基本信息
袁倩倩 女 中国科学院天津工业生物技术研究所
电子邮件: yuan_qq@tib.cas.cn
通信地址: 天津市空港经济区西七道32号中国科学院天津工业生物技术研究所
邮政编码: 300308
电子邮件: yuan_qq@tib.cas.cn
通信地址: 天津市空港经济区西七道32号中国科学院天津工业生物技术研究所
邮政编码: 300308
招生信息
招生专业
0710Z2-计算生物学0710J3-生物信息学
招生方向
计算系统生物学,代谢网络模型,代谢途径设计,模型指导的改造靶点设计基因组尺度代谢网络模型构建,靶点预测算法开发
教育背景
学历
专利与奖励
专利成果
[1] 马红武, 毛雨丰, 魏凡, 李金龙, 罗家豪, 刘岯, 袁倩倩. 利用丙酮酸合成β-丙氨酸的方法. CN: CN113943691A, 2022-01-18.[2] 马红武, 袁倩倩, 毛雨丰, 杨雪, 成颖, 罗家豪. 一种6-磷酸阿洛糖、乙酰磷酸和乙酰辅酶A的制备方法. CN114369633A, 2022-04-19.[3] 马红武, 杨雪, 袁倩倩, 江会锋. 利用乙醇醛合成乙酰辅酶A及其衍生产品的新途径. CN: CN106755172A, 2017-05-31.[4] 基于BiGG 数据库的定量异源途径设计方法及系统. 2024-03-05.
出版信息
发表论文
[1] Wu Yalun, Yuan Qianqian, Yang Yongfu, Liu Defei, Yang Shihui, Ma Hongwu. Construction and application of high-quality genome-scale metabolic model of Zymomonas mobilis to guide rational design of microbial cell factories. SYNTHETIC AND SYSTEMS BIOTECHNOLOGY[J]. 2023, 8(3): 498-508, http://sciencechina.cn/gw.jsp?action=detail.jsp&internal_id=7615766&detailType=1.[2] Peng Wu, Qianqian Yuan, Tingting Cheng, Yifan Han, Wei Zhao, Xiaoping Liao, Lu Wang, Jingyi Cai, Qianqian He, Ying Guo, Xiaoxia Zhang, Fuping Lu, Jingjing Wang, Hongwu Ma, Zhiyong Huang. Genome sequencing and metabolic network reconstruction of a novel sulfur-oxidizing bacterium Acidithiobacillus Ameehan. FRONTIERS IN MICROBIOLOGY[J]. 2023, 14: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10694236/.[3] Yuan, Qianqian, Wei, Fan, Deng, Xiaogui, Li, Aonan, Shi, Zhenkun, Mao, Zhitao, Li, Feiran, Ma, Hongwu. Reconstruction and metabolic profiling of the genome-scale metabolic network model of Pseudomonas stutzeri A1501. SYNTHETIC AND SYSTEMS BIOTECHNOLOGY[J]. 2023, 8(4): 688-696, http://dx.doi.org/10.1016/j.synbio.2023.10.001.[4] 毛志涛, 袁倩倩, 李浩然, 廖小平, 马红武. CAVE: a cloud-based platform for analysis and visualization of metabolic pathways. Nucleic Acids Research[J]. 2023, [5] Jiaying Wang, Zhiqiang Chen, Xiaogui Deng, Qianqian Yuan, Hongwu Ma. Engineering Escherichia coli for Poly-β-hydroxybutyrate Production from Methanol. BIOENGINEERING[J]. 2023, 10(415): https://doaj.org/article/7690fdd35f9943c2b7e91d8241ab7ed1.[6] Ke Wu, Zhitao Mao, Yufeng Mao, Jinhui Niu, Jingyi Cai, Qianqian Yuan, Lili Yun, Xiaoping Liao, Zhiwen Wang, Hongwu Ma. ecBSU1: A Genome-Scale Enzyme-Constrained Model of Bacillus subtilis Based on the ECMpy Workflow. MICROORGANISMS[J]. 2023, 11(178): https://doaj.org/article/b6915c406290464baf41d290a90166c1.[7] 高雅杰, 袁倩倩, 杨雪, 毛志涛, 余文童, 刘浩, Igor, Goryanin, 马红武. 基于图论的代谢网络中流通代谢物处理新方法. 生物工程学报[J]. 2022, 38(4): 1554-1564, http://lib.cqvip.com/Qikan/Article/Detail?id=7107164591.[8] 袁倩倩, 毛志涛, 杨雪, 廖小平, 马红武. 数字细胞模型的研究及应用. 生物工程学报[J]. 2022, 38(11): 4146-4161, http://lib.cqvip.com/Qikan/Article/Detail?id=7108545589.[9] Luo, Jiahao, Yuan, Qianqian, Mao, Yufeng, Wei, Fan, Zhao, Juntao, Yu, Wentong, Kong, Shutian, Guo, Yanmei, Cai, Jingyi, Liao, Xiaoping, Wang, Zhiwen, Ma, Hongwu. Reconstruction of a Genome-Scale Metabolic Network for Shewanella oneidensis MR-1 and Analysis of its Metabolic Potential for Bioelectrochemical Systems. FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY[J]. 2022, 10: http://dx.doi.org/10.3389/fbioe.2022.913077.[10] Liu, Defei, Xu, Zixiang, Li, Jingen, Liu, Qian, Yuan, Qianqian, Guo, Yanmei, Ma, Hongwu, Tian, Chaoguang. Reconstruction and analysis of genome-scale metabolic model for thermophilic fungus Myceliophthora thermophila. BIOTECHNOLOGY AND BIOENGINEERING[J]. 2022, 119(7): 1926-1937, http://dx.doi.org/10.1002/bit.28080.[11] Mao, Zhitao, Zhao, Xin, Yang, Xue, Zhang, Peiji, Du, Jiawei, Yuan, Qianqian, Ma, Hongwu. ECMpy, a Simplified Workflow for Constructing Enzymatic Constrained Metabolic Network Model. BIOMOLECULES[J]. 2022, 12(1): http://dx.doi.org/10.3390/biom12010065.[12] Zhitao Mao, Teng Huang, Qianqian Yuan, Hongwu Ma. Construction and analysis of an integrated biological network of Escherichia coli. 系统微生物学与生物制造(英文)[J]. 2022, 2(1): 165-176, http://lib.cqvip.com/Qikan/Article/Detail?id=7107117680.[13] Liu Jiao, Liu Moshi, Tuo Shi, Guannan Sun, Ning Gao, Xiaojia Zhao, Xuan Guo, Xiaomeng Ni, Qianqian Yuan, Jinhui Feng, Zhemin Liu, Yanmei Guo, Jiuzhou Chen, Yu Wang, Ping Zheng, Jibin Sun. CRISPR-assisted rational flux-tuning and arrayed CRISPRi screening of an L-proline exporter for L-proline hyperproduction. Nature Communication[J]. 2022, 13(891): [14] Mao, Yufeng, Yuan, Qianqian, Yang, Xue, Liu, Pi, Cheng, Ying, Luo, Jiahao, Liu, Huanhuan, Yao, Yonghong, Sun, Hongbing, Cai, Tao, Ma, Hongwu. Non-natural Aldol Reactions Enable the Design and Construction of Novel One-Carbon Assimilation Pathways in vitro. FRONTIERS IN MICROBIOLOGY[J]. 2021, 12: [15] Fan, Liwen, Wang, Yu, Qian, Jin, Gao, Ning, Zhang, Zhihui, Ni, Xiaomeng, Sun, Letian, Yuan, Qianqian, Zheng, Ping, Sun, Jibin. Transcriptome analysis reveals the roles of nitrogen metabolism and sedoheptulose bisphosphatase pathway in methanol-dependent growth of Corynebacterium glutamicum. MICROBIAL BIOTECHNOLOGY[J]. 2021, 14(4): 1797-1808, http://dx.doi.org/10.1111/1751-7915.13863.[16] Cai, Tao, Sun, Hongbing, Qiao, Jing, Zhu, Leilei, Zhang, Fan, Zhang, Jie, Tang, Zijing, Wei, Xinlei, Yang, Jiangang, Yuan, Qianqian, Wang, Wangyin, Yang, Xue, Chu, Huanyu, Wang, Qian, You, Chun, Ma, Hongwu, Sun, Yuanxia, Li, Yin, Li, Can, Jiang, Huifeng, Wang, Qinhong, Ma, Yanhe. Cell-free chemoenzymatic starch synthesis from carbon dioxide. SCIENCE[J]. 2021, 373(6562): 1523-+, http://apps.webofknowledge.com/CitedFullRecord.do?product=UA&colName=WOS&SID=5CCFccWmJJRAuMzNPjj&search_mode=CitedFullRecord&isickref=WOS:000698977800053.[17] Yuan, XiaoJie, Chen, WenJing, Ma, ZengXin, Yuan, QianQian, Zhang, Min, He, Lian, Mo, XuHua, Zhang, Chong, Zhang, ChangTai, Wang, MengYing, Xing, XinHui, Yang, Song. Rewiring the native methanol assimilation metabolism by incorporating the heterologous ribulose monophosphate cycle into Methylorubrum extorquens. METABOLIC ENGINEERING[J]. 2021, 64: 95-110, http://dx.doi.org/10.1016/j.ymben.2021.01.009.[18] 张日钊, 李斐然, 袁倩倩, 马红武. 海洋氮循环过程及基于基因组代谢网络模型的预测. 微生物学报[J]. 2020, 60(6): 1130-1147, http://lib.cqvip.com/Qikan/Article/Detail?id=7102209361.[19] Wang, Yu, Fan, Liwen, Tuyishime, Philibert, Liu, Jiao, Zhang, Kun, Gao, Ning, Zhang, Zhihui, Ni, Xiaomeng, Feng, Jinhui, Yuan, Qianqian, Ma, Hongwu, Zheng, Ping, Sun, Jibin, Ma, Yanhe. Adaptive laboratory evolution enhances methanol tolerance and conversion in engineered Corynebacterium glutamicum. COMMUNICATIONS BIOLOGY[J]. 2020, 3(1): http://dx.doi.org/10.1038/s42003-020-0954-9.[20] Mao, Wen, Yuan, Qianqian, Qi, Hongge, Wang, Zhiwen, Ma, Hongwu, Chen, Tao. Recent progress in metabolic engineering of microbial formate assimilation. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY. 2020, 104(16): 6905-6917, http://dx.doi.org/10.1007/s00253-020-10725-6.[21] Lieven, Christian, Beber, Moritz E, Olivier, Brett G, Bergmann, Frank T, Ataman, Meric, Babaei, Parizad, Bartell, Jennifer A, Blank, Lars M, Chauhan, Siddharth, Correia, Kevin, Diener, Christian, Draeger, Andreas, Ebert, Birgitta E, Edirisinghe, Janaka N, Faria, Jose P, Feist, Adam M, Fengos, Georgios, Fleming, Ronan M T, GarciaJimenez, Beatriz, Hatzimanikatis, Vassily, van Helvoirt, Wout, Henry, Christopher S, Hermjakob, Henning, Herrgard, Markus J, Kaafarani, Ali, Kim, Hyun Uk, King, Zachary, Klamt, Steffen, Klipp, Edda, Koehorst, Jasper J, Koenig, Matthias, Lakshmanan, Meiyappan, Lee, DongYup, Lee, Sang Yup, Lee, Sunjae, Lewis, Nathan E, Liu, Filipe, Ma, Hongwu, Machado, Daniel, Mahadevan, Radhakrishnan, Maia, Paulo, Mardinoglu, Adil, Medlock, Gregory L, Monk, Jonathan M, Nielsen, Jens, Nielsen, Lars Keld, Nogales, Juan, Nookaew, Intawat, Palsson, Bernhard O, Papin, Jason A, Patil, Kiran R, Poolman, Mark, Price, Nathan D, ResendisAntonio, Osbaldo, Richelle, Anne, Rocha, Isabel, Sanchez, Benjamin J, Schaap, Peter J, Malik Sheriff, Rahuman S, Shoaie, Saeed, Sonnenschein, Nikolaus, Teusink, Bas, Vilaca, Paulo, Vik, Jon Olav, Wodke, Judith A H, Xavier, Joana C, Yuan, Qianqian, Zakhartsev, Maksim, Zhang, Cheng. MEMOTE for standardized genome-scale metabolic model testing. NATURE BIOTECHNOLOGY. 2020, 38(3): 272-276, http://dx.doi.org/10.1038/s41587-020-0446-y.[22] Yang, Xue, Yuan, Qianqian, Luo, Hao, Li, Feiran, Mao, Yufeng, Zhao, Xin, Du, Jiawei, Li, Peishun, Ju, Xiaozhi, Zheng, Yangyang, Chen, Yang, Liu, Yuwan, Jiang, Huifeng, Yao, Yonghong, Ma, Hongwu, Ma, Yanhe. Systematic design and in vitro validation of novel one-carbon assimilation pathways. METABOLIC ENGINEERING[J]. 2019, 56: 142-153, http://dx.doi.org/10.1016/j.ymben.2019.09.001.[23] Li, Feiran, Xie, Wei, Yuan, Qianqian, Luo, Hao, Li, Peishun, Chen, Tao, Zhao, Xueming, Wang, Zhiwen, Ma, Hongwu. Genome-scale metabolic model analysis indicates low energy production efficiency in marine ammonia-oxidizing archaea. AMB EXPRESS[J]. 2018, 8(1): https://doaj.org/article/7e6e6aa444d14f998f0efad97df72417.[24] 马红武, 陈修来, 袁倩倩, 刘立明, 孙际宾. 面向生物合成的代谢工程策略设计. 中国科学院院刊[J]. 2018, 33(11): 1166-1173, http://lib.cqvip.com/Qikan/Article/Detail?id=676797243.[25] Zheng, Yangyang, Yuan, Qianqian, Luo, Hao, Yang, Xue, Ma, Hongwu. Engineering NOG-pathway in Escherichia coli for poly-(3-hydroxybutyrate) production from low cost carbon sources. BIOENGINEERED[J]. 2018, 9(1): 209-213, https://www.webofscience.com/wos/woscc/full-record/WOS:000432147400001.[26] 崔真真, 毛雨丰, 陈聪, 袁倩倩, 王智文, 陈涛. 生物法合成双乙酰的研究进展. 生物加工过程[J]. 2017, 15(5): 57-64, http://lib.cqvip.com/Qikan/Article/Detail?id=673351630.[27] Yuan, Qianqian, Huang, Teng, Li, Peishun, Hao, Tong, Li, Feiran, Ma, Hongwu, Wang, Zhiwen, Zhao, Xueming, Chen, Tao, Goryanin, Igor. Pathway-Consensus Approach to Metabolic Network Reconstruction for Pseudomonas putida KT2440 by Systematic Comparison of Published Models. PLOS ONE[J]. 2017, 12(1): http://124.16.173.210/handle/834782/2276.[28] 袁倩倩, 李斐然, 罗浩, 马红武, 赵学明. 由代谢网络分析发现菌种代谢工程改造新策略. 化工进展[J]. 2017, 36(12): 4592-4600, http://lib.cqvip.com/Qikan/Article/Detail?id=673888600.[29] 陈阳, 杨雪, 袁倩倩, 罗浩, 李培顺, 马红武. 一碳化合物利用新途径的设计和体外构建. 生物加工过程[J]. 2017, 15(5): 86-92, http://lib.cqvip.com/Qikan/Article/Detail?id=673351634.[30] Zheng, Yangyang, Yuan, Qianqian, Yang, Xiaoyan, Ma, Hongwu. Engineering Escherichia coli for poly-(3-hydroxybutyrate) production guided by genome-scale metabolic network analysis. ENZYME AND MICROBIAL TECHNOLOGY[J]. 2017, 106: 60-66, http://dx.doi.org/10.1016/j.enzmictec.2017.07.003.[31] Yuan Qianqian. A pathway-consensus approach to metabolic network reconstruction for Pseudomonas putida KT2440 by systematic comparison of published models.. Plos One. 2017, [32] Yang, Xiaoyan, Yuan, Qianqian, Zheng, Yangyang, Ma, Hongwu, Chen, Tao, Zhao, Xueming. An engineered non-oxidative glycolysis pathway for acetone production in Escherichia coli. BIOTECHNOLOGY LETTERS[J]. 2016, 38(8): 1359-1365, http://124.16.173.210/handle/834782/2911.[33] Lin, Zhenquan, Zhang, Yan, Yuan, Qianqian, Liu, Qiaojie, Li, Yifan, Wang, Zhiwen, Ma, Hongwu, Chen, Tao, Zhao, Xueming. Metabolic engineering of Escherichia coli for poly(3-hydroxybutyrate) production via threonine bypass. MICROBIAL CELL FACTORIES[J]. 2015, 14(1): http://124.16.173.210/handle/834782/1555.