发表论文
[1] Songbai Yao, Xinmeng Tang, Wenwu Zhang. Structure of a heterogeneous two-phase rotating detonation wave with ethanol–hydrogen–air mixture. Physics of Fluids[J]. 2023, 35: 031712-, https://doi.org/10.1063/5.0144920.[2] Jingtian Yu, Songbai Yao, Jingzhe Li, Yihui Huang, Chunhai Guo, Wenwu Zhang. Effects of inlet and secondary flow conditions on the flow field of rotating detonation engines with film cooling. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY[J]. 2023, 48(24): 9082-9094, http://dx.doi.org/10.1016/j.ijhydene.2022.11.354.[3] Yao, Songbai, Tang, Xinmeng, Zhang, Wenwu. Adaptive operating mode switching process in rotating detonation engines. ACTA ASTRONAUTICA[J]. 2023, 205: 239-246, http://dx.doi.org/10.1016/j.actaastro.2023.01.019.[4] Songbai Yao, Chunhai Guo, Wenwu Zhang. Effects of Droplet Evaporation on the Flow Field of Hydrogen-Enhanced Rotating Detonation Engines with Liquid Kerosene. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY[J]. 2023, http://dx.doi.org/10.1016/j.ijhydene.2023.04.314.[5] Songbai Yao, Kronenburg, A, Stein, O T. Efficient modeling of the filtered density function in turbulent sprays using ensemble learning. COMBUSTION AND FLAME[J]. 2022, 237: http://dx.doi.org/10.1016/j.combustflame.2021.111722.[6] Songbai Yao, A Kronenburg, A Shamooni, OT Stein, W Zhang. Gradient boosted decision trees for combustion chemistry integration. APPLICATIONS IN ENERGY AND COMBUSTION SCIENCE[J]. 2022, 11: 100077-, http://dx.doi.org/10.1016/j.jaecs.2022.100077.[7] Yao, S, Wang, B, Kronenburg, A, Stein, O T. Conditional scalar dissipation rate modeling for turbulent spray flames using artificial neural networks. PROCEEDINGS OF THE COMBUSTION INSTITUTE[J]. 2021, 38(3): 3371-3378, http://dx.doi.org/10.1016/j.proci.2020.06.135.[8] Luan Mingyi, Zhang Shujie, Xia Zhijie, Yao Songbai, Wang, J P. Analytical and numerical study of the expansion effect on the velocity deficit of rotating detonation waves. COMBUSTION THEORY AND MODELLING[J]. 2020, 24(4): 761-774, https://www.webofscience.com/wos/woscc/full-record/WOS:000532495200001.[9] Yao, S, Wang, B, Kronenburg, A, Stein, O T. Modeling of sub-grid conditional mixing statistics in turbulent sprays using machine learning methods. PHYSICS OF FLUIDS[J]. 2020, 32(11): http://dx.doi.org/10.1063/5.0027524.[10] Ma, John Z, Luan, MingYi, Xia, ZhiJie, Wang, JianPing, Zhang, Shujie, Yao, Songbai, Wang, Bing. Recent Progress, Development Trends, and Consideration of Continuous Detonation Engines. AIAA JOURNAL[J]. 2020, 58(12): 4976-5035, http://dx.doi.org/10.2514/1.J058157.[11] Ma, Zhuang, Zhang, Shujie, Luan, Mingyi, Yao, Songbai, Xia, Zhijie, Wang, Jianping. Experimental research on ignition, quenching, reinitiation and the stabilization process in rotating detonation engine. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY[J]. 2018, 43(39): 18521-18529, http://dx.doi.org/10.1016/j.ijhydene.2018.08.064.[12] Zhang, S, Yao, S, Luan, M, Zhang, L, Wang, J. Effects of injection conditions on the stability of rotating detonation waves. SHOCK WAVES[J]. 2018, 28(5): 1079-1087, https://www.webofscience.com/wos/woscc/full-record/WOS:000444734200013.[13] Yao, Songbai, Tang, Xinmeng, Luan, Mingyi, Wang, Jianping. Numerical study of hollow rotating detonation engine with different fuel injection area ratios. PROCEEDINGS OF THE COMBUSTION INSTITUTE[J]. 2017, 36(2): 2649-2655, http://dx.doi.org/10.1016/j.proci.2016.07.126.[14] Yao, Songbai, Tang, Xinmeng, Wang, Jianping. Numerical Study of the Propulsive Performance of the Hollow Rotating Detonation Engine with a Laval Nozzle. INTERNATIONAL JOURNAL OF TURBO & JET-ENGINES[J]. 2017, 34(1): 49-54, https://www.webofscience.com/wos/woscc/full-record/WOS:000395854800006.[15] Yao, Songbai, Tang, Xinmeng, Wang, Jianping, Shao, Yetao, Zhou, Rui. Three-Dimensional Numerical Study of Flow Particle Paths in Rotating Detonation Engine with a Hollow Combustor. COMBUSTION SCIENCE AND TECHNOLOGY[J]. 2017, 189(6): 965-979, https://www.webofscience.com/wos/woscc/full-record/WOS:000395247000004.[16] Yao, S, Han, X, Liu, Y, Wang, J. Numerical study of rotating detonation engine with an array of injection holes. SHOCK WAVES[J]. 2017, 27(3): 467-476, https://www.webofscience.com/wos/woscc/full-record/WOS:000399434700010.[17] Yao, Songbai, Ma, Zhuang, Zhang, Shujie, Luan, Mingyi, Wang, Jianping. Reinitiation phenomenon in hydrogen-air rotating detonation engine. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY[J]. 2017, 42(47): 28588-28598, http://dx.doi.org/10.1016/j.ijhydene.2017.09.015.[18] Yao, Songbai, Wang, Jianping. Multiple ignitions and the stability of rotating detonation waves. APPLIED THERMAL ENGINEERING[J]. 2016, 108: 927-936, http://dx.doi.org/10.1016/j.applthermaleng.2016.07.166.[19] Liu, Yan, Han, Xudong, Yao, Songbai, Wang, Jianping. A numerical investigation of the prompt oblique detonation wave sustained by a finite-length wedge. SHOCK WAVES[J]. 2016, 26(6): 729-739, https://www.webofscience.com/wos/woscc/full-record/WOS:000386772200004.[20] Liu, Yan, Wu, Dan, Yao, Songbai, Wang, Jianping. ANALYTICAL AND NUMERICAL INVESTIGATIONS OF WEDGE-INDUCED OBLIQUE DETONATION WAVES AT LOW INFLOW MACH NUMBER. COMBUSTION SCIENCE AND TECHNOLOGY[J]. 2015, 187(6): 843-856, https://www.webofscience.com/wos/woscc/full-record/WOS:000351596800002.[21] Yao, Songbai, Liu, Meng, Wang, Jianping. NUMERICAL INVESTIGATION OF SPONTANEOUS FORMATION OF MULTIPLE DETONATION WAVE FRONTS IN ROTATING DETONATION ENGINE. COMBUSTION SCIENCE AND TECHNOLOGY[J]. 2015, 187(12): 1867-1878, https://www.webofscience.com/wos/woscc/full-record/WOS:000362345800002.[22] S Yao, A Kronenburg, A Shamooni, OT Stein, W Zhang. Gradient boosted decision trees for combustion chemistry integration. APPLICATIONS IN ENERGY AND COMBUSTION SCIENCE. http://dx.doi.org/10.1016/j.jaecs.2022.100077.