基本信息
姚霞银  男  博导  中国科学院宁波材料技术与工程研究所
电子邮件: yaoxy@nimte.ac.cn
通信地址: 浙江省宁波市镇海区中官西路1219号
邮政编码: 315201

研究领域

全固态二次电池关键材料与固态电池技术

招生信息

   
招生专业
080501-材料物理与化学
招生方向
新能源材料及其相关技术,高分子合成与改性

教育背景

2004-09--2009-06   中国科学院固体物理研究所&中国科学院宁波材料技术与工程研究所   工学博士
2000-09--2004-06   苏州大学   工学学士

工作经历

   
工作简历
2018-12~2019-12,美国马里兰大学, 访问学者
2016-12~现在, 中国科学院宁波材料技术与工程研究所, 研究员
2012-12~2016-12,中国科学院宁波材料技术与工程研究所, 副研究员
2012-10~2014-10,汉阳大学&南洋理工大学, Research Fellow
2011-11~2012-12,中国科学院宁波材料技术与工程研究所, 助理研究员
2009-07~2011-11,中国科学院宁波材料技术与工程研究所, 博士后

专利与奖励

   
奖励信息
(1) 宁波市科学技术奖, 二等奖, 市地级, 2010
(2) 中国科学院院长优秀奖, , 院级, 2009
专利成果
( 1 ) 一类具有微纳结构磷酸铁盐的制备方法, 发明, 2014, 第 2 作者, 专利号: CN 102583292 B
( 2 ) 一种电池级纳米草酸亚铁的制备方法, 发明, 2014, 第 2 作者, 专利号: CN 102344356 B
( 3 ) 全固态锂二次电池电解质材料、其制备方法及全固态锂二次电池, 发明, 2014, 第 2 作者, 专利号: CN 102544580 B
( 4 ) 一种电池级草酸亚铁的制备方法, 发明, 2013, 第 2 作者, 专利号: CN 101948379 B
( 5 ) 一种硫化物的H2S释放量的检测装置, 实用新型, 2019, 第 3 作者, 专利号: 201821036294.3
( 6 ) 固体电解质离子电导率测试夹具及系统, 实用新型, 2018, 第 4 作者, 专利号: 201720829788.6
( 7 ) 一种复合正极材料及其制备方法以及全固态锂硫电池, 发明, 2019, 第 3 作者, 专利号: 201611201689.X
( 8 ) 一种铁基硫化物电极材料、制备方法以及在固态电池中的应用, 发明, 2019, 第 3 作者, 专利号: 201611201709.3
( 9 ) 一种复合电极材料、其制备方法和全固态锂电池, 发明, 2018, 第 1 作者, 专利号: 201510702541.3
( 10 ) 一种对金属锂稳定的锂离子固体导体及其制备方法以及一种全固态锂二次电池, 发明, 2019, 第 5 作者, 专利号: 201510585679.X

出版信息

   
发表论文
[1] Zhendong Li, Wenjun Liang, Jiahe Chen, Libo Song, Tengpeng Xiong, Weiping Xie, Sudong Wu, Di Hu, Xiayin Yao, Zhe Peng. In-depth Li+ transportation in three-dimensionalized nanodiamond network for improved liquid and solid lithium metal batteries. NANO ENERGY. 2023, 110: http://dx.doi.org/10.1016/j.nanoen.2023.108370.
[2] Zhao Xiaolei, Xiang Pan, Wu Jinghua, Liu Ziqiang, Shen Lin, Liu Gaozhan, Tian Ziqi, Chen Liang, 姚霞银. Toluene tolerated Li9.88GeP1.96Sb0.04S11.88Cl0.12 solid electrolyte towards ultrathin membrane for all-solid-state lithium batteries. Nano Letters[J]. 2023, [3] Yumin Jin, Q. He, G. Liu, Z. Gu, M. Wu, T. Sun, Z. Zhang, 黄良锋, 姚霞银. Fluorinated Li10GeP2S12 enables stable all-solid-state lithium batteries. Advanced Materials[J]. 2023, 35: 2211047-, [4] Zhang, Zhihua, Wang, Jia, Jin, Yuming, Liu, Gaozhan, Yang, Shujiao, Yao, Xiayin. Insights on lithium plating behavior in graphite-based all-solid-state lithium-ion batteries. ENERGY STORAGE MATERIALS[J]. 2023, 54: 845-853, http://dx.doi.org/10.1016/j.ensm.2022.11.023.
[5] Gu, Zhi, Xin, Xing, Xu, Zelin, He, Jun, Wu, Jinghua, Sun, Yong, Yao, Xiayin. Garnet Electrolyte-Based Integrated Architecture for High-Performance All-Solid-State Lithium-Oxygen Batteries. ADVANCED FUNCTIONAL MATERIALS. 2023, http://dx.doi.org/10.1002/adfm.202301583.
[6] Yang Mengli, Yao Yu, Chang Mingyuan, Tian Fuli, Xie Wenrui, Zhao Xiaolei, Yu Yan, 姚霞银. High energy density sulfur-rich MoS6-based nanocomposite for room temperature all-solid-state lithium metal batteries. Advanced Energy Materials[J]. 2023, [7] Chen Baihui, Deng Shungui, Jiang Miao, Wu Ming, 吴敬华, 姚霞银. Intimate triple phase interfaces confined in two-dimensional ordered mesoporous carbon towards high-performance all-solid-state lithium-sulfur batteries. CHEMICAL ENGINEERING JOURNAL[J]. 2022, 448: 137712-, [8] Guo Qingya, Xu Fanglin, Shen Lin, Deng Shungui, Wang Zhiyan, Li Mengqi, Yao Xiayin. 20μm-Thick Li_(6.4)La_3Zr_(1.4)Ta_(0.6)O_(12)-Based Flexible Solid Electrolytes for All-Solid-State Lithium Batteries. ENERGY MATERIAL ADVANCES[J]. 2022, 2022(7): http://sciencechina.cn/gw.jsp?action=detail.jsp&internal_id=7372210&detailType=1.
[9] Wang, Zhiyan, Guo, Qingya, Jiang, Rongrong, Deng, Shungui, Ma, Junfeng, Cui, Ping, Yao, Xiayin. Porous poly(vinylidene fluoride) supported three-dimensional poly (ethylene glycol) thin solid polymer electrolyte for flexible high temperature all-solid-state lithium metal batteries. CHEMICAL ENGINEERING JOURNAL[J]. 2022, 435: http://dx.doi.org/10.1016/j.cej.2022.135106.
[10] K. Shi, A. Dutta, Y. Hao, M. Zhu, L. He, Y. Pan, X. Xin, 黄良锋, X. Yao, 吴敬华. Electrochemical polishing: an effective strategy for eliminating Li dendrites. Advanced Functional Materials[J]. 2022, 2203652-, https://onlinelibrary.wiley.com/doi/10.1002/adfm.202203652.
[11] Sun, Nannan, Li, Ruhong, Zhao, Yue, Zhang, Haikuo, Chen, Jiahe, Xu, Jinting, Li, Zhendong, Fan, Xiulin, Yao, Xiayin, Peng, Zhe. Anionic Coordination Manipulation of Multilayer Solvation Structure Electrolyte for High-Rate and Low-Temperature Lithium Metal Battery. ADVANCED ENERGY MATERIALS[J]. 2022, 12(42): http://dx.doi.org/10.1002/aenm.202200621.
[12] Deng, Shungui, Shi, Xiaotang, Zhao, Yue, Wang, Chao, Wu, Jinghua, Yao, Xiayin. Catalytic Mo2C decorated N-doped honeycomb-like carbon network for high stable lithium-sulfur batteries. CHEMICAL ENGINEERING JOURNAL[J]. 2022, 433: http://dx.doi.org/10.1016/j.cej.2021.133683.
[13] Zhang, Zhihua, Wu, Liping, Zhou, Dong, Weng, Wei, Yao, Xiayin. Flexible Sulfide Electrolyte Thin Membrane with Ultrahigh Ionic Conductivity for All-Solid-State Lithium Batteries. NANO LETTERS[J]. 2021, 21(12): 5233-5239, http://dx.doi.org/10.1021/acs.nanolett.1c01344.
[14] Liu, Gaozhan, Sun, Xiaorui, Yu, Xiqian, Weng, Wei, Yang, Jing, Zhou, Dong, Xiao, Ruijuan, Chen, Liquan, Yao, Xiayin. Na10SnSb2S12: A nanosized air-stable solid electrolyte for all-solid-state sodium batteries. CHEMICAL ENGINEERING JOURNAL[J]. 2021, 420: http://dx.doi.org/10.1016/j.cej.2020.127692.
[15] Xu, Fanglin, Deng, Shungui, Guo, Qingya, Zhou, Dong, Yao, Xiayin. Quasi-Ionic Liquid Enabling Single-Phase Poly(vinylidene fluoride)-Based Polymer Electrolytes for Solid-State LiNi0.6Co0.2Mn0.2O2 parallel to Li Batteries with Rigid-Flexible Coupling Interphase. SMALL METHODS[J]. 2021, 5(7): http://dx.doi.org/10.1002/smtd.202100262.
[16] Gaozhan Liu, Jiamin Shi, Mengting Zhu, Wei Weng, Lin Shen, Jing Yang, Xiayin Yao. Ultra-thin free-standing sulfide solid electrolyte film for cell-level high energy density all-solid-state lithium batteries. ENERGY STORAGE MATERIALS. 2021, 38: 249-254, http://dx.doi.org/10.1016/j.ensm.2021.03.017.
[17] Wan, Hongli, Liu, Sufu, Deng, Tao, Xu, Jijian, Zhang, Jiaxun, He, Xinzi, Ji, Xiao, Yao, Xiayin, Wang, Chunsheng. Bifunctional Interphase-Enabled Li10GeP2S12 Electrolytes for Lithium-Sulfur Battery. ACS ENERGY LETTERS[J]. 2021, 6(3): 862-868, http://dx.doi.org/10.1021/acsenergylett.0c02617.
[18] Wu, Jinghua, Shen, Lin, Zhang, Zhihua, Liu, Gaozhan, Wang, Zhiyan, Zhou, Dong, Wan, Hongli, Xu, Xiaoxiong, Yao, Xiayin. All-Solid-State Lithium Batteries with Sulfide Electrolytes and Oxide Cathodes. ELECTROCHEMICAL ENERGY REVIEWS[J]. 2021, 4(1): 101-135, https://www.webofscience.com/wos/woscc/full-record/WOS:000592666700001.
[19] Wang, Zhiyan, Shen, Lin, Deng, Shungui, Cui, Ping, Yao, Xiayin. 10 mu m-Thick High-Strength Solid Polymer Electrolytes with Excellent Interface Compatibility for Flexible All-Solid-State Lithium-Metal Batteries. ADVANCED MATERIALS[J]. 2021, 33(25): http://dx.doi.org/10.1002/adma.202100353.
[20] Wan, Hongli, Weng, Wei, Han, Fudong, Cai, Liangting, Wang, Chunsheng, Yao, Xiayin. Bio-inspired Nanoscaled Electronic/Ionic Conduction Networks for Room-Temperature All-Solid-State Sodium-Sulfur Battery. NANO TODAY[J]. 2020, 33: http://dx.doi.org/10.1016/j.nantod.2020.100860.
[21] 姚霞银. Densified Li6PS5Cl Nanorods with High Ionic Conductivity and Improved Critical Current Density for All-Solid-State Lithium Battery. NANOLETTERS. 2020, [22] Yao, Yu, Wei, Zhenyao, Wang, Haiyun, Huang, Huijuan, Jiang, Yu, Wu, Xiaojun, Yao, Xiayin, Wu, ZhongShuai, Yu, Yan. Toward High Energy Density All Solid-State Sodium Batteries with Excellent Flexibility. ADVANCED ENERGY MATERIALS[J]. 2020, 10(12): https://www.webofscience.com/wos/woscc/full-record/WOS:000510185600001.
[23] Yang, Jing, Liu, Gaozhan, Avdeev, Maxim, Wan, Hongli, Han, Fudong, Shen, Lin, Zou, Zheyi, Shi, Siqi, Hu, YongSheng, Wang, Chunsheng, Yao, Xiayin. Ultrastable All-Solid-State Sodium Rechargeable Batteries. ACS ENERGY LETTERS[J]. 2020, 5(9): 2835-2841, https://www.webofscience.com/wos/woscc/full-record/WOS:000571642600007.
[24] Fujii, Yuta, Kobayashi, Misaki, Miura, Akira, RoseroNavarro, Nataly Carolina, Li, Minchan, Sun, Jianguo, Kotobuki, Masashi, Lu, Li, Tadanaga, Kiyoharu. Fe-P-S electrodes for all-solid-state lithium secondary batteries using sulfide-based solid electrolytes. JOURNAL OF POWER SOURCES[J]. 2020, 449: http://dx.doi.org/10.1016/j.jpowsour.2019.227576.
[25] 姚霞银. Self-formed electronic/ionic conductive Fe3S4@S@0.9Na3SbS4⋅0.1NaI composite for high-performance room-temperature all-solid-state sodium–sulfur battery. Small. 2020, [26] Wan, Hongli, Mwizerwa, Jean Pierre, Han, Fudong, Weng, Wei, Yang, Jing, Wang, Chunsheng, Yao, Xiayin. Grain-boundary-resistance-less Na3SbS4-xSex solid electrolytes for all-solid-state sodium batteries. NANOENERGY[J]. 2019, 66: http://dx.doi.org/10.1016/j.nanoen.2019.104109.
[27] Wan, Hongli, Cai, Liangting, Han, Fudong, Mwizerwa, Jean Pierre, Wang, Chunsheng, Yao, Xiayin. Construction of 3D Electronic/Ionic Conduction Networks for All-Solid-State Lithium Batteries. SMALL[J]. 2019, 15(50): [28] Zhang, Qiang, Wan, Hongli, Liu, Gaozhan, Ding, Zhaoguang, Mwizerwa, Jean Pierre, Yao, Xiayin. Rational design of multi-channel continuous electronic/ionic conductive networks for room temperature vanadium tetrasulfide-based all-solid-state lithium-sulfur batteries. NANO ENERGY[J]. 2019, 57: 771-782, http://dx.doi.org/10.1016/j.nanoen.2019.01.004.
[29] Zhang, Qiang, Ding, Zhaoguang, Liu, Gaozhan, Wan, Hongli, Mwizerwa, Jean Pierre, Wu, Jinghua, Yao, Xiayin. Molybdenum trisulfide based anionic redox driven chemistry enabling high-performance all-solid-state lithium metal batteries. ENERGY STORAGE MATERIALS[J]. 2019, 23: 168-180, https://www.webofscience.com/wos/woscc/full-record/WOS:000495867200019.
[30] Wan, Hongli, Liu, Gaozhan, Li, Yanle, Weng, Wei, Mwizerwa, Jean Pierre, Tian, Ziqi, Chen, Liang, Yao, Xiayin. Transitional Metal Catalytic Pyrite Cathode Enables Ultrastable Four-Electron-Based All-Solid-State Lithium Batteries. ACS NANO[J]. 2019, 13(8): 9551-9560, https://www.webofscience.com/wos/woscc/full-record/WOS:000484077800106.
[31] Wan, Hongli, Mwizerwa, Jean Pierre, Qi, Xingguo, Liu, Xin, Xu, Xiaoxiong, Li, Hong, Hu, YongSheng, Yao, Xiayin. Core-Shell Fe1-xS@Na2.9PS3.95Se0.05 Nanorods for Room Temperature All-Solid-State Sodium Batteries with High Energy Density. ACS NANO[J]. 2018, 12(3): 2809-2817, http://dx.doi.org/10.1021/acsnano.8b00073.
[32] Chen, Shaojie, Xie, Dongjiu, Liu, Gaozhan, Mwizerwa, Jean Pierre, Zhang, Qiang, Zhao, Yanran, Xu, Xiaoxiong, Yao, Xiayin. Sulfide solid electrolytes for all-solid-state lithium batteries: Structure, conductivity, stability and application. ENERGY STORAGE MATERIALSnull. 2018, 14: 58-74, http://dx.doi.org/10.1016/j.ensm.2018.02.020.
[33] Yao, Xiayin, Huang, Ning, Han, Fudong, Zhang, Qiang, Wan, Hongli, Mwizerwa, Jean Pierre, Wang, Chunsheng, Xu, Xiaoxiong. High-Performance All-Solid-State Lithium-Sulfur Batteries Enabled by Amorphous Sulfur-Coated Reduced Graphene Oxide Cathodes. ADVANCED ENERGY MATERIALS[J]. 2017, 7(17): http://ir.nimte.ac.cn/handle/174433/13634.
[34] Hongli Wan, Gang Peng, Xiayin Yao, Jing Yang, Ping Cui, Xiaoxiong Xu. Cu2ZnSnS4/graphene nanocomposites for ultrafast, long life all-solid-state lithium batteries using lithium metal anode. ENERGY STORAGE MATERIALS[J]. 2016, 4: 59-65, http://dx.doi.org/10.1016/j.ensm.2016.02.004.
[35] Yao, Xiayin, Liu, Deng, Wang, Chunshen, Long, Peng, Peng, Gang, Hu, YongSheng, Li, Hong, Chen, Liquan, Xu, Xiaoxiong. High-Energy All-Solid-State Lithium Batteries with Ultralong Cycle Life. NANO LETTERS[J]. 2016, 16(11): 7148-7154, https://www.webofscience.com/wos/woscc/full-record/WOS:000387625000063.

科研活动

   
科研项目
( 1 ) 晶界调控改性硫化物锂离子导体导电性能及机理研究, 主持, 国家级, 2013-01--2015-12
( 2 ) 基于硫化物固体电解质的全固态锂电池关键技术研究, 参与, 国家级, 2013-01--2015-12
( 3 ) 全固态电池关键材料研究, 参与, 部委级, 2012-01--2015-12
( 4 ) 无机电解质, 参与, 部委级, 2013-01--2017-12
( 5 ) 基于锂硫反应机制的全固态锂二次电池界面特性与电化学性能研究, 主持, 国家级, 2019-01--2022-12
( 6 ) 车用固态锂电池工作机理与性能模型研究, 参与, 国家级, 2020-01--2023-12
( 7 ) 高安全性长寿命储能型固态电池的基础与应用研究, 参与, 国家级, 2018-09--2021-12
( 8 ) 高比能锂金属二次电池技术/固态电池, 主持, 省级, 2019-01--2022-12

指导学生

现指导学生

刘高瞻  博士研究生  080501-材料物理与化学  

沈麟  博士研究生  080501-材料物理与化学  

万红利  博士研究生  080501-材料物理与化学  

蒋苗  硕士研究生  080503-材料加工工程  

吴力平  硕士研究生  080501-材料物理与化学  

石佳敏  硕士研究生  080501-材料物理与化学  

翁伟  博士研究生  080501-材料物理与化学