于伟 男 硕导 中国科学院信息工程研究所
电子邮件: yuwei@iie.ac.cn
通信地址: 北京海淀区杏石口路65号C2
邮政编码:
招生信息
招生专业
教育背景
学历
博士
学位
博士
工作经历
工作简历
出版信息
[1] Wei Yu, Guangwu Xu: Pre-Computation Scheme of Window TNAF for Koblitz Curves Revisited. EUROCRYPT 2021, Part II, LNCS 12697, pp. 187-218
[2] Wei Yu, Saud Al Musa, Bao Li: Double-Base Chains for Scalar Multiplications on Elliptic Curves. EUROCRYPT 2020, Part III, LNCS 12107, pp. 538-565
[3] Luying Li, Wei Yu∗, Peng Xu: Fast and Simple Point Operations on Edwards448 and E448. PKC 2024.
[4] Luying Li, Wei Yu∗, Minzhong Luo: Deterministic Encoding into Generalized Huff curves. IEEE ISIT2022, pp.1572-1577
[5] Simeng Yuan, Wei Yu∗, Kunpeng Wang, Xiuxiu Li: Partial key exposure Attacks on RSA with moduli N = p^rq^s. IEEE ISIT2022, pp.1436-1440
[6] Wei Yu, Kunpeng Wang, Bao Li, and Song Tian: Montgomery algorithm over a prime field. Chinese Journal of Electronics, Vol.28, No.1, pp. 39-44, Jan. 2019.
[7] Wei Yu, Bao Li, Kunpeng Wang, Weixuan Li, and Song Tian: co-Z Montgomery algorithm on elliptic curves over finite fields of characteristic three. Chinese Journal of Computers, Vol. 40, No. 5, pp. 1121-1133, 2017.
[8] Wei Yu, Kunpeng Wang, Bao Li, Xiaoyang He and Song Tian: Deterministic encoding into twisted Edwards curves. ACISP 2016, Part II, LNCS 9723, pp. 285-297, 2016.
[9] Wei Yu, Kunpeng Wang, Bao Li, Xiaoyang He and Song Tian: Hashing into Jacobi quartic curves. ISC2015,LNCS 9290, pp. 355-375, 2015.
[10] Wei Yu, Kwang Ho Kim, and Myong Song Jo: New fast algorithms for elliptic curve arithmetic in affine coordinates. IWSEC 2015, LNCS 9241, pp. 56-64, 2015.
[11] Wei Yu, Kunpeng Wang, Bao Li: Construct hash function from plaintext to Huff curves. Journal of University of Science and Technology of China, Vol. 44, No.11, pp. 835-838, 2014.
[12] Wei Yu: Research on Some Elliptic Curve Cryptographic Algorithms. PHD thesis, University of Science and Technology of China, pp. 1-156, 2013.
[13] Wei Yu, Kunpeng Wang, Bao Li, and Song Tian: Triple-base number system for scalar multiplications. AFRICACRYPT 2013, LNCS 7918, pp. 433-451, 2013.
[14] Wei Yu, Kunpeng Wang, Bao Li, and Song Tian: On the expansion length of triple-base number systems. AFRICACRYPT 2013, LNCS 7918, pp. 424-432, 2013.
[15] Wei Yu, Kunpeng Wang, Bao Li, and Song Tian: About hash into Montgomery form elliptic curves. ISPEC 2013, LNCS 7863, pp.147-159.
[16] Wei Yu, Kunpeng Wang, Bao Li, and Song Tian: Joint triple base number system for multi-scalar multiplications. ISPEC 2013, LNCS 7863, pp.160-173.
[17] Wei Yu, Kunpeng Wang, Bao Li, and Song Tian: Construct hash function from plaintext to C34 curves. Chinese journal of computers, Vol.35, No.9, pp.1868 1873,2012.
[18] Wei Yu, Kunpeng Wang, and Bao Li: Fast algorithm converting integer to double base chain. Inscrypt 2010, Information Security and Cryptology, ISBN: 9787030311948, 2011.6.1, pp.44-55.
[19] Wei Yu, Kunpeng Wang: How to hash into twisted Edwards form elliptic curves. Inscrypt 2010, Information Security and Cryptology, ISBN:9787030311948, 2011.6.1, pp.35-43.
[20] Xiuxiu Li, Wei Yu*, Kunpeng Wang: A Novel Window TNAF on Koblitz Curves. ACISP 2024.
[21] Xiuxiu Li, Wei Yu*, Kunpeng Wang: Implementation of the elliptic curve method. SciSec 2023, LNCS 14299, pp. 115-126, 2023. https://doi.org/10.1007/978-3-031-45933-7_7
[22] Xiuxiu Li, Wei Yu∗, Kunpeng Wang, and Luying Li: Almost injective and invertible encodings for Jacobi quartic curves. SciSec 2023, LNCS 14299, pp. 127–138, 2023. https://doi.org/10.1007/978-3-031-45933-7_8
[23] Xiuxiu Li, Wei Yu∗ , Kunpeng Wang: Efficient scalar multiplication on Koblitz curves with Precomputation. ISC2022, pp. , LNCS 13640.
[24] Luying Li, Wei Yu∗ :A note on inverted twisted Edwards curve. INSCRYPT 2022.
[25] Xiao Li, Wei Yu∗: Efficiently Computable Complex Multiplication of Elliptic Curves. INSCRYPT 2022.
[26] Simeng Yuan, Wei Yu∗, Kunpeng Wang, Xiuxiu Li: Cryptanalysis of RSA with Moduli N =prq Based on Coppersmith Method. SECURWARE 2021, Athens, Greece, ISBN: 978-1-61208-919-5, pp. 69-75, 2021.
[27] Xingran Li, Wei Yu∗, Bao Li: Parallel and regular algorithm of elliptic curve scalar multiplication over binary fields. Security and Communication Networks, Volume 2020, Article ID 4087873, 2020.
[28] Weixuan Li, Wei Yu∗, Bao Li and Xuejun Fan: Speeding up scalar multiplication on Koblitz curves using u4 coordinates. ACISP 2019, LNCS 11547, pp. 620–629.
[29] Xiu Xu, Chris Leonardi, Anzo Teh, David Jao, Kunpeng Wang, Wei Yu, and Reza Azarderakhsh: Improved digital signatures based on elliptic curve endomorphism rings. ISPEC 2019, LNCS 11879, pp.293-309.
[30] Song Tian, Bao Li, KunpengWang, and Wei Yu: Cover attacks for elliptic curves with cofactor two. Designs, Codes and Cryptography, Vol.86, pp. 2451–2468, 2018.
[31] Xiaoyang He, Wei Yu∗, Kunpeng Wang: On construction and application of deterministic encoding functions into elliptic curves. Journal of Cryptologic Research, 2018, 5(3): 301–314.
[32] Yuqing Zhu, Jincheng Zhuang, Wei Yu, Dongdai Lin: Discrete logarithm problem in p-groups of elliptic curves in characteristic p. Journal of Cryptologic Research, 2018, 5(4): 368-375.
[33] Xiaoyang He, Wei Yu∗, and Kunpeng Wang: Hashing into twisted Jacobi intersection curves. Inscrypt 2017, LNCS 10726, pp. 117–138, 2018.
[34] Xiu Xu, Wei Yu∗, Kunpeng Wang and Xiaoyang He: Constructing isogenies on extended Jacobi quartic curves. Inscrypt 2016, LNCS 10143, pp.416-427, 2017.
[35] Weixuan Li, Wei Yu∗, and Kunpeng Wang: Improved tripling on elliptic curves. Inscrypt 2015, LNCS 9589, pp. 193-205, 2016.
[36] Xiaoyang He, Wei Yu∗, and Kunpeng Wang: Hashing into generalized Huff curves. Inscrypt 2015, LNCS 9589, pp. 22-44, 2016.
[37] Weixuan Li, Wei Yu∗, and Kunpeng Wang: Analysis of fractional wmb NAF for scalar multiplication. ISPEC 2015, LNCS 9065, pp. 109-120, 2015.
[38] Song Tian, Wei Yu∗, Bao Li, and Kunpeng Wang: Models of curves from GHS attack in odd characteristic. ISPEC 2015, LNCS 9065, pp. 171-180, 2015.
[39] Song Tian, Wei Yu∗, Bao Li, and Kunpeng Wang: Some elliptic subcovers of genus 3 hyperelliptic curves.ISPEC 2015, LNCS 9065, pp. 181-191, 2015.
[40] Song Tian, Kunpeng Wang, Bao Li, and Wei Yu: A note on Diem’s proof. Inscrypt 2014, LNCS 8957, pp. 463-471, 2015.
[41] Hong Wang, Bao Li, and Wei Yu: Montgomery algorithm on elliptic curves over finite fields of character three. Journal on Communications, Vol. 29, No. 10, pp.25-29, 2008.
科研活动
主持项目:
1.基于椭圆曲线形式的同源密码算法效率研究。国家自然科学基金(面上项目) No. 62272453, 2023-2026
2.基于高效自同态的椭圆曲线标量乘算法研究。国家自然科学基金(面上项目) No. 61872442, 2019-2022
3.高效的椭圆曲线标量乘算法研究。十三五国家密码发展基金。 No. MMJJ20180216, 2019-2021
4.椭圆曲线同源的计算效率研究。攀登计划 No. E0Z0251,中国科学院信息工程研究所攀登计划项目。 2020-2023
5.基于双基系统的椭圆曲线标量乘算法研究。国家自然科学基金(青年项目) No. 61502487, 2016-2018
6.青年之星人才项目 No. Y7Z0221, 中国科学院信息工程研究所人才项目。2017-2020
7.同源的快速计算。密码技术重点实验室开放课题面上项目 No. E1CK011112, 2021-2023