基本信息
杨方 男 硕导 中国科学院宁波材料技术与工程研究所
电子邮件: yangf@nimte.ac.cn
通信地址: 慈溪市学林路99号
邮政编码: 315300
电子邮件: yangf@nimte.ac.cn
通信地址: 慈溪市学林路99号
邮政编码: 315300
研究领域
功能纳米生物材料与技术;生物检测方法及其设备研发
招生信息
招生专业
070304-物理化学083100-生物医学工程080501-材料物理与化学
招生方向
多功能纳米生物材料及其生物效应物理化学生物医学工程
教育背景
2012-06--2016-11 德国马尔堡大学 博士2010-10--2012-05 德国马尔堡大学 硕士2007-10--2010-04 德国马尔堡大学 本科
学历
博士研究生
学位
博士学位
工作经历
工作简历
2020-01~现在, 中科院宁波材料所, 中科院宁波材料所副研究员2017-04~2019-12,中科院宁波材料所, 中科院宁波材料所博士后/助理研究员2017-01~2017-03,中科院宁波材料所, 中科院宁波材料所客聘助理研究员2016-11~2016-12,德国马尔堡大学化学系, 德国马尔堡大学客聘助理研究员2012-06~2016-10,德国马尔堡大学化学系, 德国马尔堡大学助理研究员2010-06~2012-05,德国马尔堡大学物理系, 研究助理2008-10~2010-05,德国马尔堡大学物理系, 学生助教
社会兼职
2021-04-13-今,Frontiers in Photonics, Review Editor on the Editorial Board of Biophotonics (specialty section of Frontiers in Photonics)
2020-11-07-2024-10-20,European Cooperation In Science & Technology, Committee Member
2020-11-07-2024-10-20,European Cooperation In Science & Technology, Committee Member
专利与奖励
专利成果
[1] 彭皓, 杨方, 吴爱国. 一种跨尺度、多模式、可视化的生物检测装置及检测方法. 2022111796118, 2022-09-27.[2] 吴爱国, 彭皓, 杨方. 一种X射线激发荧光成像的造影剂及其制备方法和应用. CN: CN115651633A, 2023-01-31.[3] 彭皓, 杨方, 吴爱国. 一种彩色CT成像设备及成像方法. 2022111796870, 2022-09-27.[4] 吴爱国, 彭皓, 杨方. 一种X射线激发荧光成像的造影剂及其制备方法和应用. 2022111810736, 2022-09-27.[5] 彭皓, 吴爱国, 杨方. 一种荧光双模态激发下的多通道复合造影成像方法与系统. 2022111796264, 2022-09-27.[6] 王洪森, 丁小斌, 吴爱国, 杨方, 郑朝晖. D-π-A化合物、含有该化合物的具有近红外二区发光特性的多功能光疗剂. CN: CN114805293A, 2022-07-29.[7] 吉振宁, 杨方, 姜波, 李娟, 张纪庄, 吴爱国, 郭咏梅. 一种基于光声成像引导的三维磁热控制方法与系统. CN: CN114533247A, 2022-05-27.[8] 杨方, 杜慧, 吴爱国, 李勇. 一种自PN结半导体纳米材料作为红外光电探测器的应用. CN: CN114256364A, 2022-03-29.[9] 吴爱国, 杜慧, 杨方, 李勇. 一种半导体纳米材料及其制备方法与应用. CN: CN114054025A, 2022-02-18.[10] 吴爱国, 杜慧, 杨方, 李勇. 一种亲水性磁性纳米材料及其制备方法与应用. CN: CN114053966A, 2022-02-18.[11] 姜波, 吴爱国, 杨方. 用于纳米材料制备系统中的缓冲液装置. CN: CN115121141A, 2022-09-30.[12] 姜波, 吴爱国, 杨方. 一种纳米材料不同粒径分离装置. CN: CN115069026A, 2022-09-20.[13] 姜波, 吴爱国, 杨方. 一种基于液相激光烧蚀法的纳米材料检测装置. CN: CN115078267A, 2022-09-20.[14] 杨方, 姜波, 吴爱国. 基于液相激光烧蚀法的可定制化纳米材料批量制备装置. CN: CN115070199A, 2022-09-20.[15] 吴爱国, 姚俊列, 郑方, 杜慧, 杨方. 一种MRI图像重建的方法. CN: CN114677452A, 2022-06-28.[16] 杨方, 姚俊列, 郑方, 吴爱国. 一种亲水磁性实心纳米球及其制备方法与应用. CN: CN114678179A, 2022-06-28.[17] 杨方, 郑方, 姚俊列, 吴爱国. 一种二茂铁功能化的纳米催化剂及其制备方法与应用. CN: CN114522728A, 2022-05-24.[18] 卢焕明, 姚晨阳, 吴爱国, 杨方. 一种旋转磁场产生装置. CN: CN113628829A, 2021-11-09.[19] 杨方, 吴爱国, 王洪森. 一种具有双(多)光子激发的近红外荧光分子及其合成方法. CN: CN113549090A, 2021-10-26.[20] 杨方, 吴爱国, 王洪森. 一种荧光诊断试剂盒及其应用. CN: CN113552099A, 2021-10-26.[21] 杨方, 吴爱国, 姚晨阳. 一种细胞检测分析仪及细胞增殖信息的检测方法. CN: CN111751522A, 2020-10-09.[22] 吴爱国, 马园园, 陈天翔, 杨方. 磁性复合纳米材料及其制备方法和应用. CN: CN109529060A, 2019-03-29.[23] 吴爱国, 马园园, 陈天翔, 杨方. 一种金属掺杂铁氧体纳米材料、包含其的磁性纳米粒子的制备方法及其应用. CN: CN109626439A, 2019-04-16.[24] 杨方, 吴爱国, 孙莉. 一种磁性载药纳米胶束、其制备方法及应用. CN: CN110638753A, 2020-01-03.[25] YANG, Fang, WU, Aiguo. DETECTION ANALYZER. CN: US20200011853(A1), 2020-01-09.[26] 吴爱国, 俞樟森, 杨方. 一种上转换荧光数字全息成像系统及数字全息成像方法. CN: CN109814361A, 2019-05-28.[27] 吴爱国, 俞樟森, 杨方. 一种上转换荧光成像系统及上转换荧光的成像方法. CN: CN109813687A, 2019-05-28.[28] 吴爱国, 俞樟森, 杨方, 李娟. 一种多波长激发、上/下转换荧光共存的多壳层结构的纳米发光材料及其制备方法. CN: CN109810689A, 2019-05-28.
出版信息
发表论文
[1] 姚俊列, 邱月, 邢洁, 李子厚, 张傲然, 屠可为, 彭敏杰, 武小侠, 杨方, 吴爱国. Highly-Efficient Gallium-Interference Tumor Therapy Mediated by Gallium-Enriched Prussian Blue Nanomedicine. Acs Nano[J]. 2024, 18(7): 5556-5570, https://pubs.acs.org/doi/full/10.1021/acsnano.3c10994.[2] 姚俊列, 张傲然, 侯诗莹, 何成龙, 姚雨欣, 邢洁, 武小侠, 杨方, 吴爱国. Fish in troubled water: Boosting magneto-mechanical force-mediated tumor suppression via zinc-calcium dual-ion interference. Nano Today[J]. 2024, 56(/): 102306-/, https://www.sciencedirect.com/science/article/pii/S1748013224001610?via%3Dihub.[3] Yao, Junlie, Xing, Jie, Zheng, Fang, Li, Zihou, Li, Shunxiang, Xu, Xiawei, Unay, Devrim, Song, Young Min, Yang, Fang, Wu, Aiguo. Dual-infinite coordination polymer-engineered nanomedicine for dual-ion interference-mediated oxidative stress-dependent tumor suppression. MATERIALS HORIZONS[J]. 2023, 10: 2109-2119, https://pubs.rsc.org/en/content/articlelanding/2023/mh/d3mh00001j.[4] Peng, Hao, Ren, Guiping, Hampp, Norbert, Wu, Aiguo, Yang, Fang. The development of rare-earth combined Fe-based magnetic nanocomposites for use in biological theranostics. Journal of Materials Chemistry B[J]. 2023, 15: 10513-10528, https://pubs.rsc.org/en/content/articlelanding/2023/nr/d3nr01373a.[5] Chenyang Yao, Fang Yang, Jiaji Zhang, Junlie Yao, Yi Cao, Hao Peng, Stefan G Stanciu, Costas A Charitidis, Aiguo Wu. Magneto-mechanical therapeutic effects and associated cell death pathways of magnetic nanocomposites with distinct geometries. ACTA BIOMATERIALIA[J]. 2023, 161: 238-249, http://dx.doi.org/10.1016/j.actbio.2023.02.033.[6] Yao, Junlie, Zhang, Aoran, Qiu, Yue, Li, Zihou, Wu, Xiaoxia, Li, Zhouhua, Wu, Aiguo, Yang, Fang. Navigating zinc-involved nanomedicine in oncotherapy. NANOSCALE[J]. 2023, 15(9): 4261-4276, http://dx.doi.org/10.1039/d2nr06857e.[7] 姚俊列, 李子厚, 李周华, 武小侠, 潘春树, 邢洁, 张傲然, 姜波, 杨方, 吴爱国. Engineering Seed-like Fe–Mn Nanomedicine with Ultrasmall Structure and ATP-Responsive Function for Tumor Metabolic and Redox Subversion. ACS Materials Letters[J]. 2023, 5(9): 2464-2472, https://pubs.acs.org/doi/full/10.1021/acsmaterialslett.3c00546#.[8] Du, Hui, Yang, Fang, Yao, Chenyang, Lv, Wenhao, Peng, Hao, Stanciu, Stefan G, Stenmark, Harald A, Song, Young Min, Jiang, Bo, Wu, Aiguo. "Double-punch" strategy against triple-negative breast cancer via a synergistic therapy of magneto-mechanical force enhancing NIR-II hypothermal ablation. BIOMATERIALS[J]. 2022, 291: 121868-, http://dx.doi.org/10.1016/j.biomaterials.2022.121868.[9] Du, Hui, Yang, Fang, Yao, Chenyang, Zhong, Zhicheng, Jiang, Peiheng, Stanciu, Stefan G, Peng, Hao, Hu, Jiapeng, Jiang, Bo, Li, Zihou, Lv, Wenhao, Zheng, Fang, Stenmark, Harald A, Wu, Aiguo. Multifunctional Modulation of High-Performance ZnxFe3-xO4 Nanoparticles by Precisely Tuning the Zinc Doping Content. SMALL[J]. 2022, 18(42): 2201669-, http://dx.doi.org/10.1002/smll.202201669.[10] Wang, Hongsen, Wang, Yu, Zheng, Zhaohui, Yang, Fang, Ding, Xiaobin, Wu, Aiguo. Reasonable design of NIR AIEgens for fluorescence imaging and effective photothermal/photodynamic cancer therapy. JOURNAL OF MATERIALS CHEMISTRY B[J]. 2022, 10(9): 1418-1426, http://dx.doi.org/10.1039/d1tb02610k.[11] Yao, Junlie, Peng, Hao, Qiu, Yue, Li, Shunxiang, Xu, Xiawei, Wu, Aiguo, Yang, Fang. Nanoplatform-mediated calcium overload for cancer therapy. JOURNAL OF MATERIALS CHEMISTRY B[J]. 2022, 10(10): 1508-1519, http://dx.doi.org/10.1039/d1tb02721b.[12] Yang, Fang, Yao, Junlie, Zheng, Fang, Peng, Hao, Jiang, Shaohua, Yao, Chenyang, Du, Hui, Jiang, Bo, Stanciu, Stefan G, Wu, Aiguo. Guarding food safety with conventional and up-conversion near-infrared fluorescent sensors. JOURNAL OF ADVANCED RESEARCH[J]. 2022, 41: 129-144, http://dx.doi.org/10.1016/j.jare.2022.01.011.[13] Peng, Hao, Li, Shunxiang, Xing, Jie, Yang, Fang, Wu, Aiguo. Surface plasmon resonance of Au/Ag metals for the photoluminescence enhancement of lanthanide ion Ln(3+) doped upconversion nanoparticles in bioimaging. JOURNAL OF MATERIALS CHEMISTRY B[J]. 2022, 11: 5238-5250, [14] Yao, Junlie, Yao, Chenyang, Zhang, Aoran, Xu, Xiawei, Wu, Aiguo, Yang, Fang. Magnetomechanical force: an emerging paradigm for therapeutic applications. JOURNAL OF MATERIALS CHEMISTRY B[J]. 2022, 10(37): 7136-7147, http://dx.doi.org/10.1039/d2tb00428c.[15] Du, Hui, Akakuru, Ozioma Udochukwu, Yao, Chenyang, Yang, Fang, Wu, Aiguo. Transition metal ion-doped ferrites nanoparticles for bioimaging and cancer therapy. TRANSLATIONAL ONCOLOGY[J]. 2022, 15(1): http://dx.doi.org/10.1016/j.tranon.2021.101264.[16] AlMadani, Hamzah, Du, Hui, Yao, Junlie, Peng, Hao, Yao, Chenyang, Jiang, Bo, Wu, Aiguo, Yang, Fang. Living Sample Viability Measurement Methods from Traditional Assays to Nanomotion. BIOSENSORS-BASEL[J]. 2022, 12(7): 453-, [17] Yao, Junlie, Zheng, Fang, Yao, Chenyang, Xu, Xiawei, Akakuru, Ozioma Udochukwu, Chen, Tianxiang, Yang, Fang, Wu, Aiguo. Rational design of nanomedicine for photothermal-chemodynamic bimodal cancer therapy. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY[J]. 2021, 13(3): http://dx.doi.org/10.1002/wnan.1682.[18] Yao, Junlie, Yang, Fang, Zheng, Fang, Yao, Chenyang, Xing, Jie, Xu, Xiawei, Wu, Aiguo. Boosting Chemodynamic Therapy via a Synergy of Hypothermal Ablation and Oxidation Resistance Reduction. ACS APPLIED MATERIALS & INTERFACES[J]. 2021, 13(46): 54770-54782, http://dx.doi.org/10.1021/acsami.1c16835.[19] 彭皓, 杨方, 杜慧, 姜波, 姚晨阳, 姚俊列, 郑方, 吴爱国. 基于Er^(3+)掺杂上转换纳米粒子的生物成像研究进展. 分析化学[J]. 2021, 49(7): 1106-1120, http://lib.cqvip.com/Qikan/Article/Detail?id=7105035383.[20] Yao, Junlie, Zheng, Fang, Yang, Fang, Yao, Chenyang, Xing, Jie, Li, Zihou, Sun, Sijia, Chen, Jia, Xu, Xiawei, Cao, Yi, Hampp, Norbert, Wu, Aiguo. An intelligent tumor microenvironment responsive nanotheranostic agent for T1/T2 dual-modal magnetic resonance imaging-guided and self-augmented photothermal therapy. BIOMATERIALS SCIENCE[J]. 2021, 9(22): 7591-7602, http://dx.doi.org/10.1039/d1bm01324f.[21] Wu, Tingting, Zhang, Qian, Hu, Huiping, Yang, Fang, Li, Ke, Zhang, Yu, Shi, Chen. Enhancing cellular morphological changes and ablation of cancer cells via the interaction of drug co-loaded magnetic nanosystems in weak rotating magnetic fields. RSC ADVANCES[J]. 2020, 10(25): 14471-14481, http://dx.doi.org/10.1039/d0ra01458c.[22] Yao, Chenyang, Akakuru, Ozioma Udochukwu, Stanciu, Stefan G, Hampp, Norbert, Jin, Yinhua, Zheng, Jianjun, Chen, Guoping, Yang, Fang, Wu, Aiguo. Effect of elasticity on the phagocytosis of micro/nanoparticles. JOURNAL OF MATERIALS CHEMISTRY B[J]. 2020, 8(12): 2381-2392, http://dx.doi.org/10.1039/c9tb02902h.[23] Yao, Chenyang, Yang, Fang, Sun, Li, Ma, Yuanyuan, Stanciu, Stefan G, Li, Zihou, Liu, Chuang, Akakuru, Ozioma Udochukwu, Xu, Lipeng, Hampp, Norbert, Lu, Huanming, Wu, Aiguo. Magnetically switchable mechano-chemotherapy for enhancing the death of tumour cells by overcoming drug-resistance. NANO TODAY[J]. 2020, 35: http://dx.doi.org/10.1016/j.nantod.2020.100967.[24] Riedel, Rene, Mahr, Nora, Yao, Chenyang, Wu, Aiguo, Yang, Fang, Hampp, Norbert. Synthesis of gold-silica core-shell nanoparticles by pulsed laser ablation in liquid and their physico-chemical properties towards photothermal cancer therapy. NANOSCALE[J]. 2020, 12(5): 3007-3018, https://www.webofscience.com/wos/woscc/full-record/WOS:000516533300062.[25] Stanciu, Stefan G, Tranca, Denis E, Pastorino, Laura, Boi, Stefania, Song, Young Min, Yoo, Young Jin, Ishii, Satoshi, Hristu, Radu, Yang, Fang, Bussetti, Gianlorenzo, Stanciu, George A. Characterization of Nanomaterials by Locally Determining Their Complex Permittivity with Scattering-Type Scanning Near-Field Optical Microscopy. ACS APPLIED NANO MATERIALS[J]. 2020, 3(2): 1250-1262, https://www.webofscience.com/wos/woscc/full-record/WOS:000517856800035.[26] Ma, Yuanyuan, Xia, Jianbi, Yao, Chenyang, Yang, Fang, Stanciu, Stefan G, Li, Peng, Jin, Yinhua, Chen, Tianxiang, Zheng, Jianjun, Chen, Guoping, Yang, Hongxin, Luo, Liqiang, Wu, Aiguo. Precisely Tuning the Contrast Properties of ZnxFe3-xO4 Nanoparticles in Magnetic Resonance Imaging by Controlling Their Doping Content and Size. CHEMISTRY OF MATERIALS[J]. 2019, 31(18): 7255-7264, http://dx.doi.org/10.1021/acs.chemmater.9b01582.[27] Stanciu, Stefan G, Tranca, Denis E, Pastorino, Laura, Boi, Stefania, Song, Young Min, Yoo, Young Jin, Ishii, Satoshi, Yang, Fang, Wu, Aiguo, Hristu, Radu, Stanciu, George A, Costa, MFM. Quantitative imaging of advanced nanostructured materials with scattering-type scanning near-field optical microscopy. FOURTH INTERNATIONAL CONFERENCE ON APPLICATIONS OF OPTICS AND PHOTONICSnull. 2019, 11207: [28] Ma, Yuanyuan, Chen, Tianxiang, Iqbal, Muhammad Zubair, Yang, Fang, Hampp, Norbert, Wu, Aiguo, Luo, Liqiang. Applications of magnetic materials separation in biological nanomedicine. ELECTROPHORESISnull. 2019, 40(16-17): 2011-2028, https://www.doi.org/10.1002/elps.201800401.[29] Sun, Li, Riedel, Rene, Stanciu, Stefan G, Yang, Fang, Hampp, Norbert, Xu, Li, Wu, Aiguo. Investigations on the elasticity of functional gold nanoparticles using single-molecule force spectroscopy. JOURNAL OF MATERIALS CHEMISTRY Bnull. 2018, 6(19): 2960-2971, https://www.webofscience.com/wos/woscc/full-record/WOS:000436234900004.[30] Fang, Yang, Riedel, Rene, del Pino, Pablo, Pelaz, Beatriz, Said, Alaa Hassan, Soliman, Mahmoud, Pinnapireddy, Shashank R, Feliu, Neus, Parak, Wolfgang J, Bakowsky, Udo, Hampp, Norbert. Real-time, label-free monitoring of cell viability based on cell adhesion measurements with an atomic force microscope. JOURNAL OF NANOBIOTECHNOLOGY[J]. 2017, 15(1): http://dx.doi.org/10.1186/s12951-017-0256-7.
发表著作
(1) Nanobiosensors: From Design to Applications chapter 2: Transduction Process based Classification of Biosensors, Wiley VCH, 2020-03, 第 1 作者
科研活动
科研项目
( 1 ) 磁力开关在脑胶质瘤纳米药物控释及治疗中增强杀灭脑胶质瘤的研究, 负责人, 国家任务, 2019-01--2021-12( 2 ) 基于弱磁响应型纳米材料联合化疗药物增强杀灭脑胶质瘤细胞的实验研究, 负责人, 地方任务, 2018-01--2020-12( 3 ) 基于磁性纳米药物低磁场下机械增强杀灭胰腺癌细胞的研究, 负责人, 地方任务, 2019-06--2021-05
参与会议
(1)Real-time monitoring of cell viability by oscillation system of atomic force microscopy 2020-06-22(2)Real-time monitoring of cell viability by oscillation system of atomic force microscopy 2018-02-19(3)Investigation toward elasticity of gold nanoparticles and their interaction with cells based on AFM 2018-01-22
合作情况
德国马尔堡大学化学系Norbert Hampp教授
德国汉堡大学生物光子Wolfgang Parak教授
西班牙圣地亚哥大学Pablo del. Pino教授
罗马尼亚布加勒斯特理工大学Stefan G. Stanciu教授
罗马尼亚脑科学研究院
挪威奥斯陆大学Harald Stenmark院士
希腊雅典国立科技大学Costas Charitidis教授
以色列巴依兰大学Zeev Zalevsky教授
土耳其伊兹密尔大学Devrim Unay教授
土耳其伊斯坦布尔科技大学Behçet Uğur Töreyin教授
韩国光州科学技术研究院Young Min Song教授
项目协作单位
德国马尔堡大学
德国汉堡大学
西班牙圣地亚哥大学
罗马尼亚布加勒斯特理工大学
罗马尼亚脑科学研究院
挪威奥斯陆大学
希腊雅典国立科技大学
以色列巴依兰大学
土耳其伊兹密尔大学
土耳其伊斯坦布尔科技大学
韩国光州科学技术研究院