S.#, Watanabe, N.*. Recent studies of the volatile compounds in tea. Food Research International, 2013, 53: 585-599.

[39]   Yang, Z.Y., Kobayashi, E., Katsuno, T., Asanuma, T., Fujimori, T., Ishikawa, T., Tomomura, M., Mochizuki, K., Watase, T., Nakamura, Y., Watanabe, N.*. Characterisation of volatile and non-volatile metabolites in etiolated leaves of tea (Camellia sinensis) plants in the dark. Food Chemistry, 2012, 135: 2268-2276.