基本信息
熊稳  男    中国科学院重庆绿色智能技术研究院
电子邮件: xiongwen@cigit.ac.cn
通信地址: 重庆市北碚区方正大道266号中国科学院重庆绿色智能技术研究院
邮政编码:

研究领域

1、半导体物理和器件物理;

2、半导体中的光学性质和光电性质;

3、新型二维半导体材料及其异质结光电特性的第一性原理计算。



招生信息

本人常年招生半导体物理、光学工程、凝聚态物理和材料物理方向的硕士研究生和博士研究生,欢迎对这些领域感兴趣的学生报考。联系邮箱:xiongwen@cigit.ac.cn。


招生专业
080300-光学工程
0805Z2-半导体材料与器件
070205-凝聚态物理
招生方向
半导体物理,半导体器件物理。
半导体的光学和磁学性质,半导体的光电性质。
二维材料

教育背景

2007-09--2010-06   中国科学院半导体研究所   获得博士研究生学历和博士学位
2004-09--2007-06   重庆大学数理学院   获得硕士研究生学历和硕士学位
2000-09--2004-06   重庆大学数理学院   获得本科学历和学士学位
学历
博士研究生

学位
博士

工作经历

   
工作简历
2021-08~2022-07,中国科学院重庆绿色智能技术研究院, 任职研究员
2019-02~2020-02,新加坡南洋理工大学, 任职Research Fellow
2016-09~2017-02,中国科学院半导体研究所, 任职访问学者
2014-10~2021-07,重庆大学物理学院, 任职副研究员
2010-09~2014-09,重庆大学物理学院, 任职讲师

教授课程

物理问题的计算机模拟
大学物理Ⅱ-1
大学物理Ⅱ-2

专利与奖励

   
专利成果
[1] 朱鹏, 孙泰, 史浩飞, 肖磊, 魏兴战, 熊稳. 一种具有双波段吸收增强功能的II类超晶格红外探测器及其制备方法. CN: CN114373823B, 2023-08-22.
[2] 朱鹏, 孙泰, 史浩飞, 肖磊, 魏兴战, 熊稳. 一种带有宽波段吸收增强结构的II类超晶格红外探测器及其制备方法. CN: CN114373821B, 2023-08-22.
[3] 魏兴战, 文卓群, 熊稳. 低维材料高通量设计方法. CN: CN115512793A, 2022-12-23.
[4] 魏兴战, 诸海渝, 熊稳. 多目标自适应低维光电材料设计方法. CN: CN115496155A, 2022-12-20.
[5] 熊稳, 魏兴战, 史浩飞. 预测半导体载流子迁移率的方法. CN: CN115292961A, 2022-11-04.
[6] 朱鹏, 孙泰, 史浩飞, 肖磊, 魏兴战, 熊稳. 一种具有双波段吸收增强功能的II类超晶格红外探测器及其制备方法. CN: CN114373823A, 2022-04-19.
[7] 朱鹏, 孙泰, 史浩飞, 肖磊, 魏兴战, 熊稳. 一种带有宽波段吸收增强结构的II类超晶格红外探测器及其制备方法. CN: CN114373821A, 2022-04-19.
[8] 孙泰, 肖磊, 史浩飞, 朱鹏, 魏兴战, 熊稳. 一种具有重掺杂层谐振腔的II类超晶格光电探测器及其制备方法. CN: CN114373822A, 2022-04-19.
[9] 孙泰, 肖磊, 史浩飞, 朱鹏, 魏兴战, 熊稳. 一种具有表面光调制层的II类超晶格多色光电探测器及其制备方法. CN: CN114373826A, 2022-04-19.
[10] 熊稳, 黄映洲, 田红星, 向霄, 吴肖肖. 非单一低频超开放通风可调节吸声单元. CN: CN112728275A, 2021-04-30.

出版信息

   
发表论文
[1] Li Xin, Hou Ning, Xiong Wen. The optical gain variation of Ge nanowires induced by L-valley splitting under the [110] direction stress. APPLIED PHYSICS EXPRESS[J]. 2024, [2] Li Xin, Xiong Wen. The optical gain of GaAs1−x−yNxBiy nanowires under the [100] direction uniaxial stress. APPLIED PHYSICS EXPRESS[J]. 2023, [3] Xiong Wen, Wang Fei. The optical gain of dilute bismuth GaAs nanowires under the joint uniaxial stresses. Physics Letters A[J]. 2023, [4] Yan, Su, Chen, Weiguang, Xiong, Wen, Yang, Liang, Luo, Ronghui, Wang, Fei. Dicarbon nitride and Janus transition metal chalcogenides van der Waals heterojunctions for photocatalytic water splitting. JOURNAL OF PHYSICS-CONDENSED MATTER[J]. 2023, 35(1): [5] Yu Leyong, Xiong Wen. Absorption spectra and exciton g factor of InAs1-xNx nanowires in a magnetic field. APPLIED PHYSICS EXPRESS[J]. 2022, [6] Ma, Zhuang, Huang, Pu, Li, Jin, Zhang, Peng, Zheng, Jiaxin, Xiong, Wen, Wang, Fei, Zhang, Xiuwen. Multiferroicity and giant in-plane negative Poisson's ratio in wurtzite monolayers. NPJ COMPUTATIONAL MATERIALS[J]. 2022, 8(1): 489-499, http://apps.webofknowledge.com/CitedFullRecord.do?product=UA&colName=WOS&SID=5CCFccWmJJRAuMzNPjj&search_mode=CitedFullRecord&isickref=WOS:000773924600001.
[7] Huang, Pu, Ma, Zhuang, Wang, Gui, Xiong, Wen, Zhang, Peng, Sun, Yiling, Qian, Zhengfang, Zhang, Xiuwen. Origin of the enhanced edge optical transition in transition metal dichalcogenide flakes. JOURNAL OF MATERIALS CHEMISTRY C[J]. 2022, 10(13): 5303-5310, http://dx.doi.org/10.1039/d2tc00078d.
[8] Xiao Lei, Zhu Peng, Li Nong, Chang FaRan, Shi HaoFei, Wei XingZhan, Xiong Wen, Sun Tai. Gradual funnel photon trapping enhanced InAs/GaSb type-II superlattice infrared detector. Optics Express[J]. 2022, [9] Ye, Guangping, Xiong, Wen, Xie, Yiqun, Gong, Lele. The High Photoresponse of Stress-Tuned MoTe2 Optoelectronic Devices in the Telecommunication Band. PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS[J]. 2022, 16(12): http://dx.doi.org/10.1002/pssr.202200276.
[10] Wang, ZiWu, Sun, Yong, Cui, Yu, Xiao, Yao, Deng, JiaPei, Xiong, Wen, Li, ZhiQing. Quantum defect-assisted multiphonon Raman scattering in metal halide perovskites. JOURNAL OF PHYSICS-CONDENSED MATTER[J]. 2021, 33(14): https://www.webofscience.com/wos/woscc/full-record/WOS:000626438100001.
[11] Xiong, Wen, Ye, GuangPing, Xu, QiaoYing, Gong, LeLe, Wang, Yin. The optical gain of Ge nanowires engineered by the 100 direction uniaxial stress perpendicular to the nanowire axis. PHYSICS LETTERS A[J]. 2021, 409: http://dx.doi.org/10.1016/j.physleta.2021.127526.
[12] Jiang, Cunyuan, Xiong, Wen, Li, Chong, Niu, Chunyao, Wang, Fei. Uniaxial strain induced symmetry lowering and valleys drift in MoS2. NEW JOURNAL OF PHYSICS[J]. 2021, 23(5): http://dx.doi.org/10.1088/1367-2630/abfb09.
[13] Huang, Pu, Chen, Xinbo, Zhang, Peng, Sun, Hongyi, Xu, Shaogang, Xiong, Wen, Wang, Rui, Zhang, Han, Liu, Qihang, Zhang, Xiuwen. Crystalline chirality and interlocked double hourglass Weyl fermion in polyhedra-intercalated transition metal dichalcogenides. NPG ASIA MATERIALS[J]. 2021, 13(1): http://dx.doi.org/10.1038/s41427-021-00316-w.
[14] Ge, Dinghao, Luo, Ronghui, Wang, Xiaoxia, Yang, Liang, Xiong, Wen, Wang, Fei. Internal and external electric field tunable electronic structures for photocatalytic water splitting: Janus transition-metal chalcogenides/C3N4 van der Waals heterojunctions. APPLIED SURFACE SCIENCE[J]. 2021, 566: http://dx.doi.org/10.1016/j.apsusc.2021.150639.
[15] Gong, LeLe, Xiong, Wen, Xie, YiQun, Hu, Jie, Huang, Pu, Wang, Fei. The large photoresponse and high polarization sensitivity of Te-based optoelectronic devices with the adsorbed hydroxide ions. APPLIED PHYSICS LETTERS[J]. 2021, 118(22): [16] Jiang, Cunyuan, Yang, Zhiyao, Xiong, Wen, Wang, Fei. Effect of strain engineering on magnetism-induced valley splitting in WSe2 based on the WSe2/CrSe2 heterojunction. APPLIED PHYSICS LETTERS[J]. 2021, 119(16): 5-, [17] Xiong, Wen, Gong, LeLe, Chen, WenSuo, Wang, ZiWu. The variation of optical gain in Ge nanowires induced by the.Delta E-e(Gamma),(L) and symmetry of hole states under the axial stress. JOURNAL OF APPLIED PHYSICS[J]. 2020, 128(9): https://www.webofscience.com/wos/woscc/full-record/WOS:000568567500003.
[18] Xiong, Wen, Wang, JianWei, Fan, WeiJun, Song, ZhiGang, Tan, ChuanSeng. The theoretical direct-band-gap optical gain of Germanium nanowires. SCIENTIFIC REPORTS[J]. 2020, 10(1): http://dx.doi.org/10.1038/s41598-019-56765-5.
[19] Hu, Jie, Xiong, Wen, Huang, Pu, Wang, Yin, Cai, Congzhong, Wang, Jianwei. First-principles study on strain-modulated negative differential resistance effect of in-plane device based on heterostructure tellurene. APPLIED SURFACE SCIENCE[J]. 2020, 528: http://dx.doi.org/10.1016/j.apsusc.2020.146957.
[20] Xiong, Wen, Fan, WeiJun, Song, ZhiGang, Tan, ChuanSeng. The Theoretical Optical Gain of Ge1-xSnx Nanowires. PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS[J]. 2020, 14(4): https://www.webofscience.com/wos/woscc/full-record/WOS:000512110400001.
[21] Hu, Jie, Xiong, Wen, Cai, Congzhong, Wang, Jianwei, Li, Junjun, Xie, Yiqun, Wang, Yin. Optical response of Te-based monolayer materials from first principles. APPLIED PHYSICS LETTERS[J]. 2019, 115(15): [22] Xiong, Wen, Hu, Jie, Wang, JianWei. The electronic structures and optical gain of dilute nitride GaAs nanowires under uniaxial stress. APPLIED PHYSICS EXPRESS[J]. 2019, 12(3): [23] Xiong, Wen. Electronic structures and optical gain of dilute nitride GaAs nanowires. APPLIED PHYSICS EXPRESS[J]. 2018, 11(9): https://www.webofscience.com/wos/woscc/full-record/WOS:000442260700001.
[24] Xiong, Wen, Wang, JianWei. The uniaxial stress tunable optical gain of InAs nanowires. PHYSICS LETTERS A[J]. 2018, 382(44): 3197-3204, http://dx.doi.org/10.1016/j.physleta.2018.08.026.
[25] Chen, Shaobo, Chen, Ying, Yan, Wanjun, Zhou, Shiyun, Xiong, Wen, Yao, Xingxing, Qin, Xinmao. Magnetism and Optical Property of Mn-Doped Monolayer CrSi2 by First-Principle Study. JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM[J]. 2018, 31(9): 2759-2765, http://dx.doi.org/10.1007/s10948-017-4523-5.
[26] Xiong, Wen, Xu, Xiulai, Luo, JunWei, Gong, Ming, Li, ShuShen, Guo, GuangCan. Fundamental Intrinsic Lifetimes in Semiconductor Self-Assembled Quantum Dots. PHYSICAL REVIEW APPLIED[J]. 2018, 10(4): http://dx.doi.org/10.1103/PhysRevApplied.10.044009.
[27] Xiong, Wen, Wang, JianWei. The electronic structures and absorption spectra of Mn-doped GaAs nanowires in the magnetic field. SUPERLATTICES AND MICROSTRUCTURES[J]. 2018, 120: 771-780, http://dx.doi.org/10.1016/j.spmi.2018.06.041.
[28] Li Yanhua, Cai Congzhong, Gu Yonghong, Cheng Wende, Xiong Wen, Zhao Chengjun. Novel electronic properties of a new MoS 2 /TiO 2 heterostructure and potential applications in solar cells and photocatalysis. APPLIED SURFACE SCIENCE[J]. 2017, [29] Li, Yanhua, Cai, Congzhong, Gu, Yonghong, Cheng, Wende, Xiong, Wen, Zhao, Chengjun. Novel electronic properties of a new MoS2/TiO2 heterostructure and potential applications in solar cells and photocatalysis. APPLIED SURFACE SCIENCE[J]. 2017, 414: 34-40, http://dx.doi.org/10.1016/j.apsusc.2017.04.001.
[30] Xiong, Wen. The effective excitonic g factors of Mn-doped InAs nanowires. SUPERLATTICES AND MICROSTRUCTURES[J]. 2017, 104: 205-214, http://dx.doi.org/10.1016/j.spmi.2017.02.031.
[31] Xiong, Wen. Electronic structure of Mn-doped InAs nanowires in the magnetic field. SUPERLATTICES AND MICROSTRUCTURES[J]. 2016, 100: 1159-1176, http://dx.doi.org/10.1016/j.spmi.2016.10.088.
[32] Xiong, Wen. Electronic structure and intersubband magnetoabsorption spectra of CdSe/CdS core-shell nanowires. SUPERLATTICES AND MICROSTRUCTURES[J]. 2016, 98: 158-173, http://dx.doi.org/10.1016/j.spmi.2016.08.014.
[33] Pan, Liang, Huang, Yingzhou, Yang, Yanna, Xiong, Wen, Chen, Guo, Su, Xun, Wei, Hua, Wang, Shuxia, Wen, Weijia. Electromagnetic field redistribution induced selective plasmon driven surface catalysis in metal nanowire-film systems. SCIENTIFIC REPORTS[J]. 2015, 5: https://www.webofscience.com/wos/woscc/full-record/WOS:000365381900001.
[34] Xiong, Wen, Chen, Wensuo. Magneto-optical spectrum and the effective excitonic Zeeman splitting energies of Mn and Co-doped CdSe nanowires. JOURNAL OF APPLIED PHYSICS[J]. 2013, 114(23): https://www.webofscience.com/wos/woscc/full-record/WOS:000329056800054.
[35] Xiong, Wen. Magneto-optical spectrum of ZnO nanorods. JOURNAL OF APPLIED PHYSICS[J]. 2012, 111(4): https://www.webofscience.com/wos/woscc/full-record/WOS:000300948600083.
[36] Xiong, Wen. Magneto-optical spectrum of Mn-doped ZnO nanorods. JOURNAL OF APPLIED PHYSICS[J]. 2012, 112(4): https://www.webofscience.com/wos/woscc/full-record/WOS:000308410100081.
[37] Xiong, Wen. Magneto-optical spectrum of Mn-doped CdS nanorods. JOURNAL OF PHYSICS D-APPLIED PHYSICS[J]. 2012, 45(34): https://www.webofscience.com/wos/woscc/full-record/WOS:000307808600001.
[38] Xiong, Wen, Li, ShuShen. Electronic structure and exciton states in the freestanding ZnO nanorods. JOURNAL OF APPLIED PHYSICS[J]. 2009, 105(9): http://ir.semi.ac.cn/handle/172111/7157.
[39] Xiong, Wen, Li, ShuShen. The electronic structure of strained ZnO/MgxZn1-xO superlattices and the influence of polarization. PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES[J]. 2009, 41(3): 506-512, http://ir.semi.ac.cn/handle/172111/7379.
[40] Xiong, Wen, Li, ShuShen. Low-energy exciton states in a ZnO cylindrical nanodisk. JOURNAL OF APPLIED PHYSICS[J]. 2008, 104(9): http://ir.semi.ac.cn/handle/172111/6336.
[41] Xiong Wen, Zhao Hua. Calculation of exciton energies and binding energies in ZnO film. ACTA PHYSICA SINICA[J]. 2007, 56(2): 1061-1065, http://dx.doi.org/10.7498/aps.56.1061.
[42] 赵铧, 李韦, 刘高斌, 熊稳, 王伟, 郭富胜. ZnO纳米材料及掺杂ZnO材料的最新研究进展. 材料导报[J]. 2007, 105-109,113, http://lib.cqvip.com/Qikan/Article/Detail?id=3000300319.
[43] 朱孟兆, 赵铧, 熊稳. 无限深势阱下杂质量子点的能级计算. 量子光学学报[J]. 2007, 13(1): 66-70, http://lib.cqvip.com/Qikan/Article/Detail?id=23745322.
[44] Xiong Wen, Zhao Hua. Calculation of exciton energies and binding energies in ZnO film. ACTA PHYSICA SINICA[J]. 2007, 56(2): 1061-1065, https://www.webofscience.com/wos/woscc/full-record/WOS:000243986600073.
[45] 赵铧, 熊稳. 厚度为d的薄膜中激子及其边界极化对其能级的影响. 重庆大学学报. 自然科学版[J]. 2006, 29(9): 94-98,110, http://sciencechina.cn/gw.jsp?action=detail.jsp&internal_id=2551859&detailType=1.

科研活动

   
科研项目
( 1 ) 单轴应力调控的锗和锗锡纳米线电子结构和光学增益研究, 负责人, 国家任务, 2021-01--2024-12
( 2 ) 单轴应力调控的锗纳米线电子结构和光学增益研究, 负责人, 地方任务, 2020-07--2023-06
( 3 ) 高载流子迁移率低维光电材料联合研发及应用示范, 参与, 国家任务, 2019-08--2022-07