
Yangmu Li
Associate Professor/Associate Physicist
Beijing National Laboratory for Condensed Matter Physics
Institute of Physics, Chinese Academy of Sciences Beijing, 100190, P.R. China
Email: yangmuli@iphy.ac.cn
Research
The Functional Quantum Crystals (QCrystal) group was established in 2021 at the Institute of Physics, Chinese Academy of Sciences. With an interdisciplinary research team at the institute and through partnerships with global collaborators, the group investigates the physics and functionalities of quantum materials, specifically correlated, superconducting, and topological quantum crystals. The goal of the Functional Quantum Crystals group is to substantially improve the understanding of distinct quantum electronic and magnetic phases of matter, leading to novel functionalities and enhanced properties. Research in the QCrystal group focuses on state-of-the-art material synthesis and characterization of large crystals and the construction of three-dimensional prototype devices at small scales.
1. Scanning Nitrogen Vacancy Spectroscopy and Thermal Probe Microscopy
2. Scattering Spectroscopy
3. Nanofabrication of prototype devices
Experience
Research Associate, Brookhaven National Laboratory, USA, 2017-2021
(Supervisor: John Tranquada, Member of National Academy of Sciences USA)
Ph.D., University of Minnesota, USA, 2017
(Supervisor: Martin Greven; PhD Chair: Allen Goldman, Member of National Academy of Sciences USA)
B.S., Wuhan University, China, 2010
Visiting Researcher at:
HIFR and SNS, Oak Ridge National Laboratory, USA
Argonne National Laboratory, USA
DC field, National High Magnetic Field Laboratory, USA
Laboratoire Léon Brillouin, France
Institut Laue-Langevin, France
TRIUMF, Canada's National Laboratory for Particle and Nuclear Physics, Canada
Publications
2024
[37] Yangmu Li*, C. Liu, W. Cheng, and J. Li, Multiscale Approach for Unconventional Superconductors (invited review), Electromagnetic Science 2, 1-19 (2024)
[36] J. Zhang, S. Tu, Z. Lin, B. Zhu, J. Yuan, Yangmu Li, Q. Chen, F.V. Kusmartsev, K. Jin, Intermediate-temperature resistivity in the electron-doped cuprate La2-xCexCuO4: Insights into the doping-independent T2 behavior, Physical Review B 110, L220504 (2024)
[35] M. Qin, R. Zhang, C. Miao, Z. Wei, Y. Shi, Y. Yao, H. Wang, Yangmu Li, K. Jin, X. Xiang, Doping dependence of scattering rate for linear-in-temperature resistivity in cuprate superconductors, Physical Review Research 6, 023194 (2024)
[34] Q. Huan, R. Ma, X. Zhang, Z. Feng, Yangmu Li, J. Xiong, J. Huang, H. Li, W. Peng, X. Zhang, L. You. Impact of on-chip gate voltage on the electric properties of NbTiN superconducting nanowire transistor, Applied Physics Letters 124, 132601 (2024)
[33] Z. Zhao, Z. Wei, X. Yu, W. Dong, J. Huang, C. Chen, Z. Feng, M. Qin, X. Wang, S. Cao, Q. Huan, Yangmu Li, J. Yuan, B. Zhu, Q. Chen, Y. Sun, L. Wang, T. Qian, Kui Jin, Growth and characterization of high-quality FeSe thin films on with enhanced superconductivity, Physical Review B 110, L140507 (2024)
[32] Y. Gu, X. Li, Y. Chen, K. Iida, A. Nakao, K. Munakata, V. O. Garlea, Yangmu Li, G. Deng, I. A Zaliznyak, J. M. Tranquada, Y. Li, In-plane multi- magnetic ground state of Na3Co2SbO8, Physical Review B 109, L060410 (2024)
2023
[31] X. Jiang, M. Qin, X. Wei, L. Xu, J. Ke, H. Zhu, R. Zhang, Z. Zhao, Q. Liang, Z. Wei, Z. Lin, Z. Feng, F. Chen, P. Xiong, J. Yuan, B. Zhu, Yangmu Li, C. Xi, Z. Wang, M. Yang, J. Wang, T. Xiang, J. Hu, K. Jiang, Q. Chen, K. Jin and Z. Zhao, Interplay between superconductivity and the strange-metal state in FeSe, Nature Physics 19, 365 (2023)
[30] Z. Jin#, Yangmu Li#, Z. Hu#, B. Hu, Y. Liu, K. Iida, K. Kamazawa, M. B. Stone, A. I. Kolesnikov, D. L. Abernathy, X. Zhang, H. Chen, Y. Wang, C. Fang, B. Wu, I. A. Zaliznyak, J. M. Tranquada and Y. Li, Magnetic molecular orbitals in MnSi, Science Advances 9, eadd5239 (2023)
[29] F. Chen, X. Bai, Y. Wang, T. Dong, J. Shi, Y. Zhang, X. Sun, Z. Wei, M. Qin, J. Yuan, Q. Chen, X. Wang, X. Wang, B. Zhu, R. Huang, K. Jiang, W. Zhou, N. Wang, J. Hu, Yangmu Li*, K. Jin*, Z. Zhao, Emergence of superconducting dome in ZrNx films via variation of nitrogen concentration, Science Bulletin 68, 674 (2023)
[28] J. Xu, M. Qin, Z. Lin, X. Zhang, R. Zhang, L. Xu, L. Zhang, Q. Shi, J. Yuan, B. Zhu, C. Dong, R. Xiong, Q. Chen, Yangmu Li*, J. Shi*, and K. Jin, In situ electrical and thermal transport properties of FeySe1−xTex films with ionic liquid gating, Physical Review B 107, 094514 (2023)
[27] C. Liu, W. Cheng, X. Zhang, J. Xu, J. Li, Q. Shi, C. Yuan, L. Xu, H. Zhou, S. Zhu, J. Sun, W. Wu, J. Luo, K. Jin, and Yangmu Li*, Phases and magnetism at microscale in compounds containing nominal Pb10−xCux(PO4)6O, Physical Review Materials 7, 084804 (2023)
[26] X. Bai, F. Chen, Y. Wang, J. Xu, R. Zhang, M. Qin, W. Cheng, J. Zhang, Q. Shi, X. Wang, B. Zhu, J. Yuan, Q. Chen, J. Kang, K. Jiang, J. Hu, Yangmu Li*, K. Jin*, and Z. Zhao, Charge-carrier-type controlled superconducting dome in ZrNxOy films, Physical Review Materials 7, 094801 (2023)
2022
[25] Yangmu Li, A. Sapkota, P. M. Lozano, Z. Du, H. Li, Z. Wu, A. K. Kundu, R. J. Koch, L. Wu, B. L. Winn, S. Chi, M. Matsuda, M. Frontzek, E. S. Božin, Y. Zhu, I. Božović, A. N. Pasupathy, I. K. Drozdov, K. Fujita, G. D. Gu, I. A. Zaliznyak, Q. Li and J. M. Tranquada, Strongly overdoped La2−x SrxCuO4: Evidence for Josephson-coupled grains of strongly correlated superconductor, Physical Review B 106, 224515 (2022)
[24] X. Li, Y. Gu, Y. Chen, V. O. Garlea, K. Iida, K. Kamazawa, Yangmu Li, G. Deng, Q. Xiao, X. Zheng, Z. Ye, Y. Peng, I. A. Zaliznyak, J. M. Tranquada and Y. Li, Giant Magnetic In-Plane Anisotropy and Competing Instabilities in Na3Co2SbO6, Physical Review X 12, 041024 (2022)
[23] Z. Lin, S. Tu, J. Xu, Y. Shi, B. Zhu, C. Dong, J. Yuan, X. Dong, Q. Chen, Yangmu Li, K. Jin , Z. Zhao, Phase diagrams on composition-spread FeyTe1−xSex films, Science Bulletin 67, 1443 (2022)
[22] Y. Zhang, L. Yan, W. Wu, G. He, J. Zhang, Z. Ni, X. Jiang, M. Qin, F. Jin, J. Yuan, B. Zhu, Q. Chen, L. Zhou, Yangmu Li, J. Luo, K. Jin, Single-crystalline transition metal phosphide superconductor WP studied by Raman spectroscopy and first-principles calculations, Physical Review B 105, 174511 (2022)
[21] R. Zhang, Z. Zhao, M. Qin, J. Xu, W. Cheng, Yangmu Li, Q. Chen, J. Yuan, K. Jin, Determining the Thickness of the Dead Layer in Superconducting Film Using a Two-Coil Mutual-Inductance Technique, Physical Review Applied 17, 054034 (2022)
[20] L. Fang, H. Li, B. Xu, J. Ma, H. Pan, Q. He, T. Zheng, W. Ni, Y. Lin, Yangmu Li, Y. Cao, C. Sun, M. Yan, W. Sun, Y. Jiang, Latticed‐Confined Conversion Chemistry of Battery Electrode, Small 18, 2204912 (2022)
[19] Y. Zou, Q. Jin, Y. Wang, K. Jiang, S. Wang, Yangmu Li, E. Guo, Z. Cheng, Tuning superconductivity in vanadium nitride films by adjusting strain, Physical Review B 105, 224516 (2022)
[18] Z. Jin, B. Hu, Y. Liu, Yangmu Li, T. Zhang, K. Iida, K. Kamazawa, A. I. Kolesnikov, M. B. Stone, X. Zhang, H. Chen, Y. Wang, I. A. Zaliznyak, J. M. Tranquada, C. Fang, Y. Li, Chern numbers of topological phonon band crossing determined with inelastic neutron scattering, Physical Review B 106, 224304 (2022)
------------------------------------- before IOP -------------------------------------
[17] Yangmu Li, N. Zaki, A. T. Savici, V. O. Garlea, D. Fobes, Z. Xu, F. Camino, C. Petrovic, G. Gu, P. D. Johnson, J. M. Tranquada, and I. A. Zaliznyak, Electronic properties of the bulk and surface states of Fe1+yTe1-xSex, Nature Materials 20, 1221 (2021)
[16] A. de la Torre, K. Seyler, L. Zhao, S. Di Matteo, M. Scheurer, Yangmu Li, B. Yu, M. Greven, S. Sachdev, M. Norman, D. Hsieh, Anomalous mirror symmetry breaking in a model insulating cuprate Sr2CuO2Cl2, Nature Physics 17, 777 (2021)
[15] A. Sapkota, T. C. Sterling, P. M. Lozano, Yangmu Li, Huibo Cao, V. O. Garlea, D. Reznik, Qiang Li, I. A. Zaliznyak, G. D. Gu, and J. M. Tranquada, Reinvestigation of crystal symmetry and fluctuations in La2CuO4, Physical Review B 102, 104511 (2021)
[14] H. Miao, G. Fabbris, C. S. Nelson, R. Acevedo-Esteves, Yangmu Li, G. D. Gu, T. Yilmaz, K. Kaznatcheev, E. Vescovo, M. Oda, K. Kurosawa, N. Momono, T. A. Assefa, I. K. Robinson, J. M. Tranquada, P. D. Johnson and M. P. M. Dean. Discovery of Charge Density Waves in Cuprate Superconductors up to the Critical Doping and Beyond, npj Quantum Materials 6, 31 (2021)
[13] J. Yin, N. Shumiya, Y. Jiang, H. Zhou, G. Macam, S. S. Zhang, H. O. M. Sura, Z. Cheng, Z. Guguchia, Yangmu Li, Q. Wang, M. Litskevich, I. Belopolski, X. Yang, T. A. Cochran, G. Chang, Q. Zhang, B. M. Andersen, Z. Huang, F. Chuang, H. Lin, H. Lei, Z. Wang, S. Jia, M. Z. Hasan. Spin-orbit quantum impurity in a topological kagome magnet, Nature Communications 11, 4415 (2020)
[12] A. Sapkota, Yangmu Li, B. L. Winn, A. Podlesnyak, G. Xu, Z. Xu, K. Ran, T. Chen, J. Sun, J. Wen, Lihua Wu, J. Yang, Q. Li, G. D. Gu, and J. M. Tranquada, Electron-phonon coupling and superconductivity in the doped topological crystalline insulator (Pb0.5Sn 0.5)1−xInxTe, Physical Review B 102, 104511 (2020)
[11] Yangmu Li, J. Terzic, P. G. Baity, Dragana Popovic, G. D. Gu, Qiang Li, A. M. Tsvelik and J. M. Tranquada, Tuning from failed superconductor to failed insulator with magnetic field, Science Advances 5, aav7686 (2019)
[10] Yangmu Li*, W. Tabis, Y. Tang, G. Yu, J. Jaroszynski, N. Barišić* and M. Greven*. Hole-pocket-driven superconductivity and its universal features in the electron-doped cuprates, Science Advances 5, aap7349 (2019)
[9] Yangmu Li*, Q. Wang, L. DeBeer-Schmitt, Z. Guguchia, R. D. Desautels, J. Yin, Q. Du, W. Ren, X. Zhao, Z. Zhang, I.A. Zaliznyak, C. Petrovic, W. Yin, M. Z. Hasan, H. Lei*, J. M. Tranquada. Magnetic-field control of topological electronic response near room temperature in correlated Kagome magnets, Physical Review Letters 123, 196604 (2019)
[8] Yangmu Li*, J. Wu, F. Camino, G. D. Gu, I. Božović and J. M. Tranquada. Large surface conductance and superconductivity in topological insulator microstructures, Applied Physics Letters 115, 173507 (2019)
[7] N. Barišić, M. K. Chan, M. Veit, C. Dorow, Y. Ge, Yangmu Li, Y. Tang, W. Tabis, G. Yu, X. Zhao, M. Greven, Evidence for a universal Fermi-liquid scattering rate throughout the phase diagram of the copper-oxide superconductors, New Journal of Physics 21, 113007 (2019)
[6] Yangmu Li, R. Zhong, M. B. Stone, A. I. Kolesnikov, G. D. Gu, I. A. Zaliznyak, J. M. Tranquada. Antiferromagnetic spin gap limits the coherent superconducting gap in cuprates, Physical Review B 98, 224508 (2018)
[5] E. H. da Silva Neto, M. Minola, B. Yu, W. Tabis, M. Bluschke, D. Unruh, H. Suzuki, Yangmu Li, G. Yu, D. Betto, K. Kummer, F. Yakhou, N. B. Brookes, M. Le Tacon, M. Greven, B. Keimer, and A. Damascelli, Coupling between dynamic magnetic and charge-order correlations in the cuprate superconductor Nd2−xCexCuO4, Physical Review B 98, 161114 (2018)
[4] E. H. da Silva Neto, B. Yu, M. Minola, R. Sutarto, E. Schierle, F. Boschini, M. Zonno, M. Bluschke, J. Higgins, Y. Jiang, Yangmu Li, G. Yu, E. Weschke, F. He, M. Le Tacon, R. L. Greene, M. Greven, G. A. Sawatzky, B. Keimer, and A. Damascelli, Doping dependent charge order correlations in electron-doped cuprates, Science Advances 2, 1600782 (2016)
[3] Yangmu Li, W. Tabis, E. M. Motoyama, G. Yu, N. Barišić and M. Greven, Hidden Fermi-liquid charge transport in the antiferromagnetic phase of the electron-doped cuprate superconductors, Physical Review Letter 117, 197001 (2016)
[2] M. K. Chan, M. Veit, C. Dorow, G. Yang, Yangmu Li, W. Tabis, Y. Tang, X. Zhao, N. Barišić, and M. Greven. In-Plane Magnetoresistance Obeys Kohler's Rule in the Pseudogap Phase of Cuprate Superconductors. Physical Review Letters 113, 177005 (2014)
[1] Yuan Li, G. Yu, M. K. Chan, V. Balédent, Yangmu Li, N. Barišić, X. Zhao, K. Hradil, R. A. Mole, Y. Sidis, P. Steffens, P. Bourges & M. Greven, Two Ising like collective magnetic excitations in a single-layer cuprate superconductor. Nature Physics 8, 404 (2012)
Teaching Experience
Advanced Topics in Condensed Matter Physics (graduate course)
Solid-State Physics for Engineers and Scientists (graduate course)
Electricity and Magnetism
Introductory Physics for Science and Engineering
Recent Collaboration
Brookhaven National Laboratory; Oak Ridge National Laboratory; Argonne National Laboratory; National High Magnetic field laboratory;University of Minnesota; Columbia University; Princeton University; California Institute of Technology; University of British Columbia, Canada; Vienna University of Technology, Austria