基本信息

杨新春 男 中国科学院深圳先进技术研究院
电子邮件: xc.yang@siat.ac.cn
通信地址: 深圳市南山区西丽深圳大学城学苑大道1068号
邮政编码:518055
研究领域
团簇催化制氢
氨合成与分解
招生信息
招生专业
085600-材料与化工
招生方向
团簇催化
教育背景
2014-10--2018-03 神户大学 工学博士
2010-09--2013-06 江苏大学 工学硕士
2006-09--2010-06 江苏大学 工学学士
2010-09--2013-06 江苏大学 工学硕士
2006-09--2010-06 江苏大学 工学学士
专利与奖励
奖励信息
(1) 第十五届“春晖杯”中国留学人员创新创业大赛优胜奖, 部委级, 2020
(2) 第一届全国能源化学学术大会优秀报告奖, 部委级, 2018
(3) 日本文部科学省博士生奖学金, 部委级, 2015
(4) 江苏省优秀硕士学位论文, 省级, 2014
(5) 研究生国家奖学金, 部委级, 2012
(2) 第一届全国能源化学学术大会优秀报告奖, 部委级, 2018
(3) 日本文部科学省博士生奖学金, 部委级, 2015
(4) 江苏省优秀硕士学位论文, 省级, 2014
(5) 研究生国家奖学金, 部委级, 2012
专利成果
( 1 ) 一种以磁性纤维为吸收剂的三明治结构微波吸收体, 发明专利, 2013, 第 2 作者, 专利号: CN103208316A
( 2 ) 一种蜂窝状钙钛矿型微细纤维及其制备方法, 发明专利, 2013, 第 3 作者, 专利号: CN103145201A
( 3 ) 一种用于废水净化的磁性SrFe 12 O 19 /α-Fe二相纳米复合纤维吸附剂及其制备方法, 发明专利, 2013, 第 2 作者, 专利号: CN103007872A
( 2 ) 一种蜂窝状钙钛矿型微细纤维及其制备方法, 发明专利, 2013, 第 3 作者, 专利号: CN103145201A
( 3 ) 一种用于废水净化的磁性SrFe 12 O 19 /α-Fe二相纳米复合纤维吸附剂及其制备方法, 发明专利, 2013, 第 2 作者, 专利号: CN103007872A
出版信息
发表论文
[1] Zhu, Liying, Yang, Xinchun, Sun, JianKe. Cooperative cage hybrids enabled by electrostatic marriage. CHEMICAL COMMUNICATIONS[J]. 2023, 59(40): 6020-6023, http://dx.doi.org/10.1039/d3cc00779k.
[2] Yang, Xinchun, Ullah, Zakir, Stoddart, J Fraser, Yavuz, Cafer T. Porous Organic Cages. CHEMICAL REVIEWSnull. 2023, 123(8): 4602-4634, http://dx.doi.org/10.1021/acs.chemrev.2c00667.
[3] Yang, Xinchun, Bulushev, Dmitri A, Yang, Jun, Zhang, Quan. New Liquid Chemical Hydrogen Storage Technology. ENERGIESnull. 2022, 15(17): http://dx.doi.org/10.3390/en15176360.
[4] Yang, Xinchun, Chen, Liyu, Liu, Hangyu, Kurihara, Takuya, Horike, Satoshi, Xu, Qiang. Encapsulating Ultrastable Metal Nanoparticles within Reticular Schiff Base Nanospaces for Enhanced Catalytic Performance. CELL REPORTS PHYSICAL SCIENCE[J]. 2021, 2(1): 100289-100289, [5] Zhong, Shan, Yang, Xinchun, Chen, Liyu, Tsumori, Nobuko, Taguchi, Noboru, Xu, Qiang. Interfacing with Fe-N-C Sites Boosts the Formic Acid Dehydrogenation of Palladium Nanoparticles. ACS APPLIED MATERIALS & INTERFACES[J]. 2021, 13(39): 46749-46755, http://dx.doi.org/10.1021/acsami.1c14009.
[6] Yang, Xinchun, Xu, Qiang. Encapsulating Metal Nanocatalysts within Porous Organic Hosts. TRENDS IN CHEMISTRYnull. 2020, 2(3): 214-226, http://dx.doi.org/10.1016/j.trechm.2019.12.001.
[7] Yang Xinchun, Li Zhangpeng, Kitta Mitsunori, Tsumori Nobuko, Guo Wenhan, Zhang Zitao, Zhang Jianbo, Zou Ruqiang, Xu Qiang. Solid-solution alloy nanoclusters of the immiscible gold-rhodium system achieved by a solid ligand-assisted approach for highly efficient catalysis. NANO RESEARCH[J]. 2020, 13(1): 105-111, http://lib.cqvip.com/Qikan/Article/Detail?id=7101985929.
[8] Song, FuZhan, Yang, Xinchun, Xu, Qiang. Ultrafine Bimetallic Pt-Ni Nanoparticles Achieved by Metal-Organic Framework Templated Zirconia/Porous Carbon/Reduced Graphene Oxide: Remarkable Catalytic Activity in Dehydrogenation of Hydrous Hydrazine. SMALL METHODS[J]. 2020, 4(1): 1900707-, https://www.webofscience.com/wos/woscc/full-record/WOS:000496848400001.
[9] Li, Xinran, Yang, Xinchun, Xue, Huaiguo, Pang, Huan, Xu, Qiang. Metal-organic frameworks as a platform for clean energy applications. ENERGYCHEM[J]. 2020, 2(2): 100027-, http://dx.doi.org/10.1016/j.enchem.2020.100027.
[10] Onishi, Naoya, Iguchi, Masayuki, Yang, Xinchun, Kanega, Ryoichi, Kawanami, Hajime, Xu, Qiang, Himeda, Yuichiro. Development of Effective Catalysts for Hydrogen Storage Technology Using Formic Acid. ADVANCED ENERGY MATERIALS[J]. 2019, 9(23): 1801275-, [11] Kumar, Amit, Yang, Xinchun, Xu, Qiang. Ultrafine bimetallic Pt-Ni nanoparticles immobilized on 3-dimensional N-doped graphene networks: a highly efficient catalyst for dehydrogenation of hydrous hydrazine. JOURNAL OF MATERIALS CHEMISTRY A[J]. 2019, 7(1): 112-115, http://dx.doi.org/10.1039/c8ta09003c.
[12] Song, FuZhan, Zhu, QiLong, Yang, Xinchun, Zhan, WenWen, Pachfule, Pradip, Tsumori, Nobuko, Xu, Qiang. Metal-Organic Framework Templated Porous Carbon-Metal Oxide/Reduced Graphene Oxide as Superior Support of Bimetallic Nanoparticles for Efficient Hydrogen Generation from Formic Acid. ADVANCED ENERGY MATERIALS[J]. 2018, 8(1): https://www.webofscience.com/wos/woscc/full-record/WOS:000419327200008.
[13] Yang, Xinchun, Xu, Qiang. Ru Nanoparticles Confined within a Coordination Cage. CHEMnull. 2018, 4(3): 403-404, http://dx.doi.org/10.1016/j.chempr.2018.02.018.
[14] Yang, Xinchun, Sun, JianKe, Kitta, Mitsunori, Pang, Huan, Xu, Qiang. Encapsulating highly catalytically active metal nanoclusters inside porous organic cages. NATURE CATALYSIS[J]. 2018, 1(3): 214-220, https://www.webofscience.com/wos/woscc/full-record/WOS:000428623700014.
[15] Yang, Xinchun, Xu, Qiang. Bimetallic Metal-Organic Frameworks for Gas Storage and Separation. CRYSTAL GROWTH & DESIGN[J]. 2017, 17(4): 1450-1455, http://dx.doi.org/10.1021/acs.cgd.7b00166.
[16] Li, Zhangpeng, Yang, Xinchun, Tsumori, Nobuko, Liu, Zheng, Himeda, Yuichiro, Autrey, Tom, Xu, Qiang. Tandem Nitrogen Functionalization of Porous Carbon: Toward Immobilizing Highly Active Palladium Nanoclusters for Dehydrogenation of Formic Acid. ACS CATALYSIS[J]. 2017, 7(4): 2720-2724, https://www.webofscience.com/wos/woscc/full-record/WOS:000398986700056.
[17] Pachfule, Pradip, Yang, Xinchun, Zhu, QiLong, Tsumori, Nobuko, Uchida, Takeyuki, Xu, Qiang. From Ru nanoparticle-encapsulated metal-organic frameworks to highly catalytically active Cu/Ru nanoparticle-embedded porous carbon. JOURNAL OF MATERIALS CHEMISTRY A[J]. 2017, 5(10): 4835-4841, https://www.webofscience.com/wos/woscc/full-record/WOS:000396146900011.
[18] Chen, Yao, Yang, Xinchun, Kitta, Mitsunori, Xu, Qiang. Monodispersed Pt nanoparticles on reduced graphene oxide by a non-noble metal sacrificial approach for hydrolytic dehydrogenation of ammonia borane. NANO RESEARCH[J]. 2017, 10(11): 3811-3816, http://lib.cqvip.com/Qikan/Article/Detail?id=673533120.
[19] Yang, Xinchun, Xu, Qiang. Gold-containing metal nanoparticles for catalytic hydrogen generation from liquid chemical hydrides. CHINESE JOURNAL OF CATALYSIS[J]. 2016, 37(10): 1594-1599, http://dx.doi.org/10.1016/S1872-2067(16)62547-0.
[20] Song, FuZhan, Zhu, QiLong, Yang, XinChun, Xu, Qiang. Monodispersed CuCo Nanoparticles Supported on Diamine-Functionalized Graphene as a Non-noble Metal Catalyst for Hydrolytic Dehydrogenation of Ammonia Borane. CHEMNANOMAT[J]. 2016, 2(10): 942-945, [21] Yang, Xinchun, Pachfule, Pradip, Chen, Yao, Tsumori, Nobuko, Xu, Qiang. Highly efficient hydrogen generation from formic acid using a reduced graphene oxide-supported AuPd nanoparticle catalyst. CHEMICAL COMMUNICATIONS[J]. 2016, 52(22): 4171-4174, https://www.webofscience.com/wos/woscc/full-record/WOS:000372175700013.
[22] Shen, Xiangqian, Song, Fuzhan, Yang, Xinchun, Wang, Zhou, Jing, Maoxiang, Wang, Yingde. Hexaferrite/alpha-iron composite nanowires: Microstructure, exchange-coupling interaction and microwave absorption. JOURNAL OF ALLOYS AND COMPOUNDS[J]. 2015, 621: 146-153, https://www.webofscience.com/wos/woscc/full-record/WOS:000345421900023.
[23] Yang, Xinchun, Jing, Maoxiang, Shen, Xiangqian, Meng, Xianfeng, Dong, Mingdong, Huang, Daqing, Wang, Yingde. Microwave Absorption of Sandwich Structure Based on Nanocrystalline SrFe12O19, Ni0.5Zn0.5Fe2O4 and alpha-Fe Hollow Microfibers. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY[J]. 2014, 14(3): 2419-2424, https://www.webofscience.com/wos/woscc/full-record/WOS:000331624700038.
[24] Lu, Hongbo, Meng, Xianfeng, Yang, Xinchun, Jing, Maoxiang, Shen, Xiangqian, Dong, Mingdong. Three-Layer Structure Microwave Absorbers Based on Nanocrystalline alpha-Fe, Fe-0.2(Co0.2Ni0.8)(0.8) and Ni0.5Zn0.5Fe2O4 Porous Microfibers. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY[J]. 2014, 14(4): 2878-2884, https://www.webofscience.com/wos/woscc/full-record/WOS:000332226600025.
[25] Yang, Xinchun, Shen, Xiangqian, Jing, Maoxiang, Liu, Ruijiang, Lu, Yi, Xiang, Jun. Removal of Heavy Metals and Dyes by Supported Nano Zero-Valent Iron on Barium Ferrite Microfibers. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY[J]. 2014, 14(7): 5251-5257, https://www.webofscience.com/wos/woscc/full-record/WOS:000332926400071.
[26] Yang, Xinchun, Wang, Zhou, Jing, Maoxiang, Liu, Ruijiang, Song, Fuzhan, Shen, Xiangqian. Magnetic nanocomposite Ba-ferrite/alpha-iron hollow microfiber: A multifunctional 1D space platform for dyes removal and microwave absorption. CERAMICS INTERNATIONAL[J]. 2014, 40(10): 15585-15594, https://www.webofscience.com/wos/woscc/full-record/WOS:000343353600026.
[27] Liu, Ruijiang, Shen, Xiangqian, Yang, Xinchun, Wang, Qiuju, Yang, Fang. Adsorption characteristics of methyl blue onto magnetic Ni0.5Zn0.5Fe2O4 nanoparticles prepared by the rapid combustion process. JOURNAL OF NANOPARTICLE RESEARCH[J]. 2013, 15(6): 1679-1, [28] Yang Xinchun, Liu Ruijiang, Shen Xiangqian, Song Fuzhan, Jing Maoxiang, Meng Xianfeng. Enhancement of microwave absorption of nanocomposite BaFe_(12)O_(19)/α-Fe microfibers. CHINESE PHYSICS B[J]. 2013, 22(5): 058101-7, [29] Song, Fuzhan, Shen, Xiangqian, Yang, Xinchun, Meng, Xianfeng, Xiang, Jun, Liu, Ruijiang, Dong, Mingdong. Bandwidth Enhancement in Microwave Absorption of Binary Nanocomposite Ferrites Hollow Microfibers. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY[J]. 2013, 13(4): 3115-3120, [30] Yang, Xinchun, Liu, Ruijiang, Shen, Xiangqian, Song, Fuzhan. Magnetic properties and BSA adsorption of nano-Fe-embedded BaFe12O19 porous microfibers via organic gel-thermal selective reduction process. JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY[J]. 2012, 63(1): 8-15, [31] 杨新春, 沈湘黔, 宋福展, 刘瑞江, 崔学文. α-Fe/BaFe12O19复合粉体的有机凝胶–热还原法制备及磁性能. 硅酸盐学报[J]. 2012, 40(6): 821-825,
[2] Yang, Xinchun, Ullah, Zakir, Stoddart, J Fraser, Yavuz, Cafer T. Porous Organic Cages. CHEMICAL REVIEWSnull. 2023, 123(8): 4602-4634, http://dx.doi.org/10.1021/acs.chemrev.2c00667.
[3] Yang, Xinchun, Bulushev, Dmitri A, Yang, Jun, Zhang, Quan. New Liquid Chemical Hydrogen Storage Technology. ENERGIESnull. 2022, 15(17): http://dx.doi.org/10.3390/en15176360.
[4] Yang, Xinchun, Chen, Liyu, Liu, Hangyu, Kurihara, Takuya, Horike, Satoshi, Xu, Qiang. Encapsulating Ultrastable Metal Nanoparticles within Reticular Schiff Base Nanospaces for Enhanced Catalytic Performance. CELL REPORTS PHYSICAL SCIENCE[J]. 2021, 2(1): 100289-100289, [5] Zhong, Shan, Yang, Xinchun, Chen, Liyu, Tsumori, Nobuko, Taguchi, Noboru, Xu, Qiang. Interfacing with Fe-N-C Sites Boosts the Formic Acid Dehydrogenation of Palladium Nanoparticles. ACS APPLIED MATERIALS & INTERFACES[J]. 2021, 13(39): 46749-46755, http://dx.doi.org/10.1021/acsami.1c14009.
[6] Yang, Xinchun, Xu, Qiang. Encapsulating Metal Nanocatalysts within Porous Organic Hosts. TRENDS IN CHEMISTRYnull. 2020, 2(3): 214-226, http://dx.doi.org/10.1016/j.trechm.2019.12.001.
[7] Yang Xinchun, Li Zhangpeng, Kitta Mitsunori, Tsumori Nobuko, Guo Wenhan, Zhang Zitao, Zhang Jianbo, Zou Ruqiang, Xu Qiang. Solid-solution alloy nanoclusters of the immiscible gold-rhodium system achieved by a solid ligand-assisted approach for highly efficient catalysis. NANO RESEARCH[J]. 2020, 13(1): 105-111, http://lib.cqvip.com/Qikan/Article/Detail?id=7101985929.
[8] Song, FuZhan, Yang, Xinchun, Xu, Qiang. Ultrafine Bimetallic Pt-Ni Nanoparticles Achieved by Metal-Organic Framework Templated Zirconia/Porous Carbon/Reduced Graphene Oxide: Remarkable Catalytic Activity in Dehydrogenation of Hydrous Hydrazine. SMALL METHODS[J]. 2020, 4(1): 1900707-, https://www.webofscience.com/wos/woscc/full-record/WOS:000496848400001.
[9] Li, Xinran, Yang, Xinchun, Xue, Huaiguo, Pang, Huan, Xu, Qiang. Metal-organic frameworks as a platform for clean energy applications. ENERGYCHEM[J]. 2020, 2(2): 100027-, http://dx.doi.org/10.1016/j.enchem.2020.100027.
[10] Onishi, Naoya, Iguchi, Masayuki, Yang, Xinchun, Kanega, Ryoichi, Kawanami, Hajime, Xu, Qiang, Himeda, Yuichiro. Development of Effective Catalysts for Hydrogen Storage Technology Using Formic Acid. ADVANCED ENERGY MATERIALS[J]. 2019, 9(23): 1801275-, [11] Kumar, Amit, Yang, Xinchun, Xu, Qiang. Ultrafine bimetallic Pt-Ni nanoparticles immobilized on 3-dimensional N-doped graphene networks: a highly efficient catalyst for dehydrogenation of hydrous hydrazine. JOURNAL OF MATERIALS CHEMISTRY A[J]. 2019, 7(1): 112-115, http://dx.doi.org/10.1039/c8ta09003c.
[12] Song, FuZhan, Zhu, QiLong, Yang, Xinchun, Zhan, WenWen, Pachfule, Pradip, Tsumori, Nobuko, Xu, Qiang. Metal-Organic Framework Templated Porous Carbon-Metal Oxide/Reduced Graphene Oxide as Superior Support of Bimetallic Nanoparticles for Efficient Hydrogen Generation from Formic Acid. ADVANCED ENERGY MATERIALS[J]. 2018, 8(1): https://www.webofscience.com/wos/woscc/full-record/WOS:000419327200008.
[13] Yang, Xinchun, Xu, Qiang. Ru Nanoparticles Confined within a Coordination Cage. CHEMnull. 2018, 4(3): 403-404, http://dx.doi.org/10.1016/j.chempr.2018.02.018.
[14] Yang, Xinchun, Sun, JianKe, Kitta, Mitsunori, Pang, Huan, Xu, Qiang. Encapsulating highly catalytically active metal nanoclusters inside porous organic cages. NATURE CATALYSIS[J]. 2018, 1(3): 214-220, https://www.webofscience.com/wos/woscc/full-record/WOS:000428623700014.
[15] Yang, Xinchun, Xu, Qiang. Bimetallic Metal-Organic Frameworks for Gas Storage and Separation. CRYSTAL GROWTH & DESIGN[J]. 2017, 17(4): 1450-1455, http://dx.doi.org/10.1021/acs.cgd.7b00166.
[16] Li, Zhangpeng, Yang, Xinchun, Tsumori, Nobuko, Liu, Zheng, Himeda, Yuichiro, Autrey, Tom, Xu, Qiang. Tandem Nitrogen Functionalization of Porous Carbon: Toward Immobilizing Highly Active Palladium Nanoclusters for Dehydrogenation of Formic Acid. ACS CATALYSIS[J]. 2017, 7(4): 2720-2724, https://www.webofscience.com/wos/woscc/full-record/WOS:000398986700056.
[17] Pachfule, Pradip, Yang, Xinchun, Zhu, QiLong, Tsumori, Nobuko, Uchida, Takeyuki, Xu, Qiang. From Ru nanoparticle-encapsulated metal-organic frameworks to highly catalytically active Cu/Ru nanoparticle-embedded porous carbon. JOURNAL OF MATERIALS CHEMISTRY A[J]. 2017, 5(10): 4835-4841, https://www.webofscience.com/wos/woscc/full-record/WOS:000396146900011.
[18] Chen, Yao, Yang, Xinchun, Kitta, Mitsunori, Xu, Qiang. Monodispersed Pt nanoparticles on reduced graphene oxide by a non-noble metal sacrificial approach for hydrolytic dehydrogenation of ammonia borane. NANO RESEARCH[J]. 2017, 10(11): 3811-3816, http://lib.cqvip.com/Qikan/Article/Detail?id=673533120.
[19] Yang, Xinchun, Xu, Qiang. Gold-containing metal nanoparticles for catalytic hydrogen generation from liquid chemical hydrides. CHINESE JOURNAL OF CATALYSIS[J]. 2016, 37(10): 1594-1599, http://dx.doi.org/10.1016/S1872-2067(16)62547-0.
[20] Song, FuZhan, Zhu, QiLong, Yang, XinChun, Xu, Qiang. Monodispersed CuCo Nanoparticles Supported on Diamine-Functionalized Graphene as a Non-noble Metal Catalyst for Hydrolytic Dehydrogenation of Ammonia Borane. CHEMNANOMAT[J]. 2016, 2(10): 942-945, [21] Yang, Xinchun, Pachfule, Pradip, Chen, Yao, Tsumori, Nobuko, Xu, Qiang. Highly efficient hydrogen generation from formic acid using a reduced graphene oxide-supported AuPd nanoparticle catalyst. CHEMICAL COMMUNICATIONS[J]. 2016, 52(22): 4171-4174, https://www.webofscience.com/wos/woscc/full-record/WOS:000372175700013.
[22] Shen, Xiangqian, Song, Fuzhan, Yang, Xinchun, Wang, Zhou, Jing, Maoxiang, Wang, Yingde. Hexaferrite/alpha-iron composite nanowires: Microstructure, exchange-coupling interaction and microwave absorption. JOURNAL OF ALLOYS AND COMPOUNDS[J]. 2015, 621: 146-153, https://www.webofscience.com/wos/woscc/full-record/WOS:000345421900023.
[23] Yang, Xinchun, Jing, Maoxiang, Shen, Xiangqian, Meng, Xianfeng, Dong, Mingdong, Huang, Daqing, Wang, Yingde. Microwave Absorption of Sandwich Structure Based on Nanocrystalline SrFe12O19, Ni0.5Zn0.5Fe2O4 and alpha-Fe Hollow Microfibers. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY[J]. 2014, 14(3): 2419-2424, https://www.webofscience.com/wos/woscc/full-record/WOS:000331624700038.
[24] Lu, Hongbo, Meng, Xianfeng, Yang, Xinchun, Jing, Maoxiang, Shen, Xiangqian, Dong, Mingdong. Three-Layer Structure Microwave Absorbers Based on Nanocrystalline alpha-Fe, Fe-0.2(Co0.2Ni0.8)(0.8) and Ni0.5Zn0.5Fe2O4 Porous Microfibers. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY[J]. 2014, 14(4): 2878-2884, https://www.webofscience.com/wos/woscc/full-record/WOS:000332226600025.
[25] Yang, Xinchun, Shen, Xiangqian, Jing, Maoxiang, Liu, Ruijiang, Lu, Yi, Xiang, Jun. Removal of Heavy Metals and Dyes by Supported Nano Zero-Valent Iron on Barium Ferrite Microfibers. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY[J]. 2014, 14(7): 5251-5257, https://www.webofscience.com/wos/woscc/full-record/WOS:000332926400071.
[26] Yang, Xinchun, Wang, Zhou, Jing, Maoxiang, Liu, Ruijiang, Song, Fuzhan, Shen, Xiangqian. Magnetic nanocomposite Ba-ferrite/alpha-iron hollow microfiber: A multifunctional 1D space platform for dyes removal and microwave absorption. CERAMICS INTERNATIONAL[J]. 2014, 40(10): 15585-15594, https://www.webofscience.com/wos/woscc/full-record/WOS:000343353600026.
[27] Liu, Ruijiang, Shen, Xiangqian, Yang, Xinchun, Wang, Qiuju, Yang, Fang. Adsorption characteristics of methyl blue onto magnetic Ni0.5Zn0.5Fe2O4 nanoparticles prepared by the rapid combustion process. JOURNAL OF NANOPARTICLE RESEARCH[J]. 2013, 15(6): 1679-1, [28] Yang Xinchun, Liu Ruijiang, Shen Xiangqian, Song Fuzhan, Jing Maoxiang, Meng Xianfeng. Enhancement of microwave absorption of nanocomposite BaFe_(12)O_(19)/α-Fe microfibers. CHINESE PHYSICS B[J]. 2013, 22(5): 058101-7, [29] Song, Fuzhan, Shen, Xiangqian, Yang, Xinchun, Meng, Xianfeng, Xiang, Jun, Liu, Ruijiang, Dong, Mingdong. Bandwidth Enhancement in Microwave Absorption of Binary Nanocomposite Ferrites Hollow Microfibers. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY[J]. 2013, 13(4): 3115-3120, [30] Yang, Xinchun, Liu, Ruijiang, Shen, Xiangqian, Song, Fuzhan. Magnetic properties and BSA adsorption of nano-Fe-embedded BaFe12O19 porous microfibers via organic gel-thermal selective reduction process. JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY[J]. 2012, 63(1): 8-15, [31] 杨新春, 沈湘黔, 宋福展, 刘瑞江, 崔学文. α-Fe/BaFe12O19复合粉体的有机凝胶–热还原法制备及磁性能. 硅酸盐学报[J]. 2012, 40(6): 821-825,
科研活动
科研项目
( 1 ) 多孔有机笼/人工分子机器协同限域金属团簇的构筑及催化制氢研究, 负责人, 国家任务, 2023-01--2025-12
( 2 ) 氢能储存, 负责人, 中国科学院计划, 2023-01--2025-12
( 3 ) 纳米限域中合金团簇催化液态含氢化合物制氢的机制研究, 负责人, 地方任务, 2023-01--2025-12
( 4 ) 配套工作经费, 负责人, 研究所自主部署, 2023-07--2025-12
( 5 ) 深圳先进院优秀青年基金, 负责人, 研究所自主部署, 2023-01--2025-12
( 2 ) 氢能储存, 负责人, 中国科学院计划, 2023-01--2025-12
( 3 ) 纳米限域中合金团簇催化液态含氢化合物制氢的机制研究, 负责人, 地方任务, 2023-01--2025-12
( 4 ) 配套工作经费, 负责人, 研究所自主部署, 2023-07--2025-12
( 5 ) 深圳先进院优秀青年基金, 负责人, 研究所自主部署, 2023-01--2025-12