General

Affiliations:

Key laboratory of Photobiology, Institution of Botany, Chinese Academy of Sciences, Beijing, China. 20 Nanxincun, Xiangshan, Beijing, 100093, China.

The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100093, China.

University of Chinese Academy of Sciences, Beijing 100049, China. 

Tel: 86-10-6283-6945(Office), 86-10-6283-6193 (lab), 86-18211169660.

Email: wqyang@ibcas.ac.cn.

Research Areas

            Photosynthesis is the most important chemical reactions on the earth, which is critical for our daily life. We use Chlamydomonas reinhardtii and Leguminosae plants such as soybean and alfalfa as models, and apply multiple disciplinary advanced techniques to understand and elucidate the following: 1) the novel regulatory mechanism of photosynthesis. 2) The interacting network of photosynthesis and carbon metabolism. 3) High efficient regulation of photosynthesis in Leguminosae. 4) Chloroplast protein translocation and quality control. 


Education

2004.9-2008.7, Ph.D., Developmental biology, Institute of Genetics and Developmental Biology,     

                           Chinese Academyof Sciences (IGDB, CAS).

2000.9-2003.7, Master, Crop Science, Northeast Agricultural University (NEAU).

  1996.9-2000.7, Bachelor, Plant Science, Northeast Agricultural University (NEAU). 


Publications

1.  Insight into Algal Fermentation Metabolism., Springer, 2014-09.
2.  Chapter 11: The GreenCut - a tool for understanding the functions and relationships of proteins conserved in green lineage organisms, Caister Academic Press, 2016-08.


Papers

Articles

1. Li Z, Mo W, Jia L, Xu YC, Tang W, Yang W, Guo YL, Lin R. (2019). Rice FLUORESCENT1 is Involved in the regulation of chlorophyll. Plant Cell Physiol. 60(10):2307-2318.

2. Liu J, Sun Z, Mao X, Gerken H, Wang X, Yang W. (2019). Multiomics analysis reveals a distinct mechanism of oleaginousness in the emerging model alga Chromochloris zofingiensis. Plant J.  doi: 10.1111/tpj.14302

3. Wittkopp TM, Saroussi S, Yang W, Johnson X, Kim RG, Heinnickel ML, Russell JJ, Phuthong W, Dent RM, Broeckling CD, Peers G, Lohr M, Wollman FA, Niyogi KK, Grossman AR. (2018). GreenCut protein CPLD49 of Chlamydomonas reinhardtii associates with thylakoid membranes and is required for cytochrome b6 f complex accumulation. Plant J. 94(6):1023-1037

4.  Heinnickel M, Kim R, Wittkopp TM, Yang W, Walters K, Herbert S, Grossman AR. Tetratricopeptide repeat protein protects photosystem I from oxidative disruption during assembly. PNAS. pii: 201524040

5.  Yang W*, Wittkopp TM, Li X, Warakanont J, Dubini A, Catalanotti C, Kim RG, Nowack EC, Mackinder LC, Aksoy M, Page MD, D'Adamo S, Saroussi S, Heinnickel M, Johnson X, Richaud P, Alric J, Boehm M, Jonikas MC, Benning C, Merchant SS, Posewitz MC, Grossman AR. (2015). Critical role of Chlamydomonas reinhardtii ferredoxin-5 in maintaining membrane structure and dark metabolism. PNAS. 112(48): 14978-14983

6. Yang W*, Catalanotti C, D'Adamo S, Wittkopp TM, Ingram-Smith CJ, Mackinder L, Miller TE, Heuberger AL, Peers G, Smith KS, Jonikas MC, Grossman AR, Posewitz MC. Alternative acetate production pathways in Chlamydomonas reinhardtii during dark anoxia and the dominant role of chloroplasts in fermentative acetate production. The Plant Cell. 26(11):4499-4518.

7.  Duanmu D, Rockwell NC, Dent RM, Niyogi KK, Yang W, Grossman AR, Lagarias C. (2013). Bilins are necessary for the transition to photoautotrophic growth in Chlamydomonas reinhardtii. PNAS.110(9):3621-6.

8.  Heinnickel ML, Alric J, Wittkopp T, Yang W, Catalanotti C, Dent RM, Niyogi KK, Wollman FA, Grossman AR. (2013).novel thylakoid membrane greencut protein cpld38 impacts accumulation of the cytochrome b6f complex and associated regulatory processes.J Biol Chem. 288(10):7024-36.

9. Catalanotti C, Dubini A, Subramanian V, Yang W, Magneschi L, Mus F, Seibert M, Posewitz MC, Grossman AR. (2012). Altered Fermentative Metabolism in Chlamydomonas reinhardtii Mutants Lacking Pyruvate Formate Lyase and both Pyruvate Formate Lyase and Alcohol Dehydrogenase. The Plant Cell. 24:692-707.

10. Magneschi L, Catalanotti C, Subramanian V, Dubini A, Yang W, Mus F, Posewitz MC, Seibert M, Perata P, Grossman AR. (2011). A Mutant in the ADH1 Gene of Chlamydomonas reinhardtiiElicits Metabolic Restructuring during Anaerobiosis. Plant Physiology. 158(3):1293-305.

11. Meuser JE, D'Adamo S, Jinkerson RE, Mus F, Yang W, Ghirardi ML, Seibert M, Grossman AR, Posewitz MC. (2011). Genetic Disruption of both Chlamydomonas reinhardtii [FeFe]-Hydrogenases: Insight into the Role of HYDA2 in H2 Production. BiochemBiophys Res Commun. 417(2):704-9.

12. Gonzalez-Ballester D, Pootakham W, Mus F, Yang W, Catalanotti C, Magneschi L, de Montaigu A, Higuera JJ, Prior M, Galván A, Fernandez E, Grossman AR. (2011). Reverse Genetics in Chlamydomonas: A Moderate Throughput Platform for Isolating Insertional Mutants. Plant Methods.7:24. doi:10.1186/1746-4811-7-24.

13. Xu W, Yang R, Li M, Xing Z, Yang W, Chen G, Guo H, Gong X, Du Z, Zhang Z, Hu X, Wang D, Qian Q, Wang T, Su Z, Xue Y. (2010). Transcriptome Analysis of Diurnal Genes in Seedling and Flag Leaves of Rice. PLoS One. 6(3): e17613.

14. Yang W, Lai Y, Li M, Xu W, Xue Y. (2008). A Novel C2-domain-containing phospholipid binding protein, OsPBP1, is involved in pollen fertility in rice (Oryza sativa L.). Molecular Plant. 1: 770-785(Invited Article).

15. Yang W, Kong Z, Omo-Ikerodah E, Xu W, Li Q, Xue Y.(2008). A Calcineurin B-Like Interacting Protein Kinase OsCIPK23 Functions in Pollination and Drought Stress Responsesin Rice. Journal of Genetics and Genomics.35:531-543(Invited Article).

16. Li M, Xu W, Yang W, Kong Z, Xue Y. (2007). Genome-Wide Gene Expression Profiling Reveals Conserved and Novel Molecular Functions of the Stigma in Rice (Oryza sativa L.). Plant Physiology.144:1797-1812.

17. Kong Z, Li M, Yang W, Xu W, Xue Y, Xue Y. (2006). A Novel Nuclear-Localized CCCH-type Zinc Finger Protein, OsDOS, Is Involved in Delaying Leaf Senescence in Rice (Oryza sativa L.). Plant Physiology. 141: 1376–1388.

Reviews

1. Wang Y, Yang HL, Zhang XN, Han F, Tu WF, Yang WQ . (2020). Microalgal Hydrogen Production. Small Methods. https://doi.org/10.1002/smtd.201900514.

2. Tu WF, Wang Y, Yang WQ. (2018). 基因编辑技术在莱茵衣藻中的应用进展. 生命科学, 30(9):987-993. 

3. Yang WQ*. Catalanotti C, Wittkopp TM, Posewitz MC, Grossman AR. (2015). Algae after dark: mechanisms to cope with anoxic/hypoxic conditions. Coming of age of Chlamydomonas as a model alga. Plant Journal 82(3):481-503 (*Corresponding author).

4. Catalanotti C, Yang WQ, Posewitz MC, Grossman AR. Fermentation metabolism and its evolution in algae. (2013). Frontiers in Plant Science. doi: 10.3389/fpls.2013.00150.

5.Grossman AR, Catalanotti C, Yang WQ, Dubini A, Magneschi L, Subramanian V, Posewitz MC, Seibert M. (2011). Multiple Facets of Anoxic Metabolism and Hydrogen Production in the Unicellular Green Alga Chlamydomonas reinhardtii. New Phytologist. 190(2): 279-88.