基本信息

刘拓  男  研究员  中国科学院声学研究所
电子邮件: liutuo@mail.ioa.ac.cn
通信地址: 北京市海淀区北四环西路21号
邮政编码:100190

研究领域

国家高层次青年人才计划(海外)入选者。长期从事声学人工结构和非厄米声学的研究,尤其关注声学系统中的特殊模态和模态演化行为(如连续域束缚态和非厄米简并态)及其对声波的非常规调控作用。目前已在国际权威物理学和声学期刊发表论文30余篇,其中以第一或通讯作者(含共同)于Nature Physics, Physical Review Letters和Science Bulletin等期刊发表论文16篇,得到《中国科学》、《两江科技评论》、美国科学促进会(AAAS) EurekAlert!、美国物理学会(APS) Physics等国内外学术组织或媒体的报道,1项工作入选“2020年中国百篇最具影响国际学术论文”;多次受邀在国内外学术会议做报告,荣获PIERS 2021的Young Scientist Award;主持或参与了多项国家自然科学基金、香港研究资助局和香港理工大学项目;承担物理学、声学和力学等领域数十个权威期刊的审稿工作,并获评Europhysics Letters的Distinguished Referee in 2021。

招生信息

   
招生专业
070206-声学
070205-凝聚态物理
080102-固体力学
招生方向
声学人工结构
物理声学
非厄米声学

教育背景

2015-02--2018-09   香港理工大学   博士
2010-09--2013-06   中国石油大学(北京)   硕士
2006-09--2010-06   南京大学   学士

工作经历

   
工作简历
2023-05~现在, 中国科学院声学研究所, 研究员
2022-04~2023-05,中国科学院声学研究所, 副研究员
2021-03~2022-01,香港理工大学深圳研究院, 副研究员
2020-04~2022-01,香港理工大学, Research Assistant Professor
2019-05~2020-04,香港理工大学, Postdoctoral Fellow
2018-10~2019-05,香港理工大学, Research Associate
2017-06~2017-09,University of Colorado Boulder, Visiting Scholar
2013-07~2014-09,北京歌尔泰克科技有限公司, 声学工程师
社会兼职
2022-01-29-今,European Physical Society, Full Member
2018-01-01-今,中国声学学会, 会员
2016-01-01-今,Acoustical Society of America, Full Member

专利与奖励

国家高层次青年人才计划(海外)

Young Scientist Award, PhotonIcs and Electromagnetics Research Symposium (PIERS) 2021 in Hangzhou

专利成果
( 1 ) 具有音频通信功能的终端及其拾取声音信号的方法, 2017, 第 1 作者, 专利号: CN104105019B

( 2 ) 具有音频通信功能的终端, 实用新型, 2014, 第 1 作者, 专利号: CN204014062U

出版信息

期刊论文:

(#contributed equally, *corresponding authors)

[1]       H. Fan, H. Gao*, S. An, Z. Gu, Y. Chen, S. Huang, S. Liang, J. Zhu, T. Liu*, and Z. Su*, Observation of non-Hermiticity-induced topological edge states in the continuum in a trimerized elastic lattice, Phys. Rev. B 106, L180302 (2022). (Letter)

[2]       S. Huang#, S. Xie#, H. Gao, T. Hao, S. Zhang, T. Liu*, Y. Li*, and J. Zhu*, Acoustic Purcell effect induced by quasibound state in the continuum, Fundamental Research, https://doi.org/10.1016/j.fmre.2022.06.009

[3]       X. Tian, T. Liu*, T. Wang, J. Zhu*, and C. Wen, Double-layer acoustic metasurface for the suppression of the Mack second mode in hypersonic boundary-layer flow, Phys. Fluids 34, 074105 (2022).

[4]       T. Liu, S. An, Z. Gu, S. Liang, H. Gao, G. Ma, and J. Zhu*, Chirality-switchable acoustic vortex emission via non-Hermitian selective excitation at an exceptional point, Sci. Bull. 67, 1131 (2022).

[5]       H. Fan, H. Gao, S. An, Z. Gu, S. Liang, Y. Zheng, and T. Liu*, Hermitian and non-Hermitian topological edge states in one-dimensional perturbative elastic metamaterials, Mech. Syst. Signal. Process. 169, 108774 (2022).

[6]       Y. Zheng, S. Liang, H. Fan, S. An, Z. Gu, H. Gao, T. Liu*, and J. Zhu, Acoustic Luneburg lens based on a gradient metasurface for spoof surface acoustic waves, JASA Express Lett. 2, 024004 (2022).

[7]       S. An, T. Liu*, S. Liang, H. Gao, Z. Gu, and J. Zhu*, Unidirectional invisibility of an acoustic multilayered medium with parity-time-symmetric impedance modulation, J. Appl. Phys. 129, 175106 (2021).

[8]       S. Liang, T. Liu*, H. Gao, Z. Gu, S. An, and J. Zhu*, Acoustic metasurface by layered concentric structures, Phys. Rev. Res. 2, 043362 (2020).

[9]       H. Gao, Z. Gu, S. Liang, S. An, T. Liu*, and J. Zhu*, Coding metasurface for Talbot sound amplification, Phys. Rev. Appl. 14, 054067 (2020).

[10]    S. B. Huang#, T. Liu#, Z. Zhou, X. Wang*, J. Zhu*, and Y. Li*, Extreme sound confinement from quasibound states in the continuum, Phys. Rev. Appl. 14, 021001 (2020). (Letter)

[11]    T. Liu, G. C. Ma, S. J. Liang, H. Gao, Z. M. Gu, S. W. An, and J. Zhu*, Single-sided acoustic beam splitting based on parity-time symmetry, Phys. Rev. B 102, 014306 (2020).

[12]    H. Z. Chen#, T. Liu#, H. Y. Luan#, et al., Revealing the missing dimension at an exceptional point, Nat. Phys. 16, 571 (2020).

[13]    R. Zhao, T. Liu*, C. Y. Wen*, J. Zhu*, and L. Cheng, Impedance-near-zero acoustic metasurface for hypersonic boundary-layer flow stabilization Phys. Rev. Appl. 11, 044015 (2019).

[14]    T. Liu, F. Chen, S. Liang, H. Gao, and J. Zhu*, Subwavelength sound focusing and imaging via gradient metasurface-enabled spoof surface acoustic wave modulation. Phys. Rev. Appl. 11, 034061 (2019).

[15]    T. Liu#, X. F. Zhu#,*, F. Chen, S. J. Liang, and J. Zhu*, Unidirectional wave vector manipulation in two-dimensional space with an all passive acoustic parity-time-symmetric metamaterials crystal, Phys. Rev. Lett. 120, 124502 (2018).

[16]    T. Liu, S. Liang, F. Chen, and J. Zhu*, Inherent losses induced absorptive acoustic rainbow trapping with a gradient metasurface, J. Appl. Phys. 123, 091702 (2018).

[17]    刘拓, 乔文孝, 车小花, 段文星, & 赵玉宏, 利用流-固交界面上的伪瑞利波幅度进行液位检测的实验测量声学学报 39, 633-638 (2014).

[18]    刘拓, 乔文孝, 车小花, & 赵玉宏, 液面位置对流-固交界面上伪瑞利波幅度影响的数值模拟声学学报 38, 687-693 (2013).

(其他参与论文)

[1]       H. Fan, H. Gao, T. Liu, S. An, X. Kong, G. Xu, J. Zhu, C.-W. Qiu, and Z. Su, Reconfigurable topological modes in acoustic non-Hermitian crystals, Phys. Rev. B 107, L201108 (2023).

[2]       L. Fan, Y. Chen, S. An, T. Liu, H. Fan, J. Zhu, and Z. Su, Local-Resonance-Induced Dual-Band Topological Corner States of Flexural Waves in a Perforated Metaplate, Phys. Rev. Appl. 19, 034065 (2023).

[3]       S. An, T. Liu, Y. Chen, L. Cheng, and J. Zhu, Routing Edge States in an Anisotropic Elastic Topological Insulator, Phys. Rev. Appl. 18, 054071 (2022).

[4]       X. Wu, H. Fan, T. Liu, Z. Gu, R.-Y. Zhang, J. Zhu, and X. Zhang, Topological phononics arising from fluid-solid interactions, Nat. Commun. 13, 6120 (2022).

[5]       S. An, T. Liu, H. Fan, H. Gao, Z. Gu, S. Liang, S. Huang, Y. Zheng, Y. Chen, L. Cheng, and J. Zhu, Second-order elastic topological insulator with valley-selective corner states, Int. J. Mech. Sci, 107337 (2022)

[6]       H. Gao, Z. Gu, S. Liang, T. Liu, J. Zhu, and Z. Su, Enhancing ultrasound transmission and focusing through a stiff plate with inversely optimized auxiliary meta-lens, Appl. Phys. Lett. 120, 111701 (2022).

[7]       Z. Gu, H. Gao, P.-C. Cao, T. Liu, X.-F. Zhu, and J. Zhu, Controlling Sound in Non-Hermitian Acoustic Systems, Phys. Rev. Appl. 16, 057001 (2021).

[8]       Z. Gu, T. Liu, H. Gao, S. Liang, S. An, and J. Zhu, Acoustic coherent perfect absorber and laser modes via the non-Hermitian dopant in the zero index metamaterials, J. Appl. Phys. 129, 234901 (2021)

[9]       C. Yang, T. Liu, J. Zhu, J. Ren, and H. Chen, Surface-Acoustic-Wave Computing of the Grover Quantum Search Algorithm with Metasurfaces, Phys. Rev. Appl. 15, 044040 (2021).

[10]    H. Gao, H. Xue, Z. Gu, T. Liu, J. Zhu, and B. Zhang, Non-Hermitian route to higher-order topology in an acoustic crystal, Nat. Commun. 12, 1888 (2021)

[11]    Z. Gu, X. Fang, T. Liu, H. Gao, S. Liang, Y. Li, B. Liang, J. Cheng, and J. Zhu, Tunable asymmetric acoustic transmission via binary metasurface and zero-index metamaterials, Appl. Phys. Lett. 118, 113501 (2021)

[12]    Z. Gu, H. Gao, T. Liu, S. Liang, S. An, Y. Li, and J. Zhu, Topologically protected exceptional point with local non-Hermitian modulation in an acoustic crystal, Phys. Rev. Appl. 15, 014025 (2021)

[13]    Z. Gu, H. Gao, T. Liu, Y. Li, and J. Zhu, Dopant-modulated sound transmission with zero index acoustic metamaterials, J. Acoust. Soc. Am. 148, 1636 (2020).

[14]    Q. B. Lu, T. Liu, L. Ding, M. H. Lu, J. Zhu, and Y. F. Chen, Probing the spatial impulse response of ultrahigh-frequency ultrasonic transducers with photoacoustic waves, Phys. Rev. Appl. 14, 034026 (2020).

[15]    H. Gao, H. Xue, Q. Wang, Z. Gu, T. Liu, J. Zhu, and B. Zhang, Observation of topological edge states induced solely by non-Hermiticity in an acoustic crystal, Phys. Rev. B 101, 180303 (2020).

[16]    S. Huang, Z. Zhou, D. Li, T. Liu, X. Wang, J. Zhu, and Y. Li, Compact broadband acoustic sink with coherently coupled weak resonances, Sci. Bull. 65, 373 (2020).

[17]    H. Gao, X. Fang, Z. Gu, T. Liu, S. Liang, Y. Li, and J. Zhu, Conformally mapped multifunctional acoustic metamaterial lens for spectral sound guiding and Talbot effect, Research 2019, 1748537 (2019).

[18]    X. Yu, Z. Lu, T. Liu, L. Cheng, J. Zhu, and F. Cui, Sound transmission through a periodic acoustic metamaterial grating, J. Sound Vib. 449, 140-156 (2019).

[19]    S. Liang, T. Liu, F. Chen, and J. Zhu, Theoretical and experimental study of gradient-helicoid acoustic metamaterial, J. Sound Vib. 442, 482-496 (2019).

[20]    R. Zhao, T. Liu, C. Y. Wen, J. Zhu, and L. Cheng, Theoretical modeling and optimization of porous coating for hypersonic-laminar-flow control, AIAA J. 56, 2942 (2018).

科研活动

项目主持:

[1]       国家高层次青年人才项目(海外), 在研, 主持

[2]       国家自然科学基金委员会青年科学基金项目, 12104383, 非厄密声学环形腔体及其应用研究, 2022-012024-12, 30万元在研主持

[3]       中科院人才项目,在研,主持

[4]       Research Grant Council of Hong Kong, General Research Fund (GRF), 15219221, Study on waterborne spoof surface acoustic waves, 2021-092024-08, 762,156港币, 提前结题, 主持

[5]       香港理工大学, 启动资金, ZZLC, Novel Functional Devices Based on Spoof Surface Acoustic Waves, 2020-052022-05, 50万港币, 提前结题, 主持

指导学生

现指导学生

王铖  硕士研究生  070206-声学