基本信息
夏永高  男  博导  中国科学院宁波材料技术与工程研究所
电子邮件: xiayg@nimte.ac.cn
通信地址: 浙江省宁波市镇海区中官西路1219号
邮政编码: 315201

研究领域

目前重点研究动力电池绿色设计与回收再利用、新型电解质体系和新型储能器件等

招生信息

   
招生专业
080501-材料物理与化学
招生方向
新能源技术
锂离子电池材料

教育背景

2005-04--2008-03   日本佐贺大学   博士
2003-04--2005-03   日本佐贺大学   硕士
学历

研究生

学位

博士

专利与奖励

   
奖励信息
(1) 宁波市海外高层次人才优秀会员, 市地级, 2018
专利成果
[1] 夏永高, 邓龙平, 常凤真. 一种废旧电池正极材料回收稀溶液中提取锂的方法. CN: [[[CN111697282A]]], [[["2020-09-22"]]].

[2] 夏永高, 程亚军, 左秀霞. 一种纳米化合金型负极材料及其制备方法. CN: CN112018368B, 2022-01-28.

[3] 夏永高, 程亚军, 左秀霞. 一种可脱碱金属离子材料及其制备方法. CN: CN112018330B, 2022-01-28.

[4] 夏永高, 左秀霞, 程亚军. 一种废旧动力电池电解液的无害化回收方法. CN: CN110380150B, 2022-01-11.

[5] 夏永高, 高洁, 王蒙蒙. 一种退役电池的安全放电方法及湿法物理分选方法. CN: CN112201872B, 2021-12-21.

[6] 高洁, 夏永高. 一种从磷酸铁锂电池提锂后的铁磷渣中回收磷酸铁的方法. CN: CN111646447B, 2021-12-14.

[7] 高洁, 夏永高. 一种从废旧磷酸铁锂电池中回收锂的方法、以及回收锂和磷酸铁的方法. CN: CN111675203B, 2021-12-14.

[8] 石俊黎, 夏永高, 刘兆平. 一种复合隔膜及其制备方法. CN: CN109461869B, 2021-10-15.

[9] 夏永高, 王天桃. 一种微通道生产氟代碳酸乙烯酯的方法. CN: CN113121491A, 2021-07-16.

[10] 夏永高, 王梅梅, 程亚军. 一种集流体及其制备方法和应用. CN: CN111048788B, 2021-06-01.

[11] 夏永高, 刘兆平. 一种正极材料、其制备方法及锂离子电池. CN: CN107394197B, 2021-05-25.

[12] 邱报, 夏永高, 刘兆平. 一种富锂氧化物正极材料及其制备方法以及一种锂离子电池. CN: CN107946571B, 2021-04-23.

[13] 沈成绪, 傅儒生, 夏永高, 刘兆平. 一种氧化硅碳复合负极材料、其制备方法及锂离子电池. CN: CN108306009B, 2021-01-22.

[14] 夏永高, 程亚军, 左秀霞. 可嵌入碱金属离子正极材料或金属单质的制备方法. CN: CN112018370A, 2020-12-01.

[15] 高洁, 王蒙蒙, 夏永高. 一种废旧锂电池回收再利用的方法. CN: CN107180991B, 2020-10-23.

[16] 马丹丹, 夏永高, 石俊黎, 刘兆平. 一种离子液体聚合物复合固态电解质、其制备方法及锂离子电池. CN: CN108428931B, 2020-10-09.

[17] 傅儒生, 沈成绪, 夏永高, 刘兆平. 一种表面功能化碳材料及其制备方法以及应用. CN: CN107651663B, 2020-10-09.

[18] 夏永高, 邓龙平, 常凤真. 一种废旧动力电池正极材料中锂的提取方法. CN: CN111675228A, 2020-09-18.

[19] 骆浩, 杨光华, 夏永高, 刘兆平. 一种电池浆料、电池极片及其制备方法. CN: CN106025175B, 2020-07-24.

[20] 许和伟, 石俊黎, 夏永高, 刘兆平. 一种电解质及锂金属电池. CN: CN107732294B, 2020-05-22.

[21] 石俊黎, 夏永高, 刘兆平. 一种陶瓷复合隔膜及其制备方法. CN: CN110581247A, 2019-12-17.

[22] 顾庆文, 赛喜雅勒图, 夏永高, 刘兆平. 一种镍钴锰前驱体及其制备方法. CN: CN106784784B, 2019-12-06.

[23] 夏永高, 左秀霞, 程亚军. 一种废旧动力电池电解液的无害化处理方法与系统. CN: CN110416654A, 2019-11-05.

[24] 许和伟, 夏永高, 刘兆平. 一种电解质及锂离子电池. CN: CN107180998B, 2019-09-24.

[25] 贾凯, 邱报, 夏永高, 刘兆平, 郭皓诚. 锂离子电池电极改性材料、其制备方法及锂离子电池. CN: CN106450276B, 2019-09-24.

[26] 郭皓诚, 邱报, 夏永高, 刘兆平, 贾凯. 一种锂离子电池正极材料的回收方法. CN: CN106099236B, 2019-09-24.

[27] 杨光华, 夏永高, 刘兆平, 石俊黎, 夏兰. 一种电解液以及一种锂离子电池. CN: CN105742711B, 2019-09-24.

[28] 程亚军, 姬青, 朱锦, 夏永高. 一种纳米二氧化铌/碳锂离子电池负极材料的制备方法. CN: CN110021744A, 2019-07-16.

[29] 夏兰, 夏永高, 刘兆平. 一种非水电解液和锂离子电池. CN: CN109950612A, 2019-06-28.

[30] 夏兰, 夏永高, 刘兆平. 一种非水电解液和一种锂离子电池. CN: CN105720304B, 2019-02-19.

[31] 何盈, 石俊黎, 夏永高, 刘兆平, 许和伟. 一种锂金属二次电池用铜集流体、其制备方法及锂金属二次电池. CN: CN108649232A, 2018-10-12.

[32] 张可利, 傅儒生, 夏永高, 刘兆平. 一种多孔石墨烯/硅复合材料、其制备方法及锂离子电池. CN: CN106099061B, 2018-10-09.

[33] 杨正东, 傅儒生, 夏永高, 刘兆平, 张可利. 一种锂离子电池负极材料、其制备方法及锂离子电池. CN: CN105742611B, 2018-09-21.

[34] 骆浩, 夏永高, 刘兆平. 一种非水电解液及其制备方法以及一种锂二次电池. CN: CN105428720B, 2018-04-13.

[35] 杨光华, 夏永高, 刘兆平. 电解液与锂离子电池. CN: CN107808981A, 2018-03-16.

[36] 骆浩, 夏永高, 刘兆平. 一种二氟磷酸盐的制备方法. CN: CN105731412B, 2018-02-23.

[37] 夏永高, 王梅梅, 程亚军. 一种柔性集流体及其制备方法和应用. CN: CN105140047B, 2018-02-16.

[38] 张可利, 杨正东, 夏永高, 刘兆平. 一种锂离子电池负极材料、其制备方法及锂离子电池. CN: CN105489868B, 2018-02-02.

[39] 刘兆平, 夏永高, 陈立鹏. 锂离子电池、正极材料及其制备方法. CN: CN103474663B, 2018-01-23.

[40] 沈成绪, 傅儒生, 夏永高, 刘兆平. 氧化硅基碳复合负极材料、其制备方法及锂离子电池. CN: CN107317006A, 2017-11-03.

[41] 潘凌超, 夏永高, 刘兆平. 一种富锂锰基正极材料、其制备方法及锂离子电池. CN: CN104966831B, 2017-08-08.

[42] 秦来芬, 夏永高, 刘兆平. 一种单相正极材料、其制备方法及锂离子电池. CN: CN106784808A, 2017-05-31.

[43] 夏兰, 夏永高, 刘兆平. 非水电解液与锂离子电池. CN: CN103972588B, 2017-02-01.

[44] 傅儒生, 杨正东, 张可利, 夏永高, 刘兆平. 一种硅氧烯材料、硅基氧化物的制备方法及负极材料. CN: CN106058232A, 2016-10-26.

[45] 刘兆平, 夏永高, 赛喜雅勒图. 锂离子电池正极材料及其制备方法. CN: CN104091918B, 2016-08-24.

[46] 石俊黎, 夏永高, 刘兆平. 一种多孔隔膜、其制备方法及锂离子电池. CN: CN104051687B, 2016-08-17.

[47] 韩琪, 张一鸣, 刘兆平, 袁国霞, 夏永高. 一种两相反应材料和单相反应材料混合的放电曲线计算方法. CN: CN103792497B, 2016-06-29.

[48] 石俊黎, 夏永高, 刘兆平. 一种隔膜及其制备方法. CN: CN103779527B, 2016-06-29.

[49] 魏臻, 夏永高, 刘兆平. 一种以富锂锰基固溶体材料为正极的电池的应用方法. CN: CN103647115B, 2016-05-11.

[50] 石俊黎, 夏永高, 刘兆平, 杨光华. 一种电解液以及锂离子电池. CN: CN105552430A, 2016-05-04.

[51] 夏永高, 刘兆平, 赛喜雅勒图. 尖晶石镍锰基氧化物正极材料及其制备方法. CN: CN102683668B, 2016-04-13.

[52] 夏兰, 夏永高, 刘兆平, 胡华胜. 一种电解液. CN: CN103762380B, 2016-03-02.

[53] 夏永高, 石俊黎, 刘兆平. 陶瓷隔膜及其制备方法. CN: CN105206779A, 2015-12-30.

[54] 裴晓英, 李志虎, 夏永高, 刘兆平. 一种锂离子电池负极材料、其制备方法及锂离子电池. CN: CN103346325B, 2015-12-23.

[55] 裴晓英, 李志虎, 夏永高, 刘兆平. 锂离子电池负极材料及其制备方法、锂离子电池. CN: CN103346293B, 2015-11-25.

[56] 夏永高, 刘兆平, 陈立鹏. 一种锂离子电池正极材料、其制备方法和锂离子电池. CN: CN102856552B, 2015-11-25.

[57] 刘兆平, 夏永高, 周旭峰. 无机纳米粒子合成用水热反应装置. CN: CN102671577B, 2015-10-14.

[58] 刘兆平, 夏永高, 陈立鹏. 一种磷酸锰锂正极材料及其制备方法. CN: CN103413943B, 2015-06-17.

[59] 夏永高, 刘兆平, 赛喜雅勒图. 一种锂锰铝氧正极材料及其制备方法. CN: CN102683667B, 2015-04-29.

[60] 夏永高, 邱报, 刘兆平. 富锂锰基正极材料及其制备方法. 中国: CN104466157A, 2015-03-25.

[61] 夏永高, 陈立鹏, 刘兆平. 一种锂离子电池正极材料及其制备方法和锂离子电池. CN: CN102386392B, 2015-02-11.

[62] 夏永高, 刘兆平, 袁国霞. 镍钴锰氢氧化物前驱体及其制备方法. CN: CN102916177B, 2014-12-24.

[63] 刘兆平, 夏永高, 赛喜雅勒图. 改性锰酸锂正极材料及其制备方法. CN: CN102694167B, 2014-12-24.

[64] 刘兆平, 夏永高, 赛喜雅勒图. 一种包覆改性的锰酸锂正极材料及其制备方法. CN: CN102569807B, 2014-11-26.

[65] 刘元状, 夏永高, 刘兆平. 纳米片状MnO 2 -石墨烯复合材料、其制备方法及超级电容器. 中国: CN103641174A, 2014-03-19.

[66] 刘兆平, 张明浩, 夏永高, 袁国霞. 基于过渡金属碳酸盐前驱体的锂离子电池正极材料制备方法. CN: CN102299324B, 2014-03-12.

[67] 石俊黎, 夏永高, 刘兆平, 胡华胜. 一种隔膜及其制备方法. CN: CN103618058A, 2014-03-05.

[68] 李志虎, 裴晓英, 夏永高, 刘兆平. 锂离子电池负极材料及其制备方法. 中国: CN103346324A, 2013-10-09.

[69] 张茜, 刘娟娟, 夏永高, 刘兆平. 一种富锂锰基正极材料及其制备方法. 中国: CN103137963A, 2013-06-05.

[70] 赛喜雅勒图, 刘兆平, 夏永高. 一种高电压镍锰酸锂正极材料及其制备方法. 中国: CN102969498A, 2013-03-13.

[71] 刘兆平, 夏永高, 陈立鹏. 一种锂离子电池正极材料的制备方法. CN: CN101834287B, 2012-12-26.

[72] 夏永高, 刘兆平, 赛喜雅勒图. 锂离子电池正极材料、其制备方法及锂离子电池. 中国: CN102800840A, 2012-11-28.

[73] 夏永高, 刘兆平, 陈立鹏, 张明浩. 一种磷酸锰锂正极材料及其制备方法. 中国: CN102694168A, 2012-09-26.

[74] 刘兆平, 夏永高, 陈立鹏. 一种锂离子电池正极材料制备方法. CN: CN102664259A, 2012-09-12.

出版信息

   
发表论文
[1] Zhu, Bingying, Zheng, Tianle, Xiong, Jianwei, Shi, Xiaotang, Cheng, YaJun, Xia, Yonggao. A Lithium-Ion Battery Cathode with Enhanced Wettability toward an Electrolyte Fabricated by a Fast Light Curing of Photoactive Slurry. ENERGY & FUELS[J]. 2022, 36(6): 3313-3318, [2] Ziyin Guo, Xiaosong Zhang, Mengyuan Wang, Siqi Shi, YaJun Cheng, Yonggao Xia. Protective and ion conductive: High-Rate Ni-Rich cathode with enhanced cyclic stability via One-Step bifunctional dual-layer coating. Chemical Engineering Journal[J]. 2022, 431: [3] Liu Laihao, Zuo, Xiuxia, Cheng Yajun, Xia Yonggao. In Situ Synthesis and Dual Functionalization of Nano Silicon Enabled by a Semisolid Lithium Rechargeable Flow Battery. Acs Applied Materials & Interfaces[J]. 2022, [4] Wang, Xiaoyan, Cheng, YaJun, Liang, Suzhe, Ji, Qing, Zhu, Jin, Xia, Yonggao. Ultrafine SnO2/Sn Nanoparticles Embedded into an In Situ Generated Meso-/Macroporous Carbon Matrix with a Tunable Pore Size. LANGMUIR[J]. 2022, 38(5): 1689-1697, [5] Liu, Xiang, Wang, Mengmeng, Deng, Longping, Cheng, YaJun, Gao, Jie, Xia, Yonggao. Direct Regeneration of Spent Lithium Iron Phosphate via a Low-Temperature Molten Salt Process Coupled with a Reductive Environment. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH[J]. 2022, 61(11): 3831-3839, [6] Qi, Ruoxuan, Yang, Chao, Ma, Liujia, Fan, Xiaoying, Wu, Qiaoyun, Wang, Chao, Cheng, YaJun, Guo, Kunkun, Gao, Yanfeng, Xia, Yonggao. Less is more: tiny amounts of insoluble multi-functional nanoporous additives play a big role in lithium secondary batteries. JOURNAL OF MATERIALS CHEMISTRY A[J]. 2022, 10(14): 8047-8058, http://dx.doi.org/10.1039/d1ta10134j.
[7] Liang, Suzhe, Cheng, YaJun, Wang, Xiaoyan, Xu, Zhuijun, Ma, Liujia, Xu, Hewei, Ji, Qing, Zuo, Xiuxia, MuellerBuschbaum, Peter, Xia, Yonggao. Impact of CO2 activation on the structure, composition, and performance of Sb/C nanohybrid lithium/sodium-ion battery anodes. NANOSCALE ADVANCES[J]. 2021, 3(7): 1942-1953, https://www.webofscience.com/wos/woscc/full-record/WOS:000637218000013.
[8] Wan, Juanyong, Wen, Rongjiang, Xia, Yonggao, Dai, Mingzhi, Huang, Huihui, Xue, Lingwei, Zhang, Zhiguo, Fang, Junfeng, Hui, Kwun Nam, Fan, Xi. All annealing-free solution-processed highly flexible organic solar cells. JOURNAL OF MATERIALS CHEMISTRY A[J]. 2021, 9(9): 5425-5433, http://dx.doi.org/10.1039/d0ta11831a.
[9] Xiong, Jianwei, Zheng, Tianle, Cheng, YaJun, Sun, Jialong, Cao, Ruiguo, Xia, Yonggao. Sulfur is a New High-Performance Additive toward High-Voltage LiNi0.5Co0.2Mn0.3O2 Cathode: Tiny Amount, Huge Impact. ACS APPLIED MATERIALS & INTERFACES[J]. 2021, 13(16): 18648-18657, http://dx.doi.org/10.1021/acsami.1c00391.
[10] Zheng, Tianle, Xiong, Jianwei, Shi, Xiaotang, Zhu, Bingying, Cheng, YaJun, Zhao, Hongbin, Xia, Yonggao. Cocktail therapy towards high temperature/high voltage lithium metal battery via solvation sheath structure tuning. ENERGY STORAGE MATERIALS[J]. 2021, 38: 599-608, http://dx.doi.org/10.1016/j.ensm.2021.04.002.
[11] Xiuxia Zuo, YaJun Cheng, Jin Zhu, Jie Gao, Yonggao Xia. Porous silicon derived from 130nm Stöber silica as lithium‐ion battery anode. Nano Select[J]. 2021, 2(8): 1554-1565, [12] Longping Deng, Zhuijun Xu, Mengmeng Wang, Huajian Shentu, Xiang Liu, Jianwei Xiong, Ya-Jun Cheng, Chao Wang, Mingjiong Zhou, 高洁, 夏永高. CO2 treatment enables non-hazardous, reliable, and efficacious recovery of spent Li(Ni0.5Co0.2Mn0.3)O2 cathodes. Green Chemistry[J]. 2021, 24(2): 779-789, [13] Shi, Xiaotang, Zheng, Tianle, Xiong, Jianwei, Zhu, Bingying, Cheng, YaJun, Xia, Yonggao. Stable Electrode/Electrolyte Interface for High-Voltage NCM 523 Cathode Constructed by Synergistic Positive and Passive Approaches. ACS APPLIED MATERIALS & INTERFACES[J]. 2021, 13(48): 57107-57117, [14] Zheng, Tianle, Xiong, Jianwei, Zhu, Bingying, Shi, Xiaotang, Cheng, YaJun, Zhao, Hongbin, Xia, Yonggao. From-20 degrees C to 150 degrees C: a lithium secondary battery with a wide temperature window obtained via manipulated competitive decomposition in electrolyte solution dagger. JOURNAL OF MATERIALS CHEMISTRY A[J]. 2021, 9(14): 9307-9318, http://dx.doi.org/10.1039/d1ta00895a.
[15] 姬青, 徐隹军, 杲祥文, 程亚军, 王晓艳, 左秀霞, 陈政, 胡斌杰, 朱锦, Peter, GBruce, 夏永高. 通过构筑嵌覆型碳结构提升Nb_(2)O_(5)的储锂性能. 中国科学:材料科学(英文版)[J]. 2021, 64(5): 1071-1086, http://lib.cqvip.com/Qikan/Article/Detail?id=7104326663.
[16] Ban, Jianzhen, Wang, Xiaoyan, Yin, Shanshan, Cheng, YaJun, Ji, Lianmin, MuellerBuschbaum, Peter, Gao, Jie, Xia, Yonggao. Super-Small TiO2 Nanoparticles Homogeneously Embedded in Mesoporous Carbon Matrix Based on Dental Methacrylates and KOH Activation. CHEMISTRYSELECT[J]. 2021, 6(7): 1508-1518, http://dx.doi.org/10.1002/slct.202004770.
[17] Ji, Qing, Xu, Zhuijun, Gao, Xiangwen, Cheng, YaJun, Wan, Xiaoyan, Zuo, Xiuxia, Chen, George Z, Hu, Binjie, Zhu, Jin, Bruce, Peter G, Xia, Yonggao. Carbon-emcoating architecture boosts lithium storage of Nb2O5. SCIENCE CHINA-MATERIALS[J]. 2021, 64(5): 1071-1086, http://dx.doi.org/10.1007/s40843-020-1532-0.
[18] Xie, Shuang, Ji, Qing, Xia, Yonggao, Fang, Kai, Wang, Xiaoyan, Zuo, Xiuxia, Cheng, YaJun. Mutual Performance Enhancement within Dual N-doped TiO2/Si/C Nanohybrid Lithium-Ion Battery Anode. CHEMISTRYSELECT[J]. 2021, 6(2): 141-153, https://www.webofscience.com/wos/woscc/full-record/WOS:000607604000001.
[19] Shentu, Huajian, Xiang, Bo, Cheng, YaJun, Dong, Tao, Gao, Jie, Xia, Yonggao. A fast and efficient method for selective extraction of lithium from spent lithium iron phosphate battery. ENVIRONMENTAL TECHNOLOGY & INNOVATION[J]. 2021, 23: http://dx.doi.org/10.1016/j.eti.2021.101569.
[20] Zuo, Xiuxia, Wen, Yi, Qiu, Yike, Cheng, YaJun, Yin, Shanshan, Ji, Qing, You, Zhong, Zhu, Jin, MuellerBuschbaum, Peter, Ma, Lifeng, Bruce, Peter G, Xia, Yonggao. Rational Design and Mechanical Understanding of Three-Dimensional Macro-/Mesoporous Silicon Lithium-Ion Battery Anodes with a Tunable Pore Size and Wall Thickness. ACS APPLIED MATERIALS & INTERFACES[J]. 2020, 12(39): 43785-43797, https://www.webofscience.com/wos/woscc/full-record/WOS:000577111700045.
[21] Wen, Rongjiang, Xia, Yonggao, Huang, Huihui, Wen, Shuangchun, Wang, Jinzhao, Fang, JunFeng, Fan, Xi. Boosted efficiency of conductive metal oxide-free pervoskite solar cells using poly(3-(4-methylamincarboxylbutyl)thiophene) buffer layers. JOURNAL OF PHYSICS D-APPLIED PHYSICS[J]. 2020, 53(28): https://www.webofscience.com/wos/woscc/full-record/WOS:000536087800001.
[22] Liang, Suzhe, Cheng, YaJun, Zhu, Jin, Xia, Yonggao, MuellerBuschbaum, Peter. A Chronicle Review of Nonsilicon (Sn, Sb, Ge)-Based Lithium/Sodium-Ion Battery Alloying Anodes. SMALL METHODSnull. 2020, 4(8): https://www.webofscience.com/wos/woscc/full-record/WOS:000531353100001.
[23] Fan, Xi, Wen, Rongjiang, Xia, Yonggao, Wang, Jinzhao, Liu, Xiaohui, Huang, Huihui, Li, Yuan, Zhu, Weiya, Cheng, Yajun, Ma, Liujia, Fang, Junfeng, Tsai, Hsinhan, Nie, Wanyi. Vacuum-Free, All-Solution, and All-Air Processed Organic Photovoltaics with over 11% Efficiency and Promoted Stability Using Layer-by-Layer Codoped Polymeric Electrodes. SOLAR RRL[J]. 2020, 4(6): https://www.webofscience.com/wos/woscc/full-record/WOS:000530147700001.
[24] Ma, Liujia, Meng, Jianqiang, Pan, Ying, Cheng, YaJun, Ji, Qing, Zuo, Xiuxia, Wang, Xiaoyan, Zhu, Jin, Xia, Yonggao. Microporous Binder for the Silicon-Based Lithium-Ion Battery Anode with Exceptional Rate Capability and Improved Cyclic Performance. LANGMUIR[J]. 2020, 36(8): 2003-2011, https://www.webofscience.com/wos/woscc/full-record/WOS:000518234900018.
[25] Wang, Xiaoyan, Cheng, YaJun, Ji, Qing, Liang, Suzhe, Ma, Liujia, Xu, Zhuijun, Zuo, Xiuxia, Meng, JianQiang, Zhu, Jin, MuellerBuschbaum, Peter, Xia, Yonggao. In Situ Incorporation of Super-Small Metallic High Capacity Nanoparticles and Mesoporous Structures for High-Performance TiO2/SnO2/Sn/Carbon Nanohybrid Lithium-Ion Battery Anodes. ENERGY TECHNOLOGY[J]. 2020, 8(6): https://www.webofscience.com/wos/woscc/full-record/WOS:000527408500001.
[26] Ma, Liujia, Meng, JianQiang, Cheng, YaJun, Gao, Jie, Wang, Xiaoyan, Ji, Qing, Wang, Meimei, Zuo, Xiuxia, Zhu, Jin, Xia, Yonggao. Epoxy Resin Enables Facile Scalable Synthesis of CuO/C Nanohybrid Lithium-Ion Battery Anode with Enhanced Electrochemical Performance. CHEMISTRYSELECT[J]. 2020, 5(18): 5479-5487, https://www.webofscience.com/wos/woscc/full-record/WOS:000532796500015.
[27] Ma, Liujia, Meng, JianQiang, Cheng, YaJun, Ji, Qing, Zuo, Xiuxia, Wang, Xiaoyan, Zhu, Jin, Xia, Yonggao. Poly(siloxane imide) Binder for Silicon-Based Lithium-Ion Battery Anodes via Rigidness/Softness Coupling. CHEMISTRY-AN ASIAN JOURNAL[J]. 2020, 15(17): 2674-2680, https://www.webofscience.com/wos/woscc/full-record/WOS:000548861400001.
[28] Guo, Haocheng, Wei, Zhen, Jia, Kai, Qiu, Bao, Yin, Chong, Meng, Fanqi, Zhang, Qinghua, Gu, Lin, Han, Shaojie, Liu, Yan, Zhao, Hu, Jiang, Wei, Cui, Hongfu, Xia, Yonggao, Liu, Zhaoping. Abundant nanoscale defects to eliminate voltage decay in Li-rich cathode materials. ENERGY STORAGE MATERIALS[J]. 2019, 16: 220-227, http://dx.doi.org/10.1016/j.ensm.2018.05.022.
[29] Wang, Xiaoyan, Zhao, Dong, Wang, Chao, Xia, Yonggao, Jiang, Wenshuai, Xia, Senlin, Yin, Shanshan, Zuo, Xiuxia, Metwalli, Ezzeldin, Xiao, Ying, Sun, Zaicheng, Zhu, Jin, MuellerBuschbaum, Peter, Cheng, YaJun. Role of Nickel Nanoparticles in High-Performance TiO2/Ni/Carbon Nanohybrid Lithium/Sodium-Ion Battery Anodes. CHEMISTRY-AN ASIAN JOURNAL[J]. 2019, 14(9): 1557-1569, https://www.webofscience.com/wos/woscc/full-record/WOS:000470179400031.
[30] Fan, Xi, Nie, Wanyi, Tsai, Hsinhan, Wang, Naixiang, Huang, Huihui, Cheng, Yajun, Wen, Rongjiang, Ma, Liujia, Yan, Feng, Xia, Yonggao. PEDOT:PSS for Flexible and Stretchable Electronics: Modifications, Strategies, and Applications. ADVANCED SCIENCEnull. 2019, 6(19): https://doaj.org/article/f440b5c99d504a8d81e1245fc063ffd7.
[31] Zhang, Guohua, Qiu, Bao, Xia, Yonggao, Wang, Xiaolan, Gu, Qingwen, Jiang, Yabei, He, Zhilong, Liu, Zhaoping. Double-helix-superstructure aqueous binder to boost excellent electrochemical performance in Li-rich layered oxide cathode. JOURNAL OF POWER SOURCES[J]. 2019, 420: 29-37, http://dx.doi.org/10.1016/j.jpowsour.2019.02.086.
[32] Cui, Hongfu, Yin, Chong, Xia, Yonggao, Wei, Chenggang, Jiang, Wei, Sun, Jie, Qiu, Bao, Zhu, Mingyuan, Liu, Zhaoping. Synergy effects on blending Li-rich and classical layered cathode oxides with improved electrochemical performance. CERAMICS INTERNATIONAL[J]. 2019, 45(12): 15097-15107, http://dx.doi.org/10.1016/j.ceramint.2019.04.250.
[33] Jiang, Wei, Yin, Chong, Xia, Yonggao, Qiu, Bao, Guo, Haocheng, Cui, Hongfu, Hu, Fang, Liu, Zhaoping. Understanding the Discrepancy of Defect Kinetics on Anionic Redox in Lithium-Rich Cathode Oxides. ACS APPLIED MATERIALS & INTERFACES[J]. 2019, 11(15): 14023-14034, https://www.webofscience.com/wos/woscc/full-record/WOS:000465189000021.
[34] Wang, Xiaoyan, Xia, Yonggao, Zuo, Xiuxia, Schaper, Simon J, Yin, Shanshan, Ji, Qing, Liang, Suzhe, Yang, Zhaohui, Xia, Senlin, Xiao, Ying, Zhu, Jin, MuellerBuschbaum, Peter, Cheng, YaJun. Synergistic effects from super-small sized TiO2 and SiOx nanoparticles within TiO2/SiOx/carbon nanohybrid lithium-ion battery anode. CERAMICS INTERNATIONAL[J]. 2019, 45(11): 14327-14337, http://dx.doi.org/10.1016/j.ceramint.2019.04.147.
[35] Zuo, Xiuxia, Wang, Xiaoyan, Xia, Yonggao, Yin, Shanshan, Ji, Qing, Yang, Zhaohui, Wang, Meimei, Zheng, Xiaofang, Qiu, Bao, Liu, Zhaoping, Zhu, Jin, MuellerBuschbaum, Peter, Cheng, YaJun. Silicon/carbon lithium-ion battery anode with 3D hierarchical macro-/mesoporous silicon network: Self-templating synthesis via magnesiothermic reduction of silica/carbon composite. JOURNAL OF POWER SOURCES[J]. 2019, 412: 93-104, http://dx.doi.org/10.1016/j.jpowsour.2018.11.039.
[36] Ji, Qing, Gao, Xiangwen, Zhang, Qiuju, Jin, Liyu, Wang, Da, Xia, Yonggao, Yin, Shanshan, Xia, Senlin, Hohn, Nuri, Zuo, Xiuxia, Wang, Xiaoyan, Xie, Shuang, Xu, Zhuijun, Ma, Liujia, Chen, Liang, Chen, George Z, Zhu, Jin, Hu, Binjie, MuellerBuschbaum, Peter, Bruce, Peter G, Cheng, YaJun. Dental Resin Monomer Enables Unique NbO2/Carbon Lithium-Ion Battery Negative Electrode with Exceptional Performance. ADVANCED FUNCTIONAL MATERIALS[J]. 2019, 29(43): http://dx.doi.org/10.1002/adfm.201904961.
[37] Wang, Xiaoyan, Ma, Liujia, Ji, Qing, Meng, JianQiang, Liang, Suzhe, Xu, Zhuijun, Wang, Meimei, Zuo, Xiuxia, Xiao, Ying, Zhu, Jin, Xia, Yonggao, MuellerBuschbaum, Peter, Cheng, YaJun. MnO/Metal/Carbon Nanohybrid Lithium-Ion Battery Anode With Enhanced Electrochemical Performance: Universal Facile Scalable Synthesis and Fundamental Understanding. ADVANCED MATERIALS INTERFACES[J]. 2019, 6(12): https://www.webofscience.com/wos/woscc/full-record/WOS:000477979500003.
[38] Dai, Wenhui, Dong, Ning, Xia, Yonggao, Chen, Shiqing, Luo, Hao, Liu, Yuewen, Liu, Zhaoping. Localized concentrated high-concentration electrolyte enhanced stability and safety for high voltage Li-ion batteries. ELECTROCHIMICA ACTA[J]. 2019, 320: http://dx.doi.org/10.1016/j.electacta.2019.134633.
[39] Shen, Chengxu, Fu, Rusheng, Guo, Haocheng, Wu, Yongkang, Fan, Chongzhao, Xia, Yonggao, Liu, Zhaoping. Scalable synthesis of Si nanowires interconnected SiOx anode for high performance lithium-ion batteries. JOURNAL OF ALLOYS AND COMPOUNDS[J]. 2019, 783: 128-135, http://dx.doi.org/10.1016/j.jallcom.2018.12.291.
[40] Dong, Ning, Luo, Hao, Xia, Yonggao, Guo, Haocheng, Fu, Rusheng, Liu, Zhaoping. Confining Al-Li alloys between pre-constructed conductive buffers for advanced aluminum anodes. CHEMICAL COMMUNICATIONS[J]. 2019, 55(16): 2352-2355, [41] 赛喜雅勒图, 王雪莹, 顾庆文, 夏永高, 刘兆平, 何杰. 非化学计量比调控高电压尖晶石正极材料电化学性能研究. 无机材料学报. 2018, 33(9): 993-1000, http://lib.cqvip.com/Qikan/Article/Detail?id=676387520.
[42] Dong, Ning, Yang, Guanghua, Luo, Hao, Xu, Hewei, Xia, Yonggao, Liu, Zhaoping. A LiPO2F2/LiFSI dual-salt electrolyte enabled stable cycling of lithium metal batteries. JOURNAL OF POWER SOURCES[J]. 2018, 400: 449-456, http://dx.doi.org/10.1016/j.jpowsour.2018.08.059.
[43] 张小颂, 夏永高. 锂离子电池电解液的安全性研究进展. 储能科学与技术. 2018, 7(6): 1016-1029, http://lib.cqvip.com/Qikan/Article/Detail?id=676562314.
[44] Shen, Chengxu, Fu, Rusheng, Xia, Yonggao, Liu, Zhaoping. New perspective to understand the effect of electrochemical prelithiation behaviors on silicon monoxide. RSC ADVANCES[J]. 2018, 8(26): 14473-14478, http://ir.nimte.ac.cn/handle/174433/16910.
[45] 杨光华, 夏兰, 夏永高, 刘丽, 刘兆平. 锂离子电池中SEI膜的研究进展. 电源技术[J]. 2018, 42(12): 1918-1921,1932, http://lib.cqvip.com/Qikan/Article/Detail?id=7001043294.
[46] Lee SaiXi, Wang XueYin, Gu QingWen, Xia YongGao, Liu ZhaoPing, He Jie. Tuning Electrochemical Performance through Non-stoichiometric Compositions in High-voltage Spinel Cathode Materials. JOURNAL OF INORGANIC MATERIALS[J]. 2018, 33(9): 993-1000, http://ir.nimte.ac.cn/handle/174433/17190.
[47] Yin, Shanshan, Zhao, Dong, Ji, Qing, Xia, Yonggao, Xia, Senlin, Wang, Xinming, Wang, Meimei, Ban, Jianzhen, Zhang, Yi, Metwalli, Ezzeldin, Wang, Xiaoyan, Xiao, Ying, Zuo, Xiuxia, Xie, Shuang, Fang, Kai, Liang, Suzhe, Zheng, Luyao, Qiu, Bao, Yang, Zhaohui, Lin, Yichao, Chen, Liang, Wang, Cundong, Liu, Zhaoping, Zhu, Jin, MuellerBuschbaum, Peter, Cheng, YaJun. Si/Ag/C Nanohybrids with in Situ Incorporation of Super-Small Silver Nanoparticles: Tiny Amount, Huge Impact. ACS NANO[J]. 2018, 12(1): 861-875, http://ir.nimte.ac.cn/handle/174433/16925.
[48] Xu, Hewei, Shi, Junli, Hu, Guosheng, He, Ying, Xia, Yonggao, Yin, Shanshan, Liu, Zhaoping. Hybrid electrolytes incorporated with dandelion-like silane Al2O3 nanoparticles for high-safety high-voltage lithium ion batteries. JOURNAL OF POWER SOURCES[J]. 2018, 391: 113-119, http://dx.doi.org/10.1016/j.jpowsour.2018.04.060.
[49] Fu, Rusheng, Chang, Zhenzhen, Shen, Chengxu, Guo, Haocheng, Huang, Heran, Xia, Yonggao, Liu, Zhaoping. Surface oxo-functionalized hard carbon spheres enabled superior high-rate capability and long-cycle stability for Li-ion storage. ELECTROCHIMICA ACTA[J]. 2018, 260: 430-438, http://dx.doi.org/10.1016/j.electacta.2017.12.043.
[50] Guo, Haocheng, Jia, Kai, Han, Shaojie, Zhao, Hu, Qiu, Bao, Xia, Yonggao, Liu, Zhaoping. Ultrafast Heterogeneous Nucleation Enables a Hierarchical Surface Configuration of Lithium-Rich Layered Oxide Cathode Material for Enhanced Electrochemical Performances. ADVANCED MATERIALS INTERFACES[J]. 2018, 5(11): http://ir.nimte.ac.cn/handle/174433/17405.
[51] Zheng, Luyao, Wang, Xiaoyan, Xia, Yonggao, Xia, Senlin, Metwalli, Ezzeldin, Qiu, Bao, Ji, Qing, Yin, Shanshan, Xie, Shuang, Fang, Kai, Liang, Suzhe, Wang, Meimei, Zuo, Xiuxia, Xiao, Ying, Liu, Zhaoping, Zhu, Jin, MuellerBuschbaum, Peter, Cheng, YaJun. Scalable in Situ Synthesis of Li4Ti5O12/Carbon Nanohybrid with Supersmall Li4Ti5O12 Nanoparticles Homogeneously Embedded in Carbon Matrix. ACS APPLIED MATERIALS & INTERFACES[J]. 2018, 10(3): 2591-2602, http://ir.nimte.ac.cn/handle/174433/16862.
[52] Liang, SuZhe, Wang, XiaoYan, Xia, YongGao, Xia, SenLin, Metwalli, Ezzeldin, Qiu, Bao, Ji, Qing, Yin, ShanShan, Xie, Shuang, Fang, Kai, Zheng, LuYao, Wang, MeiMei, Zuo, XiuXia, Li, RuJiang, Liu, ZhaoPing, Zhu, Jin, MuellerBuschbaum, Peter, Cheng, YaJun. Scalable Synthesis of Hierarchical Antimony/Carbon Micro-/Nanohybrid Lithium/Sodium-Ion Battery Anodes Based on Dimethacrylate Monomer. ACTA METALLURGICA SINICA-ENGLISH LETTERS[J]. 2018, 31(9): 910-922, http://lib.cqvip.com/Qikan/Article/Detail?id=676140748.
[53] Yin, Shanshan, Ji, Qing, Zuo, Xiuxia, Xie, Shuang, Fang, Kai, Xia, Yonggao, Li, Jinlong, Qiu, Bao, Wang, Meimei, Ban, Jianzhen, Wang, Xiaoyan, Zhang, Yi, Xiao, Ying, Zheng, Luyao, Liang, Suzhe, Liu, Zhaoping, Wang, Cundong, Cheng, YaJun. Silicon lithium-ion battery anode with enhanced performance: Multiple effects of silver nanoparticles. JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY[J]. 2018, 34(10): 1902-1911, http://lib.cqvip.com/Qikan/Article/Detail?id=676492639.
[54] Zuo, Xiuxia, Xia, Yonggao, Ji, Qing, Gao, Xiang, Yin, Shanshan, Wang, Meimei, Wang, Xiaoyan, Qiu, Bao, Wei, Anxiang, Sun, Zaicheng, Liu, Zhaoping, Zhu, Jin, Cheng, YaJun. Self-Templating Construction of 3D Hierarchical Macro-/Mesoporous Silicon from OD Silica Nanoparticles. ACS NANO[J]. 2017, 11(1): 889-899, http://ir.nimte.ac.cn/handle/174433/14108.
[55] Li, Dan, Shi, Dingqin, Xia, Yonggao, Qiao, Lin, Li, Xianfeng, Zhang, Huamin. Superior Thermally Stable and Nonflammable Porous Polybenzimidazole Membrane with High Wettability for High-Power Lithium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES[J]. 2017, 9(10): 8742-8750, http://ir.nimte.ac.cn/handle/174433/13935.
[56] Zhang, Keli, Xia, Yonggao, Yang, Zhengdong, Fu, Rusheng, Shen, Chengxu, Liu, Zhaoping. Structure-preserved 3D porous silicon/reduced graphene oxide materials as anodes for Li-ion batteries. RSC ADVANCES[J]. 2017, 7(39): 24305-24311, http://ir.nimte.ac.cn/handle/174433/14090.
[57] Fu, Rusheng, Zhang, Keli, Zaccaria, Remo Proietti, Huang, Heran, Xia, Yonggao, Liu, Zhaoping. Two-dimensional silicon suboxides nanostructures with Si nanodomains confined in amorphous SiO2 derived from siloxene as high performance anode for Li-ion batteries. NANO ENERGY[J]. 2017, 39: 546-553, http://dx.doi.org/10.1016/j.nanoen.2017.07.040.
[58] Yang, Liangtao, Xia, Yonggao, Fan, Xu, Qin, Laifen, Qiu, Bao, Liu, Zhaoping. Constructing durable carbon layer on LiMn0.8Fe0.2PO4 with superior long-term cycling performance for lithium-ion battery. ELECTROCHIMICA ACTA[J]. 2016, 191: 200-206, http://dx.doi.org/10.1016/j.electacta.2016.01.069.
[59] Cheng, Ting, Zhang, Guoqiang, Xia, Yonggao, Sun, Zaicheng, Yang, Zhaohui, Liu, Rui, Xia, Senlin, Metwalli, Ezzeldin, Xiao, Ying, Wang, Xiaoyan, Wang, Meimei, Ban, Jianzhen, Yang, Liangtao, Ji, Qing, Qiu, Bao, Chen, Guoxin, Chen, Huifeng, Lin, Yichao, Pei, Xiaoying, Wu, Qiang, Meng, JianQiang, Liu, Zhaoping, Chen, Liang, Xiao, Tonghu, Sun, LingDong, Yan, ChunHua, Butt, Hans Juergen, MuellerBuschbaum, Peter, Cheng, YaJun. Porous titania/carbon hybrid microspheres templated by in situ formed polystyrene colloids (vol 469, pg 242, 2016). JOURNAL OF COLLOID AND INTERFACE SCIENCEnull. 2016, 477: 230-230, http://ir.nimte.ac.cn/handle/174433/12886.
[60] Cheng, Ting, Zhang, Guoqiang, Xia, Yonggao, Ji, Qing, Xiao, Ying, Wang, Xiaoyan, Wang, Meimei, Liu, Rui, Qiu, Bao, Chen, Guoxin, Chen, Huifeng, Sun, Zaicheng, Meng, JianQiang, Liu, Zhaoping, Xiao, Tonghu, Sun, LingDong, Yan, ChunHua, Cheng, YaJun. Template-free synthesis of titania architectures with controlled morphology evolution. JOURNAL OF MATERIALS SCIENCE[J]. 2016, 51(8): 3941-3956, http://ir.ciomp.ac.cn/handle/181722/56885.
[61] 夏永高, 刘兆平. 锂离子电池高容量富锂锰基正极材料研究进展. 储能科学与技术. 2016, 384-387, http://lib.cqvip.com/Qikan/Article/Detail?id=668766104.
[62] 王国华, 夏永高, 刘兆平. 锂离子电池富锂锰基正极材料专利技术分析. 储能科学与技术. 2016, 388-395, http://lib.cqvip.com/Qikan/Article/Detail?id=668766105.
[63] Wang, Meimei, Xia, Yonggao, Wang, Xiaoyan, Xiao, Ying, Liu, Rui, Wu, Qiang, Qiu, Bao, Metwalli, Ezzeldin, Xia, Senlin, Yao, Yuan, Chen, Guoxin, Liu, Yan, Liu, Zhaoping, Meng, JianQjang, Yang, Zhaohui, Sun, LingDong, Yan, ChunHua, MuellerBuschbaum, Peter, Pan, Jing, Cheng, YaJun. Silicon Oxycarbide/Carbon Nanohybrids with Tiny Silicon Oxycarbide Particles Embedded in Free Carbon Matrix Based on Photoactive Dental Methacrylates. ACS APPLIED MATERIALS & INTERFACES[J]. 2016, 8(22): 13982-13992, https://www.webofscience.com/wos/woscc/full-record/WOS:000377642100037.
[64] Cheng, Ting, Zhang, Guoqiang, Xia, Yonggao, Sun, Zaicheng, Yang, Zhaohui, Liu, Rui, Xiao, Ying, Wang, Xiaoyan, Wang, Meimei, Ban, Jianzhen, Yang, Liangtao, Ji, Qing, Qiu, Bao, Chen, Guoxin, Chen, Huifeng, Lin, Yichao, Pei, Xiaoying, Wu, Qiang, Meng, JianQiang, Liu, Zhaoping, Chen, Liang, Xiao, Tonghu, Sun, LingDong, Yan, ChunHua, Butt, Hans Juergen, Cheng, YaJun. Porous titania/carbon hybrid microspheres templated by in situ formed polystyrene colloids. JOURNAL OF COLLOID AND INTERFACE SCIENCE[J]. 2016, 469: 242-256, http://dx.doi.org/10.1016/j.jcis.2016.02.032.
[65] Yang, Liangtao, Xia, Yonggao, Qin, Laifen, Yuan, Guoxia, Qiu, Bao, Shi, Junli, Liu, Zhaoping. Concentration-gradient LiMn0.8Fe0.2PO4 cathode material for high performance lithium ion battery. JOURNAL OF POWER SOURCES[J]. 2016, 304: 293-300, http://dx.doi.org/10.1016/j.jpowsour.2015.11.037.
[66] 胡华胜, 肖锋, 刘兆平, 秦来芬, 夏永高, 陈立鹏. Research Status and Application Prospects of LiMnPO_4 as A New Generation Cathode Material for Lithium-Ion Batteries. Journal of Electrochemistry[J]. 2015, 21(3): 253-267, http://ir.nimte.ac.cn/handle/174433/12736.
[67] Shi, Junli, Xia, Yonggao, Han, Shaojie, Fang, Lifeng, Pan, Meizi, Xu, Xiaoxiong, Liu, Zhaoping. Lithium ion conductive Li1.5Al0.5Ge1.5(PO4)(3) based inorganic-organic composite separator with enhanced thermal stability and excellent electrochemical performances in 5 V lithium ion batteries. JOURNAL OF POWER SOURCES[J]. 2015, 273: 389-395, http://dx.doi.org/10.1016/j.jpowsour.2014.09.105.
[68] Wei, Zhen, Zhang, Wei, Wang, Feng, Zhang, Qian, Qiu, Bao, Han, Shaojie, Xia, Yonggao, Zhu, Yimei, Liu, Zhaoping. Eliminating Voltage Decay of Lithium-Rich Li1.14Mn0.54Ni0.14Co0.14O2 Cathodes by Controlling the Electrochemical Process. CHEMISTRY-A EUROPEAN JOURNAL[J]. 2015, 21(20): 7503-7510, http://ir.nimte.ac.cn/handle/174433/12492.
[69] Qin Laifen, Xia Yonggao, Chen Lipeng, Hu Huasheng, Xiao Feng, Liu Zhaoping. Research Status and Application Prospects of LiMnPO_4 as A New Generation Cathode Material for Lithium-Ion Batteries. Journal of Electrochemistry[J]. 2015, 21(3): http://ir.nimte.ac.cn/handle/174433/12736.
[70] Xia, Lan, Xia, Yonggao, Liu, Zhaoping. Thiophene derivatives as novel functional additives for high-voltage LiCoO2 operations in lithium ion batteries. ELECTROCHIMICA ACTA[J]. 2015, 151: 429-436, http://dx.doi.org/10.1016/j.electacta.2014.11.062.
[71] Han, Shaojie, Xia, Yonggao, Wei, Zhen, Qiu, Bao, Pan, Lingchao, Gu, Qingwen, Liu, Zhaoping, Guo, Zhiyong. A comparative study on the oxidation state of lattice oxygen among Li1.14Ni0.136Co0.136Mn0.544O2, Li2MnO3, LiNi0.5Co0.2Mn0.3O2 and LiCoO2 for the initial charge-discharge. JOURNAL OF MATERIALS CHEMISTRY A[J]. 2015, 3(22): 11930-11939, http://ir.nimte.ac.cn/handle/174433/12775.
[72] Xia, Lan, Xia, Yonggao, Wang, Chuanshui, Hu, Huasheng, Lee, Saixi, Yu, Qi, Chen, Huichuang, Liu, Zhaoping. 5V-Class Electrolytes Based on Fluorinated Solvents for Li-Ion Batteries with Excellent Cyclability. CHEMELECTROCHEM[J]. 2015, 2(11): 1707-1712, http://ir.nimte.ac.cn/handle/174433/12283.
[73] Shi, Junli, Xia, Yonggao, Yuan, Zhizhang, Hu, Huasheng, Li, Xianfeng, Zhang, Huamin, Liu, Zhaoping. Porous membrane with high curvature, three-dimensional heat-resistance skeleton: a new and practical separator candidate for high safety lithium ion battery. SCIENTIFIC REPORTS[J]. 2015, 5: http://cas-ir.dicp.ac.cn/handle/321008/145946.
[74] Wang, Xiaoyan, Meng, JianQiang, Wang, Meimei, Xiao, Ying, Liu, Rui, Xia, Yonggao, Yao, Yuan, Metwalli, Ezzeldin, Zhang, Qian, Qiu, Bao, Liu, Zhaoping, Pan, Jing, Sun, LingDong, Yan, ChunHua, MuellerBuschbaum, Peter, Cheng, YaJun. Facile Scalable Synthesis of TiO2/Carbon Nanohybrids with Ultrasmall TiO2 Nanoparticles Homogeneously Embedded in Carbon Matrix. ACS APPLIED MATERIALS & INTERFACES[J]. 2015, 7(43): 24247-24255, http://ir.nimte.ac.cn/handle/174433/12277.
[75] Shi, Junli, Hu, Huasheng, Xia, Yonggao, Liu, Yuanzhuang, Liu, Zhaoping. Polyimide matrix-enhanced cross-linked gel separator with three-dimensional heat-resistance skeleton for high-safety and high-power lithium ion batteries. JOURNAL OF MATERIALS CHEMISTRY A[J]. 2014, 2(24): 9134-9141, https://www.webofscience.com/wos/woscc/full-record/WOS:000336850600024.
[76] Qin, Laifen, Xia, Yonggao, Cao, Hailiang, Luo, Linjun, Zhang, Qian, Chen, Lipeng, Liu, Zhaoping. Effects of Ti additive on the structure and electrochemical performance of LiMnPO4 cathode material. ELECTROCHIMICA ACTA[J]. 2014, 123: 240-247, http://dx.doi.org/10.1016/j.electacta.2014.01.012.
[77] Qiu, Bao, Wang, Jun, Xia, Yonggao, Wei, Zhen, Han, Shaojie, Liu, Zhaoping. Temperature dependence of the initial coulombic efficiency in Li-rich layered LiLi0.144Ni0.136Co0.136Mn0.544O-2 oxide for lithium-ions batteries. JOURNAL OF POWER SOURCES[J]. 2014, 268: 517-521, http://dx.doi.org/10.1016/j.jpowsour.2014.06.031.
[78] Qiu, Bao, Zhang, Qian, Hu, Huasheng, Wang, Jun, Liu, Juanjuan, Xia, Yonggao, Zeng, Yongfeng, Wang, Xiaolan, Liu, Zhaoping. Electrochemical investigation of Li-excess layered oxide cathode materials/mesocarbon microbead in 18650 batteries. ELECTROCHIMICA ACTA[J]. 2014, 123: 317-324, http://dx.doi.org/10.1016/j.electacta.2014.01.067.
[79] Xiao, Ying, Wang, Xiaoyan, Xia, Yonggao, Yao, Yuan, Metwalli, Ezzeldin, Zhang, Qian, Liu, Rui, Qiu, Bao, Rasool, Majid, Liu, Zhaoping, Meng, JianQiang, Sun, LingDong, Yan, ChunHua, MuellerBuschbaum, Peter, Cheng, YaJun. Green Facile Scalable Synthesis of Titania/Carbon Nanocomposites: New Use of Old Dental Resins. ACS APPLIED MATERIALS & INTERFACES[J]. 2014, 6(21): 18461-18468, https://www.webofscience.com/wos/woscc/full-record/WOS:000344978200015.
[80] Liu, Yuanzhuang, Zhang, Minghao, Xia, Yonggao, Qiu, Bao, Liu, Zhaoping, Li, Xing. One-step hydrothermal method synthesis of core shell LiNi0.5Mn1.5O4 spinel cathodes for Li-ion batteries. JOURNAL OF POWER SOURCES[J]. 2014, 256: 66-71, http://dx.doi.org/10.1016/j.jpowsour.2014.01.059.
[81] Hu, Lingjun, Qiu, Bao, Xia, Yonggao, Qin, Zhihong, Qin, Laifen, Zhou, Xufeng, Liu, Zhaoping. Solvothermal synthesis of Fe-doping LiMnPO4 nanomaterials for Li-ion batteries. JOURNAL OF POWER SOURCES[J]. 2014, 248(1): 246-252, http://dx.doi.org/10.1016/j.jpowsour.2013.09.048.
[82] Han, Shaojie, Qiu, Bao, Wei, Zhen, Xia, Yonggao, Liu, Zhaoping. Surface structural conversion and electrochemical enhancement by heat treatment of chemical pre-delithiation processed lithium-rich layered cathode material. JOURNAL OF POWER SOURCES[J]. 2014, 268: 683-691, http://dx.doi.org/10.1016/j.jpowsour.2014.06.106.
[83] Zhang, Minghao, Liu, Yuanzhuang, Xia, Yonggao, Qiu, Bao, Wang, Jun, Liu, Zhaoping. Simplified co-precipitation synthesis of spinel LiNi0.5Mn1.5O4 with improved physical and electrochemical performance. JOURNAL OF ALLOYS AND COMPOUNDS[J]. 2014, 598: 73-78, https://www.webofscience.com/wos/woscc/full-record/WOS:000333084200013.
[84] Qiu, Bao, Wang, Jun, Xia, Yonggao, Wei, Zhen, Han, Shaojie, Liu, Zhaoping. Enhanced Electrochemical Performance with Surface Coating by Reactive Magnetron Sputtering on Lithium-Rich Layered Oxide Electrodes. ACS APPLIED MATERIALS & INTERFACES[J]. 2014, 6(12): 9185-9193, https://www.webofscience.com/wos/woscc/full-record/WOS:000338184500033.
[85] Chen, Liang, Gu, Qingwen, Zhou, Xufeng, Lee, Saixi, Xia, Yonggao, Liu, Zhaoping. New-concept Batteries Based on Aqueous Li+/Na+ Mixed-ion Electrolytes. SCIENTIFIC REPORTS[J]. 2013, 3: https://www.webofscience.com/wos/woscc/full-record/WOS:000319899500008.
[86] Qiu, Bao, Wang, Jun, Xia, Yonggao, Liu, Yuanzhuang, Qin, Laifen, Yao, Xiayin, Liu, Zhaoping. Effects of Na+ contents on electrochemical properties of Li1.2Ni0.13Co0.13Mn0.54O2 cathode materials. JOURNAL OF POWER SOURCES[J]. 2013, 240(1): 530-535, http://dx.doi.org/10.1016/j.jpowsour.2013.04.047.
[87] 夏永高, 刘兆平. Morphology-control preparation and electrochemical performance of Mn-spinel cathode materials. 科学通报[J]. 2013, 3350—3356-, http://www.irgrid.ac.cn/handle/1471x/755732.
[88] Xia Yonggao, Liu Zhaoping. Synthesis and electrochemical performances of (1-x)LiMnPO4.xLi3V2(PO4)3/C composite cathode materials for lithium ion batteries. J. Power Sources[J]. 2013, 144—150-, http://www.irgrid.ac.cn/handle/1471x/755684.
[89] 赛喜雅勒图, 胡华胜, 夏永高, 肖锋, 刘兆平. Morphology-control preparation and electrochemical performance of Mn-spinel cathode materials. 科学通报[J]. 2013, 58(32): 3350—3356-, http://www.irgrid.ac.cn/handle/1471x/755732.
[90] Laifen Qin, Yonggao Xia, Bao Qiu, Hailiang Cao, Yuanzhuang Liu, Zhaoping Liu. Synthesis and electrochemical performances of (1−x)LiMnPO4·xLi3V2(PO4)3/C composite cathode materials for lithium ion batteries. Journal of Power Sources. 2013, 239: 144-150, http://dx.doi.org/10.1016/j.jpowsour.2013.03.063.
[91] Wang, Jun, Yuan, Guoxia, Zhang, Minghao, Qiu, Bao, Xia, Yonggao, Liu, Zhaoping. The structure, morphology, and electrochemical properties of Li1+xNi1/6Co1/6Mn4/6O2.25+x/2 (0.1 <= x <= 0.7) cathode materials. ELECTROCHIMICA ACTA[J]. 2012, 66: 61-66, http://dx.doi.org/10.1016/j.electacta.2012.01.032.
[92] Juanjuan Liu, Jun Wang, Yonggao Xia, Xufeng Zhou, Yaletu Saixi, Zhaoping Liu. Synthesis and electrochemical performance of Li1+xNi0.5Mn0.3Co0.2O2+δ (0 ≤ x ≤ 0.15) cathode materials for lithium-ion batteries. Materials Research Bulletin[J]. 2012, 47(3): 807-812, http://dx.doi.org/10.1016/j.materresbull.2011.11.058.
[93] Liu, Juanjuan, Wang, Jun, Xia, Yonggao, Zhou, Xufeng, Saixi, Yaletu, Liu, Zhaoping. Synthesis and electrochemical performance of Li1+xNi0.5Mn0.3Co0.2O2+delta (0 <= x <= 0.15) cathode materials for lithium-ion batteries. MATERIALS RESEARCH BULLETIN[J]. 2012, 47(3): 807-812, https://www.webofscience.com/wos/woscc/full-record/WOS:000301994100050.
[94] Qin, Zhihong, Zhou, Xufeng, Xia, Yonggao, Tang, Changlin, Liu, Zhaoping. Morphology controlled synthesis and modification of high-performance LiMnPO4 cathode materials for Li-ion batteries. JOURNAL OF MATERIALS CHEMISTRY[J]. 2012, 22(39): 21144-21153, https://www.webofscience.com/wos/woscc/full-record/WOS:000308893400048.
[95] Zhang, Minghao, Wang, Jun, Xia, Yonggao, Liu, Zhaoping. Microwave synthesis of spherical spinel LiNi0.5Mn1.5O4 as cathode material for lithium-ion batteries. JOURNAL OF ALLOYS AND COMPOUNDS[J]. 2012, 518: 68-73, https://www.webofscience.com/wos/woscc/full-record/WOS:000300186500013.
[96] Wang, Jun, Qiu, Bao, Cao, Hailiang, Xia, Yonggao, Liu, Zhaoping. Electrochemical properties of 0.6LiLi1/3Mn2/3O-2-0.4LiNi(x)Mn(y)Co(1-x-y)O(2) cathode materials for lithium-ion batteries. JOURNAL OF POWER SOURCES[J]. 2012, 218(218): 128-133, http://dx.doi.org/10.1016/j.jpowsour.2012.06.067.
[97] Wang, Jun, Xia, Yonggao, Yao, Xiayin, Zhang, Minghao, Zhang, Yiming, Liu, Zhaoping. Synthesis and Electrochemical Feature of a Multiple-Phases Li-Rich Nickel Manganese Oxides Cathode Material. INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE[J]. 2011, 6(12): 6670-6681, https://www.webofscience.com/wos/woscc/full-record/WOS:000297571400056.
[98] Xia, Yonggao, Wang, Hongyu, Zhang, Qing, Nakamura, Hiroyoshi, Noguchi, Hideyuki, Yoshio, Masaki. Oxygen deficiency, a key factor in controlling the cycle performance of Mn-spinel cathode for lithium-ion batteries. JOURNAL OF POWER SOURCES[J]. 2007, 166(2): 485-491, http://dx.doi.org/10.1016/j.jpowsour.2007.01.023.
[99] Dimov, Nikolay, Xia, Yonggao, Yoshio, Masaki. Practical silicon-based composite anodes for lithium-ion batteries: Fundamental and technological features. JOURNAL OF POWER SOURCES[J]. 2007, 171(2): 886-893, http://dx.doi.org/10.1016/j.jpowsour.2007.06.026.
[100] Yonggao Xia, Qing Zhang, Hongyu Wang, Hiroyoshi Nakamura, Hideyuki Noguchi, Masaki Yoshio. Improved cycling performance of oxygen-stoichiometric spinel Li 1+ xAl yMn 2− x− yO 4+ δ at elevated temperature. Electrochimica Acta. 2007, 52(14): 4708-4714, http://dx.doi.org/10.1016/j.electacta.2007.01.004.
[101] Sun, Yucheng, Xia, Yonggao, Shiosaki, Yuki, Noguchi, Hideyuki. Preparation and electrochemical properties of LiCoO2-LiNi0.5Mn0.5O2-Li2MnO3 solid solutions with high Mn contents. ELECTROCHIMICA ACTA[J]. 2006, 51(26): 5581-5586, http://dx.doi.org/10.1016/j.electacta.2006.02.041.
[102] Xia, Yonggao, Yoshio, Masaki, Noguchi, Hideyuki. Improved electrochemical performance of LiFePO4 by increasing its specific surface area. ELECTROCHIMICA ACTA[J]. 2006, 52(1): 240-245, http://dx.doi.org/10.1016/j.electacta.2006.05.002.
[103] Sun, Yucheng, Xia, Yonggao, Noguchi, Hideyuki. The improved physical and electrochemical performance of LiNi0.35Co0.3-xCrxMn0.35O2 cathode materials by the Cr doping for lithium ion batteries. JOURNAL OF POWER SOURCES[J]. 2006, 159(2): 1377-1382, http://dx.doi.org/10.1016/j.jpowsour.2005.12.022.
[104] Sun, YC, Xia, YG, Noguchi, H. Effects of cr contents on the physical and electrochemical properties of LiNi0.5-xCr2xMn0.5-xO2 cathode materials for lithium-ion batteries. ELECTROCHEMICAL AND SOLID STATE LETTERS[J]. 2005, 8(12): A637-A640, https://www.webofscience.com/wos/woscc/full-record/WOS:000232697800006.
[105] 夏永高. 一种快速有效的从废磷酸铁锂电池中选择性提取锂的方法. Environmental Technology & Innovation. 0419, [106] Tianle Zheng, Jianwei Xiong, Xiaotang Shi, Bingying Zhu, YaJun Cheng, Hongbin Zhao, Yonggao Xia. nCocktail Therapy towards High Temperature/High Voltage Lithium Metal Battery via Solvation Sheath Structure Tuning. Energy Storage Materials. http://dx.doi.org/10.1016/j.ensm.2021.04.002.
发表著作
(1) Chronicle Evolution of Research on TiO2 Based Lithium-Ion Battery Anodes, NONA Science Publishers, 2018-04, 第 2 作者
(2) Practically Relevant Research on Silicon Based Lithium-Ion Battery Anodes, Scrivener Publishing, 2019-01, 第 2 作者
(3) A Brief Chronicle Record of Studies on Non-Silicon (Sn, Sb, Ge)-Based Alloy Type Lithium-Ion Battery Anodes, NONA Science Publishers, 2019-03, 第 2 作者

科研活动

   
科研项目
( 1 ) 春蕾人才计划, 主持, 市地级, 2011-03--2015-03
( 2 ) 高比能锂电池新体系及关键材料研究, 参与, 部委级, 2012-04--2015-03
( 3 ) 轻型电动车磷酸铁锂动力电池高性能化关键技术, 参与, 省级, 2012-08--2014-07
( 4 ) 高能量密度动力锂电池材料技术 , 参与, 部委级, 2012-10--2015-10
( 5 ) 中科中宇磷酸铁锂动力电池技术研究中心, 主持, 研究所(学校), 2011-10--2016-10
( 6 ) 新一代锂离子电池材料创新团队, 参与, 省级, 2013-01--2015-12
( 7 ) 高温型锰酸锂正极材料中试技术开发, 主持, 研究所(学校), 2013-04--2014-05
( 8 ) 尖晶石锰酸锂正极材料的晶面控制与高温锰溶解机理研究, 主持, 省级, 2013-01--2015-12
( 9 ) 基于多种储能互补的协调控制系统研究与示范, 参与, 国家级, 2011-04--2013-12
( 10 ) 动力锂离子电池磷酸铁锂正极材料, 参与, 国家级, 2011-08--2013-12
( 11 ) 青年创新促进会, 主持, 部委级, 2015-01--2018-12
( 12 ) 400Wh/kg锂离子电池, 主持, 国家级, 2016-07--2020-06
( 13 ) 富锂锰基正极材料锂/锂空位行为与电压衰减机理及调控研究, 主持, 国家级, 2019-01--2021-12
参与会议
(1)Development of new type Mn-base positive materials   2013中国锂电池正负极材料发展论坛   夏永高,刘兆平   2013-04-08
(2)锂离子电池新型锰系正极材料的开发   第28届化学学术年会   夏永高 刘兆平 许晓雄 周旭峰 王军   2012-04-13
(3)锂电池新型正极材料的技术创新与研究进展   2012中国锂电正极材料研讨会   夏永高,刘兆平   2012-03-28
(4)Development of Manganese-based Cathode Materials for Lithium Ion Batteries   2011中国(宁波)动力锂离子电池及产业发展国际研讨会   Yonggao Xia   2011-10-11

合作情况

台塑三井、宁波容百、中国铁塔、德朗能等