Dr. Qiang Wang
Professor in Igneous Petrology
Guangzhou Institute of Geochemistry, Chinese Academy of Sciences
Email: wqiang@gig.ac.cn
Telephone: 020-85290277
Address: 511 Kehua Street, Tianhe District, Guangzhou, Guangdong, China
Postcode: 510640
Research Areas
Education
Ph.D
Experience
1989.09-1993.07,Geology,China University of Geosciences (Wuhan),Bachelor
1993.09-1995.07,Geology,China University of Geosciences (Wuhan),Master
1995.09-1998.07,Geology,China University of Geosciences (Wuhan),Doctor
Work Experience
2006.04 to now,Guangzhou Institute of Geochemistry,Professor in Petrology
2000.11-2004.11,Guangzhou Institute of Geochemistry,Associate Professor in Petrology
1998.07-2000.10,Guangzhou Institute of Geochemistry,Post-Doctor Fellow
Publications
Papers
2020
[1] Fan, J., Wang, Q.*, Li, J., Wei, G., Derek, W., Zhao, Z., Liu, Y., Ma, J., Zhang, L., Wang, Z., 2020. Molybdenum and Boron isotopic compositions of porphyry Cu mineralization-related adakitic rocks in central-eastern China: New insights into their petrogenesis and crust‐mantle interaction. Journal of Geophysics Research: Solid Earth, in press, https://doi.org/10.1029/2020JB020474.
[2] Wang, J., Dan, W. *, Wang, Q.*, Tang, G.J., 2020. High-Mg# adakitic rocks formed by lower-crustal magma differentiation: mineralogical and geochemical evidence from garnet-bearing diorite porphyries in central Tibet. Journal of Petrology, in press, egaa099, https://doi.org/10.1093/petrology/egaa099.
[3] Hao L.-L., Wang, Q*, Kerr A. C., Yang J.-H., Ma L., Qi Y., Wang J., and Ou Q. 2020. Post-collisional crustal thickening and plateau uplift of southern Tibet: Insights from Cenozoic magmatism in the Wuyu area of the eastern Lhasa block. GSA Bulletin, 132, no. X/X, p. 000–000, https://doi.org/10.1130/B35659.1
[4] Wang, Q*, Hao L, Zhang X, Zhou J, Wang J, Li Q, Ma L, Zhang L, Qi Y, Tang G, Dan W, Fan J. 2020. Adakitic rocks at convergent plate boundaries: Compositions and petrogenesis. Science in China Earth Sciences, https://doi.org/10.1007/s11430-020-9678-y
[5] Ou, Q., Wang, Q*, Zeng, J., Yang, J., Zhang, H., Xia, X., Chen, Y. 2020. Petrogenesis and tectonic implications of Middle Triassic basalts and rhyolites in the northern Qiangtang Block, central Tibet. Journal of Asian Earth Sciences, in press, https://doi.org/10.1016/j.jseaes.2020.104573.
[6] Zhou, J.-S., Yang, Z.-S.*, Wang, Q*, Zheng, Y.-C., Hou, Z.-Q., Wyman, D.A. 2020. Extraction of high-silica granites from an upper crustal magma reservoir: insights from the Narusongduo magmatic system, Gangdese arc. American Mineralogist, 105, 1572-1584, DOI: https://doi.org/10.2138/am-2020-7369.
[7] Hu, W.-L., Wang, Q*, Yang, J.-H., Tang, G.-J., Ma, L., Yang, Z.-Y., Qi, Y., and Sun, P., 2020, Petrogenesis of Late Early Cretaceous high-silica granites from the Bangong–Nujiang suture zone, Central Tibet: Lithos, p. 105788,https://doi.org/10.1016/j.lithos.2020.105788.
[8] Liu, X., Wang, Q*, Ma, L., Yang, J.-H., Gou, G.-N., Ou, Q., and Wang, J., 2020, Early Paleozoic intracontinental granites in the Guangzhou region of South China: Partial melting of a metasediment-dominated crustal source: Lithos, v. 376-377, p. 105763, https://doi.org/10.1016/j.lithos.2020.105763.
[9] Dan W., Wang Q., White W.M., Li X.H., Zhang X.Z., Tang G.J., Ou Q., Hao L.L., Qi Y., 2020. Passive-margin magmatism caused by enhanced slab-pull forces in central Tibet. Geology, https://doi.org/10.1130/G47957.1
[10] Qi, Y., Hawkesworth, C. J., Wang, Q*, Wyman, D. A., Li, Z.X., Dong, H., Ma, T., Chen, F., Hu, W.L., and Zhang, X.Z., 2020, Syn-collisional magmatic record of Indian steep subduction by 50 Ma: GSA Bulletin. https://doi.org/10.1130/B35498.1
[11] Wang, Q.*, Tang, G., Hao, L., Wyman, D., Ma, L., Dan, W., Zhang, X., Liu, J., Huang, T., Xu, C. 2020. Ridge subduction, magmatism and metallogenesis. Science in China Earth Sciences, 63(10): 1499–1518, https://doi.org/10.1007/s11430-019-9619-9.
[12] Zhou, J.-S., Wang, Q*, Wyman, D. A., Zhao, Z.-H. 2020. Petrologic reconstruction of the Tieshan magma plumbing system: Implications for the genesis of magmatic-hydrothermal ore deposits within originally water-poor magmatic systems. Journal of Petrology, DOI 10.1093/petrology/egaa056
[13] Fan, J.-J., Li, J., Wang, Q., Zhang, L., Zhang, J., Zeng, X.-L., Ma, L., and Wang, Z.-L. 2020. High-precision molybdenum isotope analysis of low-Mo igneous rock samples by MC–ICP–MS. Chemical Geology, 545, 119648, https://doi.org/10.1016/j.chemgeo.2020.119648
[14] Liu, X., Wang, Q. *, Ma, L. *, Yang, Z.-Y., Hu, W.-L., Ma, Y.-M., Wang, J., and Huang, T.-Y., 2020, Petrogenesis of Late Jurassic two-mica granites and associated diorites and syenite porphyries in Guangzhou, SE China. Lithos, p. 105537,https://doi.org/10.1016/j.lithos.2020.105537.
[15] Li, Q.-W., Zhao, J.-H.*, Wang, Q.*, Zhang, Z.-F., An, Y.-J., and He, Y.-T., 2020, Iron isotope fractionation in hydrous basaltic magmas in deep crustal hot zones. Geochimica et Cosmochimica Acta, v. 279, p. 29-44. https://doi.org/10.1016/j.gca.2020.03.032
[16] Qi, Y., Wang, Q.*, Zhu, Y.-T., Shi, L.-C., and Yang, Y.-N., 2020, Miocene olivine leucitites in the Hoh Xil Basin, northern Tibet: implications for intracontinental lithosphere melting and surface uplift of the Tibetan Plateau. Journal of Petrology, in press, egaa026, https://doi.org/10.1093/petrology/egaa026
[17] Tang, G.-J., Wang, Q., Wyman, D.A., Dan, W., Ma, L., Zhang, H.-X., and Zhao, Z.-H., 2020, Petrogenesis of the Ulungur Intrusive Complex, NW China, and Implications for Crustal Generation and Reworking in Accretionary Orogens. Journal of Petrology, egaa018, https://doi.org/10.1093/petrology/egaa018
[18] Sun, P., Dan, W., Wang, Q.*, Tang, G.-J.*, Ou, Q., Hao, L.-L., and Jiang, Z.-Q. 2020. Zircon U–Pb geochronology and Sr–Nd–Hf–O isotope geochemistry of Late Jurassic granodiorites in the southern Qiangtang block, Tibet: Remelting of ancient mafic lower crust in an arc setting? Journal of Asian Earth Sciences, v. 192, p. 104235. https://doi.org/10.1016/j.jseaes.2020.104235.
[19] Liu, X., Wang, Q.*, Ma, L.*, Wyman, D.A., Zhao, Z.-H., Yang, J.-H., Zi, F., Tang, G.-J., Dan, W., and Zhou, J.-S. 2020. Petrogenesis of Late Jurassic Pb–Zn mineralized high δ18O granodiorites in the western Nanling Range, South China: Journal of Asian Earth Sciences, p. 104236. https://doi.org/10.1016/j.jseaes.2020.104236.
[20] Dan, W., Wang, Q., Zhang, X.-Z., and Tang, G.-J., 2020, Early Paleozoic S-type granites as the basement of Southern Qiantang Terrane, Tibet: Lithos, v. 356-357, p. 105395,https://doi.org/10.1016/j.lithos.2020.105395
[21] Fan, J.-J., Tang, G.-J.*, Wei, G.-J., Wang, H., Xu, Y.-G., Wang, Q.*, Zhou, J.-S., Zhang, Z.-Y., Huang, T.-Y., and Wang, Z.-L., 2019, Lithium isotope fractionation during fluid exsolution: Implications for Li mineralization of the Bailongshan pegmatites in the West Kunlun, NW Tibet. Lithos, p. 105236,DOI:10.1016/j.lithos.2019.105236
[22] Ou, Q., Wang, Q.*, Zhang, C., Zhang, H.-X.*, Hao, L.-L., Yang, J.-H., Lai, J.-Q., Dan, W., Jiang, Z.-Q., Xia, X.-P. 2020. Petrogenesis of late Early Oligocene trachytes in central Qiangtang Block, Tibetan Plateau: crustal melting during lithospheric delamination? International Geology Review, 62, p. 225-242, DOI: 10.1080/00206814.2019.1597391.
[23] Zhou, J.-S., Yang, Z.-S., Hou, Z.-Q., Wang, Q., 2020. Amphibole-rich cumulate xenoliths in the Zhazhalong intrusive suite, Gangdese arc: Implications for the role of amphibole fractionation during magma evolution. American Mineralogist 105, 262-375. https://doi.org/10.2138/am-2020-7199.
2019
[24] Yang, Z.-Y., Wang, Q.*, Yang, J.-H., Dan, W., Zhang, X.-Z., Ma, L., Qi, Y., Wang, J., and Sun, P. 2019. Petrogenesis of Early Cretaceous granites and associated microgranular enclaves in the Xiabie Co area, central Tibet: Crust-derived magma mixing and melt extraction. Lithos, p. 105199, https://doi.org/10.1016/j.lithos.2019.105199.
[25] Tang, G.-J., Wang, Q., Wyman, D.A., and Dan, W. 2019. Crustal maturation through chemical weathering and crustal recycling revealed by Hf–O–B isotopes. Earth and Planetary Science Letters, 524, 115709, https://doi.org/10.1016/j.epsl.2019.115709.
[26] Ou, Q., Wang, Q.*, Zhang, C., Zhang, H.-X.*, Hao, L.-L., Yang, J.-H., Lai, J.-Q., Dan, W., Jiang, Z.-Q., Xia, X.-P. 2019. Petrogenesis of late Early Oligocene trachytes in central Qiangtang Block, Tibetan Plateau: crustal melting during lithospheric delamination? International Geology Review, in press, DOI: 10.1080/00206814.2019.1597391.
[27] Ma, L.*, Kerr, A.C., Wang, Q.*, Jiang, Z.-Q., Tang, G.-J., Yang, J.-H., Xia, X.-P., Hu, W.-L., Yang, Z.-Y., and Sun, P. 2019. Nature and Evolution of Crust in Southern Lhasa, Tibet: Transformation From Microcontinent to Juvenile Terrane. Journal of Geophysical Research: Solid Earth, 124: 6452-6474 https://doi.org/10.1029/2018JB017106.
[28] Wang, Z., Li, J., Wei, G., Deng, W., Chen, X., Zeng, T., Wang, X., Ma, J., Zhang, L., Tu, X., Wang, Q., and McCulloch, M. 2019. Biologically controlled Mo isotope fractionation in coral reef systems. Geochimica et Cosmochimica Acta, 262, 128-142, https://doi.org/10.1016/j.gca.2019.07.037.
[29] Hao, L.-L., Wang, Q.*, Wyman, D.A., Yang, J.-H., Huang, F., and Ma, L. 2019. Crust-mantle mixing and crustal reworking of southern Tibet during Indian continental subduction: Evidence from Miocene high-silica potassic rocks in Central Lhasa block. Lithos, 342-343: 407-419, https://doi.org/10.1016/j.lithos.2019.05.035.
[30] Hu, W.-L., Wang, Q.*, Yang, J.-H., Zhang, C., Tang, G.-J., Ma, L., Qi, Y., Yang, Z.-Y., and Sun, P. 2019. Late early Cretaceous peraluminous biotite granites along the Bangong–Nujiang suture zone, Central Tibet: Products derived by partial melting of metasedimentary rocks? Lithos, 344-345: 147-158, https://doi.org/10.1016/j.lithos.2019.06.005.
[31] Wang, J., Wang, Q.*, Dan*, W., Yang, J.-H., Yang, Z.-Y., Sun, P., Qi, Y., Hu, W.-L. 2019. The role of clinopyroxene in amphibole fractionation of arc magmas: Evidence from mafic intrusive rocks within the Gangdese arc, southern Tibet. Lithos, 338–339, 174-188, https://doi.org/10.1016/j.lithos.2019.04.013.
[32] Wu, H., Chen,J.W., Wang, Q., Yu, Y.P. 2019. Spatial and temporal variations in the geochemistry of Cretaceous high-Sr/Y rocks in central Tibet. American Journal of Science, 319:105-121, doi: 10.2475/02.2019.02.
[33] Ou, Q., Wang, Q.*, Wyman, D. A., Zhang, C., Hao, L.-L., Dan, W., Jiang, Z.Q., Wu, F.-Y., Yang, J.-H., Zhang, H.-X., Xia, X.-P., Ma, L., Long, X.-P, Li, J. 2019. Postcollisional delamination and partial melting of enriched lithospheric mantle: Evidence from Oligocene (ca. 30 Ma) potassium-rich lavas in the Gemuchaka area of the central Qiangtang Block, Tibet. Geological Society of American Bulletin, 2019, 131(7/8): 1385–1408, doi.org/10.1130/B31911.1.
[34] Hao, L.-L., Wang, Q.*, Zhang, C., Ou, Q., Yang, J.-H., Dan, W., Jiang, Z.-Q. 2019. Oceanic plateau subduction during closure of Bangong-Nujiang Tethys: Insights from Central Tibetan volcanic rocks. Geological Society of American Bulletin, 131(5/6), 864–880, doi: 10.1130/B32045.1.
[35] Ma, Y.*, Wang, Q.*, Wang, J., Yang, T., Tan, X., Dan, W., Zhang,X.Z., Ma, L., Wang, Z.L., Hu,W.L., Zhang, S.H., Wu, H.C., Li, H.Y., Cao, L.W. 2019. Paleomagnetic constraints on the origin and drift history of the North Qiangtang terrane in the Late Paleozoic. Geophysical Research Letters, 46, 689–697. https://doi.org/10.1029/2018GL080964.
[36] Yan, H., Long, X., Li, J., Wang, Q., Zhao, B., Shu, C., Gou, L., and Zuo, R. 2019. Arc andesitic rocks derived from partial melts of mélange diapir in subduction zones: evidence from whole-rock geochemistry and Sr-Nd-Mo isotopes of the Paleogene Linzizong volcanic succession in southern Tibet. Journal of Geophysical Research: Solid Earth, 124, 456–475. https://doi.org/10.1029/2018JB016545.
[37] Hao, L.-L., Wang, Q.*, Wyman, D. A., Ma, L., Wang, J., Xia, X.-P., and Ou, Q. 2019. First identification of postcollisional A-type magmatism in the Himalayan-Tibetan orogen. Geology, 47 (2): 187–190,doi: https://doi.org/10.1130/G45526.1.
[38] Dan, W., Wang, Q., Li, X.-H., Tang, G.-J., Zhang, C., Zhang, X.-Z., and Wang, J. 2019. Low δ18O magmas in the carboniferous intra-oceanic arc, central Tibet: Implications for felsic magma generation and oceanic arc accretion. Lithos, 326-327, 28-38.
[39] Yang, Z.-Y., Wang, Q.*, Zhang, C., Yang, J.-H., Ma, L., Wang, J., Sun, P., and Qi, Y. 2019. Cretaceous (~100?Ma) high-silica granites in the Gajin area, Central Tibet: Petrogenesis and implications for collision between the Lhasa and Qiangtang Terranes. Lithos, 324-325, 402-417.
2018
[40] Ma, Y., Yang, T., Bian, W., Jin, J., Wang, Q., Zhang, S., Wu, H., Li, H., Cao, L. 2018. A stable southern margin of Asia during the Cretaceous: Paleomagnetic constraints on the Lhasa-Qiangtang collision and the maximum width of the Neo-Tethys. Tectonics, 37, 3853–3876, DOI: 10.1029/2018TC005143.
[41] Shen, X. M., Zhang,H. X., Wang, Q., Saha, A., Ma, L. 2018. Zircon U-Pb geochronology and geochemistry of Devonian plagiogranites in the Kuerti area of southern Chinese Altay, northwest China: Petrogenesis and tectonic evolution of late Paleozoic ophiolites. Geological Journal, 53(5): 1886-1905.
[42] Wang, J., Wang, Q.*, Zhang, C., Dan, W.*, Qi, Y., Zhang, X.-Z., Xia, X.-P. 2018. Late Permian bimodal volcanic rocks in the northern Qiangtang Terrane, central Tibet: evidence for interaction between the Emeishan plume and the Paleo-Tethyan subduction system. Journal of Geophysical Research: Solid Earth, 123, 123, 6540–6561, DOI:10.1029/2018JB015568.
[43] Yang, Q., Xia, X., Zhang, W., Zhang, Y., Xiong, B., Xu, Y., Wang, Q., and Wei, G. 2018. An evaluation of precision and accuracy of SIMS oxygen isotope analysis. Solid Earth Sciences, 3, 81-86.
[44] Hao, L.L., Wang, Q.*, Wyman, D. A., Qi, Y., Ma, L., Huang, F., Zhang, L., Xia, X. P., Ou. Q. 2018. First identification of mafic igneous enclaves in Miocene lavas of southern Tibet with implications for Indian continental subduction.. Geophysical Research Letters, 45, 8205–8213, doi: 10.1029/2018GL079061.
[45] Yang, Z. Y., Wang, Q.*, Zhang, C., Dan, W., Zhang, X. Z., Qi, Y., Xia, X.-P., Zhao, Z. H. 2018. Rare earth element tetrad effect and negative Ce anomalies of the granite porphyries in southern Qiangtang Terrane, central Tibet: New insights into the genesis of highly evolved granites. Lithos, 312–313, 258–273. doi: 10.1016/j.lithos.2018.04.018.
[46] Dan, W., Wang, Q., Zhang, X.-Z., Zhang, C., Tang, G.-J., Wang, J., Ou, Q., Hao, L.-L., and Qi, Y., 2018, Magmatic record of Late Devonian arc-continent collision in the northern Qiangtang, Tibet: Implications for the early evolution of East Paleo-Tethys Ocean. Lithos, 308-309, 104-117.
[47] Qi, Y., Gou, G.-N., Wang, Q.*, Wyman, D.A., Jiang, Z.-Q., Li, Q.-L., and Zhang, L., 2018, Cenozoic mantle composition evolution of southern Tibet indicated by Paleocene (~64Ma) pseudoleucite phonolitic rocks in central Lhasa terrane. Lithos, 302-303, 178-188, DOI: 10.1016/j.lithos.2017.12.021.
[48] Wang, J., Gou, G.-N., Wang, Q.*, Zhang, C., Dan, W. *, Wyman, D.A., and Zhang, X.-Z., 2018, Petrogenesis of the Late Triassic diorites in the Hoh Xil area, northern Tibet: Insights into the origin of the high-Mg# andesitic signature of continental crust. Lithos, 300-301, 348-360, DOI: 10.1016/j.lithos.2017.12.007.
[49] Dan, W., Wang, Q., White, W.M., Zhang, X.-Z., Tang, G.-J., Jiang, Z.-Q., Hao, L.-L., and Ou, Q. 2018. Rapid formation of eclogites during a nearly closed ocean: Revisiting the Pianshishan eclogite in Qiangtang, central Tibetan Plateau. Chemical Geology, 477, 112-122., DOI: 10.1016/j.chemgeo.2017.12.012.
[50] Ma, L.*, Kerr, A.C., Wang, Q.*, Jiang, Z.Q., Hu, W.L. 2018. Early Cretaceous (~140 Ma) aluminous A-type granites in the Tethyan Himalaya, Tibet: products of crust-mantle interaction during lithospheric extension. Lithos, 300-301, 212-226, DOI: 10.1016/j.lithos.2017.11.023
[51] Wu, H., Qiangba, Z., Li, C., Wang, Q., Gesang, W., Ciren, O., and Basang, D. 2018. Geochronology and Geochemistry of Early Cretaceous Granitic Rocks in the Dongqiao Area, Central Tibet: Implications for Magmatic Origin and Geological Evolution. The Journal of Geology, 126, 249-260, DOI: 10.1086/695702.
2017
[52] Ma, L.*, Wang, Q.*, Kerr, A.C., Yang, J.-H., Xia, X.-P., Ou, Q., Yang, Z.-Y., Sun, P. 2017. Paleocene (c. 62 Ma) Leucogranites in Southern Lhasa, Tibet: Products of Syn-collisional Crustal Anatexis during Slab Roll-back? Journal of Petrology, 58(11), 2089–2114, doi: 10.1093/petrology/egy001.
[53] Ma, Y., Yang, T., Bian, W., Jin, J., Wang, Q., Zhang, S., Wu, H., Li, H., Cao, L., Yuan, H., and Ding, J. 2017. Paleomagnetic and Geochronologic Results of Latest Cretaceous Lava Flows From the Lhasa Terrane and Their Tectonic Implications. Journal of Geophysical Research: Solid Earth, 122, 8786-8809, DOI: 10.1002/2017JB014743.
[54] Zhang, X.-Z., Wang, Q.*, Dong, Y.-S., Zhang, C., Li, Q.-Y., Xia, X.-P., and Xu, W. 2017. High-Pressure Granulite Facies Overprinting During the Exhumation of Eclogites in the Bangong-Nujiang Suture Zone, Central Tibet: Link to Flat-Slab Subduction. Tectonics, 36, 2918-2935, doi:10.1002/2017TC004774.
[55] Tang, G.-J., Cawood, P. A., Wyman, D. A., Wang, Q., & Zhao, Z.-H. 2017. Evolving mantle sources in postcollisional early Permian-Triassic magmatic rocks in the heart of Tianshan Orogen (western China). Geochemistry, Geophysics, Geosystems, 18, 4110–4122. doi:10.1002/2017GC006977.
[56] Tang, G.-J., Q. Wang, C. Zhang, D. A. Wyman, W. Dan, X.-P. Xia, H.-Y. Chen, and Z.-H. Zhao. 2017. Sr-Nd-Hf-O isotope geochemistry of the Ertaibei pluton, East Junggar, NW China: Implications for development of a crustal-scale granitoid pluton and crustal growth, Geochemistry Geophysics Geosystems, 18, 3340–3358, doi:10.1002/2017GC006998.
[57] Huang, C.-C., Guo, H.-F., Li, J., Wang, Q.*, Zhang, C., Wyman, D., and Tang, G.-J. 2017. Re–Os isotope geochronology of the Shangbao pyrite–flourite deposit in southeastern Hunan, South China: Evidence for multiple mineralization events and the role of crust–mantle interaction in polymetallic deposits. Solid Earth Sciences, 2, 109-122, doi: 10.1016/j.sesci.04.001
[58] Chen, B., Long, X., Wilde, S.A., Yuan, C., Wang, Q., Xia, X., and Zhang, Z. 2017. Delamination of lithospheric mantle evidenced by Cenozoic potassic rocks in Yunnan, SW China: A contribution to uplift of the Eastern Tibetan Plateau. Lithos, 284-285, 709-729, DOI: 10.1016/j.lithos.2017.05.019.
[59] Gou, G.-N., Wang, Q.*, Wyman, D.A., Xia, X.-P., Wei, G.-J., and Guo, H.-F. 2017. In situ boron isotopic analyses of tourmalines from Neogene magmatic rocks in the northern and southern margins of Tibet: Evidence for melting of continental crust and sediment recycling. Solid Earth Sciences, 2, 43-54, doi: 10.1016/j.sesci.2017.03.003.
[60] Tang, G.-J., Wang, Q., Wyman, D.A., Chung, S.-L., Zhao, Z.-H. 2017. Genesis of pristine adakitic magmas by lower crustal melting: A perspective from amphibole composition. Journal Geophysical Research-Solid Earth, 122, 1934–1948, doi:10.1002/2016JB013678.
[61] Tang, G.-J., Chung, S.-L., Hawkesworth, C.J., Cawood, P.A., Wang, Q., Wyman, D.A., Xu, Y.-G., Zhao, Z.-H. 2017. Short episodes of crust generation during protracted accretionary processes: Evidence from Central Asian Orogenic Belt, NW China. Earth and Planetary Science Letters 464, 142–154, doi: 10.1016/j.epsl.2017.02.022.
[62] Ou, Q., Wang, Q.*, Wyman, D. A., Zhang, H.-X.*, Yang, J.-H., Zeng, J.-P., Hao, L.-L., Chen, Y.-W., Liang, H., and Qi, Y. 2017. Eocene adakitic porphyries in the central-northern Qiangtang Block, centralTibet: Partial melting of thickened lower crust and implications for initial surface uplifting of the plateau. Journal of Geophysical Research—Solid Earth, 122, 1025–1053, doi:10.1002/2016JB013259.
[63] He, Y., Wu, H., Ke, S., Liu, S.-A., and Wang, Q. 2017. Iron isotopic compositions of adakitic and non-adakitic granitic magmas: Magma compositional control and subtle residual garnet effect. Geochimica et Cosmochimica Acta, 203, 89-102.
[64] Zhang, X.-Z.*, Dong, Y.-S., Wang, Q.*, Dan , W., Zhang, C., Xu, W., Huang, M.-L. 2017. Metamorphic records for subduction erosion and subsequent underplating processes revealed by garnet-staurolite-muscovite schists in central Qiangtang, Tibet. Geochemistry Geophysics Geosystems, 18, 266-279, DOI:10.1002/2016GC006576.
[65] Ma, L., Wang, Q.*, Li, Z.-X., Wyman, D. A., Yang, J.-H., Jiang, Z.-Q., Liu, Y.-S., Gou, G.-N., Guo, H.-F. 2017. Subduction of Indian continent beneath southern Tibet in the latest Eocene (~ 35 Ma): insights from the Quguosha gabbros in southern Lhasa block. Gondwana Research, 41, 77–92, http://dx.doi.org/10.1016/j.gr.2016.02.005.
2016
[66] Wang, Q.*, Hawkesworth, C. J. *, Wyman, D., Chung, S.-L., Wu, F.-Y. Li, X.-H., Li, Z.-X., Gou, G.-N., Zhang, X.-Z., Tang, G.-J., Dan, W., Ma, L., Dong, Y.-H. 2016. Pliocene–Quaternary crustal melting in central and northern Tibet and insights into crustal flow. Nature Communications, 7:11888, doi: 10.1038/ncomms11888.
[67] Hao, L.-L., Wang, Q.*, Wyman, D. A., Ou, Q., Dan, W., Jiang, Z.-Q., Yang, J.-H., Long, X.-P., Li, J. 2016. Partial melting of the mélange for the growth of andesitic crust indicated by the Early Cretaceous arc dioritic/andesitic rocks in southern Qiangtang, central Tibet. Geochemistry Geophysics Geosystems, 17, doi:10.1002/2016GC006248.
[68] Hao, L.-L., Wang, Q.*, Wyman, D. A., Ou, Q., Dan, W., Jiang, Z.-Q., Wu, F.-Y., Yang, J.-H., Long, X.-P., and Li, J. 2016. Underplating of basaltic magmas and crustal growth in a continental arc: Evidence from Late Mesozoic intermediate–felsic intrusive rocks in southern Qiangtang, central Tibet. Lithos, 245, 223-242, doi:10.1016/j.lithos.2015.1009.1015.
[69] Dan, W.*, Li, X.-H., Wang, Q.*, Wang, X.-C., Wyman, D. A., and Liu, Y. 2016. Phanerozoic amalgamation of the Alxa Block and North China Craton: Evidence from Paleozoic granitoids, U–Pb geochronology and Sr–Nd–Pb–Hf–O isotope geochemistry. Gondwana Research, 32,105-121,doi:10.1016/j.gr.2015.1002.1011.
[70] Zhang, X. Z.*, Dong, Y. S., Wang, Q.*, Dan, W., Zhang, C., Deng, M.R., Xu, W., Xia, X.P., Zeng, J.P. and Liang, H. 2016. Carboniferous and Permian evolutionary records for the Paleo-Tethys Ocean constrained by newly discovered Xiangtaohu ophiolites from central Qiangtang, central Tibet. Tectonics, 35(7), 1670-1686.
[71] Yan, H., Long, X., Wang, X.-C., Li, J., Wang, Q., Yuan, C., and Sun, M. 2016. Middle Jurassic MORB-type gabbro, high-Mg diorite, calc-alkaline diorite and granodiorite in the Ando area, central Tibet: Evidence for a slab roll-back of the Bangong-Nujiang Ocean. Lithos, 264, 315-328.
2015
[72] Ma, L., Wang, Q.*, Wyman, D. A., Jiang, Z.-Q., Wu, F.-Y., Li, X.-H., Yang, J.-H., Gou, G.-N., Guo, H.-F. 2015. Late Cretaceous back-arc extension and arc system evolution in the Gangdese area, southern Tibet: Geochronological, petrological, and Sr-Nd-Hf-O isotopic evidence from Dagze diabases. Journal of Geophysical Research, 120, 6159–6181,doi: 10.1002/2015JB011966.
[73] Dan, W. *, Wang, Q.*, Wang, X.-C., Liu, Y., Wyman, D. A., Liu, Y.-S. 2015. Overlapping Sr–Nd–Hf–O isotopic compositions in Permian mafic enclaves and host granitoids in Alxa Block, NW China: Evidence for crust–mantle interaction and implications for the generation of silicic igneous provinces. Lithos, 230,133–145.
[74] Jiang, Z., Wang, Q.*, Wyman, D., Shi, X., Yang, J.-H., Ma, L., and Gou, G. 2015. Zircon U–Pb geochronology and geochemistry of Late Cretaceous–Early Eocene granodiorites in the southern Gangdese Batholith of Tibet: Petrogenesis and implications for geodynamics and Cu ± Au ± Mo mineralization. International Geology Review, 57(3), 373–392, DOI: 10.1080/00206814.2015.1009503.
[75] Li, J., Wang, X.-C., Xu, J.-F., Xu, Y.-G., Tang, G.-J., Wang., Q. 2015. Disequilibrium-induced initial Os isotopic heterogeneity in gramaliquots of single basaltic rock powders: Implications for dating and source tracing. Chemical Geology 406, 10–17.
[76] Long, X., Wilde, S. A., Wang, Q., Yuan, C., Wang, X.-C., Li, J., Jiang, Z., and Dan, W. 2015. Partial melting of thickened continental crust in central Tibet: Evidence from geochemistry and geochronology of Eocene adakitic rhyolites in the northern Qiangtang Terrane. Earth and Planetary Science Letters, 414(0), 30-44.
2014
[77] Dan, W.*, Li, X.-H., Wang, Q.*, Wang, X.-C., Liu, Y., and Wyman, D. A. 2014. Paleoproterozoic S-type granites in the Helanshan Complex, Khondalite Belt, North China Craton: Implications for rapid sediment recycling during slab break-off. Precambrian Research, 254, 59–72, DOI: 10.1016/j.precamres.2014.1007.1024.
[78] Guan, Y., Yuan, C., Sun, M., Wilde, S., Long, X., Huang, X., and Wang, Q. 2014. I-type Granitoids in the Eastern Yangtze Block: Implications for the Early Paleozoic Intracontinental Orogeny in South China. Lithos, 206-207, 34-51, DOI: 10.1016/j.lithos.2014.1007.1016.
[79] Shen, X.-M., Zhang, H.-X., Wang, Q., Ma, L., and Yang, Y.-H. 2014. Early Silurian (~440Ma) adakitic, andesitic and Nb-enriched basaltic lavas in the southern Altay Range, Northern Xinjiang (western China): Slab melting and implications for crustal growth in the Central Asian Orogenic Belt. Lithos, 206-207: 234-251, DOI: 10.1016/j.lithos.2014.1007.1024.
[80] Tang, G.-J., Chung, S.-L., Wang, Q., Wyman, D. A., Dan, W., Chen, H.-Y., and Zhao, Z.-H. 2014. Petrogenesis of a Late Carboniferous mafic dike–granitoid association in the western Tianshan: Response to the geodynamics of oceanic subduction. Lithos 202–203, 85-99.
[81] Jiang, Z.Q., Wang, Q.*, Wyman, D. A., Li, Z. X., Yang, J. H., Shi, X.B., Ma, L., Tang, G. J., Gou, G. N., Jia, X. H., Guo, H. F. 2014. Transition from oceanic to continental lithosphere subduction in southern Tibet: Evidence from the Late Cretaceous–Early Oligocene (~ 91–30 Ma) intrusive rocks in the Chanang–Zedong area, southern Gangdese. Lithos, 196-197, 213-231, doi: 10.1016/j.lithos.2014.03.001.
[82] Ma, L., Wang, B. D., Jiang, Z. Q., Wang, Q.*, Li, Z. X., Wyman, D. A., Zhao, S. R., Yang, J. H., Gou, G. N., Guo, H. F. 2014. Petrogenesis of the Early Eocene adakitic rocks in the Napuri area, southern Lhasa: partial melting of thickened lower crust during slab break-off and implications for crustal thickening in southern Tibet. Lithos, 196-197, 321-338, doi: 10.1016/j.lithos.2014.02.011.
[83] Dan, W. *, Li, X. H., Wang, Q.*, Tang, G. J., Liu, Y. 2014. An Early Permian (ca. 280 Ma) silicic igneous province in the Alxa Block, NW China: A magmatic flare-up triggered by a mantle-plume? Lithos, 204, 144-158, doi: 10.1016/j.lithos.2014.01.018.
[84] Dan, W., Li, X.H., Wang, Q., Wang, X.C., Liu, Y. 2014. NEOPROTEROZOIC S-TYPE GRANITES IN THE ALXA BLOCK,WESTERNMOST NORTH CHINA AND TECTONIC IMPLICATIONS:IN SITU ZIRCON U-Pb-Hf-O ISOTOPIC AND GEOCHEMICAL CONSTRAINTS. American Journal of Science, 314, 110-153, DOI 10.2475/01.2014.04.
2013
[85] Huang Z.Y., Long X.P., Kr?ner A., Yuan C., Wang Q., Sun M., Zhao G.C., Wang Y.J. 2013. Geochemistry, zircon U–Pb ages and Lu–Hf isotopes of early Paleozoic plutons in the northwestern Chinese Tianshan: Petrogenesis and geological implications. Lithos, 182-183, 48-66.
[86] Tang, G.J., Wang, Q.*, Wyman, D.A., Sun, M., Zhao, Z.H., Jiang, Z.Q. 2013. Petrogenesis of gold-mineralized magmatic rocks of the Taerbieke area, northwestern Tianshan (western China): Constraints from geochronology, geochemistry and Sr-Nd-Pb-Hf isotopic compositions. Journal of Asian Earth Science, 74, 113-128.
[87] Ma, L., Wang, Q.*, Wyman, D.A., Li, Z.X., Jiang, Z.Q., Yang, J.H., Gou, G.N., Guo, H.F. 2013. Late Cretaceous (100-89 Ma) magnesian charnockites with adakitic affinities in the Milin area, eastern Gangdese: partial melting of subducted oceanic crust and implications for crustal growth in southern Tibet. Lithos, 175–176, 315-332,doi: 10.1016/j.lithos.2013.04.006.
[88] Ma, L., Wang, Q.*, Li, Z.X., Wyman, D.A., Jiang, Z.Q., Yang, J.H., Gou, G.N., Guo, H.F., 2013. The early Late Cretaceous (ca. 93 Ma) norites and hornblendites in the Milin area, eastern Gangdese: lithosphere-asthenosphere interaction during slab roll-back and an insight into early Late Cretaceous (ca. 100–80 Ma) magmatic “flare-up” in southern Lhasa (Tibet). Lithos, 172–173, 17–30, 10.1016/j.lithos.2013.03.007.
[89] Ma, L., Wang, Q.*, Wyman, D.A., Jiang, Z.Q., Yang, J.H., Li, Q.L., Gou, G.N., Guo, H.F., 2013. Late Cretaceous crustal growth of southern Tibet: Petrological and Sr-Nd-Hf-O isotopic evidence from the Zhengga diorite-gabbro suites in the Gangdese area. Chemical Geology, 349–350, 54–70, 10.1016/j.chemgeo.2013.04.005.
2012
[90] Ali, K. A., Moghazi, A.K. M., Maurice, A. E., Omar, S. A., Wang, Q., Wilde, S. A., Moussa, E.M., Manton, W. I., Stern, R.J. 2012. Composition, age, and origin of the ~620 Ma Humr Akarim and Humrat Mukbid A-type granites: no evidence for pre-Neoproterozoic basement in the Eastern Desert, Egypt. International Journal of Earth Sciences, 101(7), 1705-1722, doi:10.1007/s00531-012-0759-2.
[91] Wang Q., Chung S.L., Li X.H., Wyman D., Li Z.X., Sun W.D., Qiu H.N., Liu Y.S., Zhu Y.T. 2012. Crustal melting and flow beneath northern Tibet: Evidence from Mid-Miocene to Quaternary strongly peraluminous rhyolites in southern Kunlun Range. Journal of Petrology, 53(12), 2523-2566, doi: 10.1093/petrology/egs058.
[92] Tang, G.J., Wang Q.*, Wyman, D.A., Li, Z.X., Xu, Y.G., Zhao, Z.H. 2012. Metasomatized lithosphere-asthenosphere interaction during slab roll-back: Evidence from Late Carboniferous gabbros in the Luotuogou area, Central Tianshan. Lithos, 155, 67–80,doi: 10.1016/j.lithos.2012.08.015.
[93] Wang Q., Li X.H., Jia X.H., Wyman D.A., Tang G.J., Li Z.X., Yang Y.H., Jiang Z.Q., Ma L, Gou G.N. 2012. Late Early Cretaceous adakitic granitoids and associated magnesian and potassium–rich mafic enclaves and dikes in the Tunchang–Fengmu area, Hainan Province (South China): partial melting of lower crust and mantle, and magma hybridization. Chemical Geology, 328, 222–243, doi:10.1016/j.chemgeo.2012.04.029.
[94] Jiang Z.Q., Wang Q.*, Li Z.X., Wyman D.A., Tang G.J., Jia X.H., Yang Y.H. 2012. Late Cretaceous (ca. 90 Ma) adakitic intrusive rocks in the Kelu area, Gangdese belt (southern Tibet): Slab melting and implications for Cu-Au mineralization. Journal of Asian Earth Science, 53: 67-81, doi:10.1016/j.jseaes.2012.02.010.
[95] Tang G..J., Wang Q.*, Wyman D.A., Li Z.-X., Zhao Z.-H., Yang Y.-H. 2012. Late Carboniferous high εNd(t)-εHf(t) granitoids, enclaves and dikes in western Junggar, NW China: ridge-subduction-related magmatism and crustal growth. Lithos 140-141: 86–102, doi:10.1016/j.lithos.2012.01.025
[96] Tang G..J., Wyman D.A., Wang Q.*, Li J., Li Z.X., Zhao ZH., Sun W.D. 2012. Asthenosphere–lithosphere interaction triggered by a slab window during ridge subduction: Trace element and Sr-Nd-Hf-Os isotopic evidence from Late Carboniferous tholeiites in the western Junggar area (NW China). Earth and Planetary Science Letters 329-330, 84–96, doi:10.1016/j.epsl.2012.02.009.
[97] Tang, G.J., Wang Q.*, Wyman D.A., Li Z.X., Xu Y.G., and Zhao Z.H. 2012. Recycling oceanic crust for continental crustal growth: Sr-Nd-Hf isotope evidence from granotoids in the western Junggar region, NW China. Lithos 128-131, 73-83, dio:10.1016/j.lithos.2011.11.003.
2011
[98] Wang Q., Li Z.X., Chung S.L., Wyman D. A., Sun Y.L., Zhao Z.H., Zhu Y.T., Qiu H.N. 2011. Late Triassic high-Mg andesite/dacite suites from northern Hohxil, North Tibet: Geochronology, geochemical characteristics, petrogenetic processes and tectonic implications. Lithos 126(1-2), 54-67, doi: 10.1016/j.lithos.2011.06.002
[99] Shen X.M., Zhang H.X., Wang Q., Wyman D.A., Yang Y.H. 2011. Late Devonian-Early Permian A-type granites in the southern Altay Range, Northwest China: Petrogenesis and implications for tectonic setting of “A2-type” granites. Journal of Asian Earth Sciences 42(5), 986-1007, doi:10.1016/j.jseaes.2010.10.004.
2010
[100] Wang Q., Wyman D.A., Li Z.X., Sun W.D., Chung S.L., Vasconcelos P.M., Zhang Q.Y., Dong H., YuY.S., Pearson N., Qiu H.N., Zhu T.X., Feng X.T. 2010. Eocene north-south trending dikes in central Tibet: New constraints on the timing of east-west extension with implications for early plateau uplift?Earth and Planetary Science Letters, 298: 205–216, doi:10.1016/j.epsl.2010.07.046.
[101] Wang Q., Wyman D.A., Li Z.X., Bao Z.W., Zhao Z.H., Wang Y.X., Jian P., Yang Y.H., Chen L.L. 2010. Petrology, geochronology and geochemistry of ca. 780 Ma A-type granites in South China: Petrogenesis and implications for crustal growth during the breakup of supercontinent Rodinia. Precambrian Research, 178:185–208, doi:10.1016/j.precamres.2010.02.004.
[102] Tang G.J., Wang Q.*, Wyman D.A., Li Z.X., Zhao Z.H., Jia X.H., Jiang Z.Q. 2010. Ridge subduction and crustal growth in the Central Asian Orogenic Belt: Evidence from Late Carboniferous adakites and high-Mg diorites in the western Junggar region, northern Xinjiang (west China). Chemical Geology, 277: 281–300, doi:10.1016/j.chemgeo.2010.08.012.
[103] Tang G.J., Wang Q.*, Wyman D.A., Sun M., Li Z.X., Zhao Z.H., Sun W.D., Jia X.H., Jiang Z.Q. 2010. Geochronology and geochemistry of Late Paleozoic magmatic rocks in the Lamasu-Dabate area, northwestern Tianshan (west China): evidence for a tectonic transition from arc to post-collisional setting. Lithos, 119: 393–411, doi:10.1016/j.lithos.2010.07.010.
2009
[104] Zhao ZH, Wang Q, Xiong XL, Niu HC, Zhang HX, Qiao YL. 2009. Magnesian andesites in north Xinjiang, China. International Journal of Earth Science, 98, 1325–1340.
[105] Zhao ZH, Xiong XL, Wang Q, Bai ZH, Qiao YL, 2009. Late Paleozoic underplating in North Xinjiang: Evidence from shoshonites and adakites. Gondwana Research, 16, 216-226.
2008
[106] Wang, Q., Wyman, D.A., Xu, J.F., Dong, Y.H., Vasconcelos, P. M., Pearson, N., Wan, Y.S., Dong, H., Li, C.F., Yu, Y.S., Zhu, T.X., Feng, X.T., Zhang, Q.Y., Zi, F., Chu, ZY. 2008. Eocene melting of subducting continental crust and early uplifting of central Tibet: evidence from central-western Qiangtang high-K calc-alkaline andesites, dacites and rhyolites. Earth and Planetary Science Letters, 272, 158-171, doi: 10.016/j.epsl.2008.04.034.
[107] Wang Q., Wyman A., Xu J.F., Wan Y.S., Li C.F., Zi F., Jiang Z.Q., Qiu H.N., Chu Z.Y., Zhao Z.H., Dong Y.H. 2008. Triassic Nb-enriched basalts, magnesian andesites, and adakites of the Qiangtang terrane (Central Tibet): evidence for metasomatism by slab-derived melts in the mantle wedge. Contributions to Mineralogy and Petrology, 155, 473–490. DOI 10.1007/s00410-007-0253-1.
[108] Bao ZW, Wang Q, Bai GD, Zhao ZH, Song YW, Liu XM. 2008. Geochronology and geochemistry of the Fangcheng Neoproterozoic alkali-syenites in East Qinling orogen and its geodynamic implications. Chinese Science Bulletin, 53 (13), 2050-2061
[109] Zhao, Z.H., Xiong, X.L., Wang, Q., Wyman, D.A., Bao, Z.W., Bai, Z.H., and Qiao, Y.L. 2008. Underplating-related adakites in Xinjiang Tianshan, China. Lithos, 102(1-2): 374-391.
2007
[110] Wang Q., Wyman A., Xu J. F., Jian P., Zhao Z. H., Li C.F., Xu W., Ma J. L., He B. 2007. Early Cretaceous adakitic granites in the Northern Dabie complex, central China: implications for partial melting and delamination of thickened lower crust. Geochimica et Cosmochimica Acta, 71(10), 2609-2636.
[111] Wang Q., Wyman D.A., Zhao Z.H., Xu J.F., Bai Z.H., Xiong X.L., Dai T.M., Li C.F., Chu Z.Y. 2007. Petrogenesis of Carboniferous adakites and Nb-enriched arc basalts in the Alataw area, northern Tianshan Range (western China): Implication for Phanerozoic crustal growth of Central Asia Orogenic Belt. Chemical Geology, 236 (1-2), 42-64.
[112] Wang Q., Wyman D. A., Xu J. F., Zhao Z. H., Jian P., Zi F. 2007. Partial melting of thickened or delaminated lower crust in the middle of eastern China: implications for Cu-Au mineralization. The Journal of Geology, 115(2), 149-161.
2006
[113] Wang Q., Wyman D. A., Xu J. F., Zhao Z. H., Jian P., Xiong X. L., Bao Z.W., Li C. F., Bai Z. H. 2006. Petrogenesis of Cretaceous adakitic and shoshonitic igneous rocks in the Luzong area, Anhui Province (eastern China): Implications for geodynamics and Cu-Au mineralization. Lithos, 89(3-4), 424-446.
[114] Wang Q., Xu J. F., Jian P., Bao Z. W., Zhao Z. H., Li C. F., Xiong X. L., Ma J. L. 2006. Petrogenesis of adakitic porphyries in an extensional tectonic setting, Dexing, South China: implications for the genesis of porphyry copper mineralization. Journal of Petrology, 47(1), 119-144.
2005
[115] Wang Q., Li J. W., Jian P., Zhao Z. H., Xiong X. L., Bao Z. W., Xu J. F., Li C. F., Ma J. L. 2005. Alkaline syenites in eastern Cathaysia (South China): link to Permian-Triassic transtension. Earth and Planetary Science Letters, 230(3-4), 339-354.
[116] Wang Q., McDermott F., Xu J. F., Bellon H., Zhu Y. T. 2005. Cenozoic K-rich adakitic volcanic rocks in the Hohxil area, northern Tibet: lower crustal melting in an intracontinental setting. Geology, 33(6), 465-468.
2004
[117] Wang Q., Zhao Z. H., Bao Z. W., Xu J. F., Liu W., Li C. F., Bai Z. H., and Xiong X. L. 2004. Geochemistry and petrogenesis of the Tongshankou and Yinzu adakitic intrusive rocks and the associated porphyry copper-molybdenum mineralization in southeast Hubei, east China. Resource Geology, 54(2), 137-152.
[118] Wang Q., Xu J. F., Zhao Z. H., Bao Z. W., Xu W., and Xiong X. L. 2004. Cretaceous high-potassium intrusive rocks in the Yueshan-Hongzhen area of east China: adakites in an extensional tectonic regime within a continent. Geochemical Journal, 38(5), 417-434.
[119] Xu Y. G., Huang X. L., Ma J. L., Wang Y. B., Iizuka Y., Xu J. F., Wang Q., Wu X. Y. 2004. Crust-mantle interaction during the tectono-thermal reactivation of the North China Craton: constraints from SHRIMP zircon U–Pb chronology and geochemistry of Mesozoic plutons from western Shandong. Contributions to Mineralogy and Petrology, 147, 750–767.
[120] Zhao, Z H, Xiong X L, Wang Q, Bai Z H, Xu J F, and Qiao Y L. 2004. The Association of Late Paleozoic Adakitic Rocks and Shoshonitic Volcanic Rocks in Western Tianshan, China. Acta Geologica Sinica, 78(1), 68-72.
2003
[121] Wang Q., Zhao Z. H., Bai Z. H., Bao Z. W., Xu J. F., Xiong X. L., Mei H. J., Wang Y. X. 2003. Carboniferous adakites and Nb-enriched arc basaltic rocks association in the Alataw Mountains, north Xinjiang: interactions between slab melt and mantle peridotite and implications for crustal growth. Chinese Science Bulletin, 48 (19), 2108-2115.
[122] Wang Q., Zhao Z. H., Xu J. F., Li X. H., Bao Z. W., Xiong X. L., Liu Y. M. 2003. Petrologenesis and metallogenesis of the Yanshanian adakite-like rocks in the Eastern Yangtze Block, Science in China, Series D, 2003, 46(Supp), 164-176
[123] Wang Q., Xu J. F., Zhao Z. H., Xiong X. L., Bao Z. W. 2003. Petrogenesis of the Mesozoic intrusive rocks in the Tongling Area, Anhui Province, China and constraint to Geodynamics process. Science in China, Series D, 46(8) , 801-815.
[124] Zhao Z. H., Xiong X. L., Wang Q., Bao Z. W. 2003. Alkaline-rich igneous rocks and related large-super large gold-copper mineralization in China. Science in China, Series D, 46(Supp) , 1-13.
[125] Xiong X. L., Li X. H., Xu J. F., Li W. X., Zhao Z. H., Wang Q. and Chen X. M. 2003. Extremely high-Na adakite-like magmas derived from alkali-rich basaltic underplate: The Late Cretaceous Zhantang andesites in the Huichang Basin, SE China. Geochemical Journal, 37: 233-252.
[126] Liu Y. M., Xu J. F., Dai T. M., Li X. H., Deng X. G., Wang Q. 2003. 40Ar/39Ar isotopic ages of Qianlishan granite and their geologic implications. Science in China, Series D, 2003, 46(Supp), 50-59.
2002
[127] Xu J. F., Shinjio R., Defant M. J., Wang Q., Rapp R. P. 2002. Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China: partial melting of delaminated lower continental crust? Geology, 30, 1111-1114.
[128] Defant M. J., Xu J. F., Kepezhinskas P., Wang Q., Zhang Q., Xiao L. 2002. Adakites: Some Variations on a Theme. Acta Petrologica Sinica, 18(2), 129-142.
[129] Zhao Z. H., Xiong X. L., Han X. D., Wang Y. X., Wang Q., Bao Z. W. 2002. Controls on the REE tetrad effect in granites: Evidence from the Qianlishan and Baerzhe granites, China. Geochemical Journal, 36, 527-543.
2001
[130] Wang Q., Zhao Z. H., Qiu J. X., Wang R. J., Xu J. F. 2001. The Formation of Yanshanian granitic magma in Dabie Mountains: Dehydration or aquifer melting – with Tiantanzhai and Jiuzihe granites as examples. Continental Dynamics, 6(2), 39-47.
[131] Xiong X. L., Zhao Z. H., Bai Z. H., Mei H. J., Wang Y. X., Wang Q., Xu J. F., Bao Z. W. 2001. Adakite-type sodium-rich rocks in Awulale Mountain of west Tianshan: Significance for the vertical growth of continental crust. Chinese Science Bulletin, 46(10), 811-817.
[132] Xu J. F., Mei H. J., Yu X. Y., Bai Z. H., Niu H. C., Chen F. R., Zhen Z. P., Wang Q. 2001. Adakites related to subduction in the northern margin of Junggar arc for the Late Paleozoic: Products of slab melting, Chinese Science Bulletin, 46(15), 1312-1316.