基本信息
唐贻发  男  博导  中国科学院数学与系统科学研究院
电子邮件: tyf@lsec.cc.ac.cn
通信地址: 北京中关村东路55号中科院数学院南楼712室
邮政编码: 100190

研究领域

哈密尔顿系统的辛几何算法、分数阶微分方程数值分析及其应用、机器学习与动力系统

招生信息

   
招生专业
070102-计算数学
070104-应用数学
招生方向
哈密尔顿系统的辛几何算法
机器学习与动力系统
分数阶微分方程数值分析及其应用

教育背景

1993-02--1997-07   中国科学院计算中心、计算数学与科学工程计算研究所   理学博士
1987-09--1990-07   中国科学院计算中心   理学硕士
1983-09--1987-07   复旦大学   理学学士
学历
-- 研究生
学位
-- 博士

工作经历

   
工作简历
2007-11~2008-11,西班牙马德里Complutense大学, 访问教授
2004-03~现在, 中国科学院数学与系统科学研究院, 研究员
1999-02~2004-03,中国科学院数学与系统科学研究院, 副研究员
1997-07~1999-02,中国科学院计算数学与科学工程计算研究所, 助理研究员、副研究员
1995-09~1996-06,美国Los Alamos国家实验室, Staff Research Assistant
1994-06~1995-09,西班牙马德里Complutense大学, 访问学者
1990-07~1993-02,中国科学院计算中心, 研究助理
社会兼职
2016-10-25-今,Progress in Fractional Differentiation and Applications, Member of Editorial Board
2014-08-08-今,Simulation: Transactions of the Society for Modeling and Simulation International, Associate Editor
2014-07-18-今,《计算数学》, 编委
2014-06-05-2021-02-28,International Journal of Computer Mathematics, Associate Editor
2012-08-28-今,《系统仿真学报》, 编委
2012-08-16-2017-08-16,中国计算物理学会, 理事
2010-01-01-今,International Journal of Modeling, Simulation, and Scientific Computing, Associate Editor
2009-11-05-今,中国仿真学会, 常务理事

教授课程

微积分II-A
微积分I-A
常微分方程
哈密尔顿系统的辛几何算法

出版信息

   
发表论文
[1] Beibei Zhu, Yifa Tang, Jian Liu. Energy-preserving methods for guiding center system based on averaged. Physics of Plasmas[J]. 2022, [2] Hu Chen, Mengyi Chen, Tao Sun, Yifa Tang. Local error estimate of L1 scheme for linearized time fractional KdV equation with weakly singular solutions. Applied Numerical Mathematics. 2022, 179: 183-190, [3] Zhu, Aiqing, Jin, Pengzhan, Tang, Yifa. Approximation capabilities of measure-preserving neural networks. Neural Networks[J]. 2022, 147: 72-80, [4] Yue Zhao, Zhiping Mao, Ling Guo, Yifa Tang, George Em Karniadakis. A spectral method for stochastic fractional PDEs using dynamically-orthogonal/bi-orthogonal decomposition. Journal of Computational Physics. 2022, 461: [5] Zhang, Jingna, Huang, Jianfei, Aleroev, Temirkhan S, Tang, Yifa. A linearized ADI scheme for two-dimensional time-space fractional nonlinear vibration equations. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS[J]. 2021, 98(12): 2378-2392, https://www.webofscience.com/wos/woscc/full-record/WOS:000628036300001.
[6] Zhang, Jingna, Aleroev, Temirkhan S, Tang, Yifa, Huang, Jianfei. Numerical Schemes for Time-Space Fractional Vibration Equations. ADVANCES IN APPLIED MATHEMATICS AND MECHANICS[J]. 2021, 13(4): 806-826, https://www.webofscience.com/wos/woscc/full-record/WOS:000640122800004.
[7] Huang, Jianfei, Zhang, Jingna, Arshad, Sadia, Tang, Yifa. A superlinear convergence scheme for the multi-term and distribution-order fractional wave equation with initial singularity. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS[J]. 2021, 37(4): 2833-2848, http://dx.doi.org/10.1002/num.22773.
[8] Huang, Jianfei, Zhang, Jingna, Arshad, Sadia, Tang, Yifa. A numerical method for two-dimensional multi-term time-space fractional nonlinear diffusion-wave equations. APPLIED NUMERICAL MATHEMATICS[J]. 2021, 159: 159-173, http://dx.doi.org/10.1016/j.apnum.2020.09.003.
[9] Huang, Jianfei, Qiao, Zhi, Zhang, Jingna, Arshad, Sadia, Tang, Yifa. Two linearized schemes for time fractional nonlinear wave equations with fourth-order derivative. JOURNAL OF APPLIED MATHEMATICS AND COMPUTING[J]. 2021, 66(1-2): 561-579, http://dx.doi.org/10.1007/s12190-020-01449-x.
[10] Fan, Huijun, Zhao, Yanmin, Wang, Fenling, Shi, Yanhua, Tang, Yifa. A Superconvergent Nonconforming Mixed FEM for Multi-Term Time-Fractional Mixed Diffusion and Diffusion-Wave Equations with Variable Coefficients. EAST ASIAN JOURNAL ON APPLIED MATHEMATICS[J]. 2021, 11(1): 63-92, https://www.webofscience.com/wos/woscc/full-record/WOS:000593119800004.
[11] Sadia Arshad, Iram Saleem, Ozlem Defterli, Yifa Tang, Dumitru Baleanu. Simpson's method for fractional differential equations with a non-singular kernel applied to a chaotic tumor model. Physica Scripta[J]. 2021, [12] Arshad, Sadia, Yildiz, Tugba Akman, Baleanu, Dumitru, Tang, Yifa. THE ROLE OF OBESITY IN FRACTIONAL ORDER TUMOR-IMMUNE MODEL. UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS[J]. 2020, 82(2): 181-196, [13] Jin, Pengzhan, Tang, Yifa, Zhu, Aiqing. UNIT TRIANGULAR FACTORIZATION OF THE MATRIX SYMPLECTIC GROUP. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS[J]. 2020, 41(4): 1630-1650, https://www.webofscience.com/wos/woscc/full-record/WOS:000600630900008.
[14] Bu, Weiping, Ji, Lun, Tang, Yifa, Zhou, Jie. Space-time finite element method for the distributed-order time fractional reaction diffusion equations. APPLIED NUMERICAL MATHEMATICS[J]. 2020, 152: 446-465, http://dx.doi.org/10.1016/j.apnum.2019.11.010.
[15] Tu, Xiongbiao, Murua, Ander, Tang, Yifa. New high order symplectic integrators via generating functions with its application in many-body problem. BIT NUMERICAL MATHEMATICS[J]. 2020, 60(2): 509-535, https://www.webofscience.com/wos/woscc/full-record/WOS:000497830800001.
[16] Jin, Pengzhan, Lu, Lu, Tang, Yifa, Karniadakis, George Em. Quantifying the generalization error in deep learning in terms of data distribution and neural network smoothness. NEURAL NETWORKS[J]. 2020, 130: 85-99, http://dx.doi.org/10.1016/j.neunet.2020.06.024.
[17] Wei, Yabing, Zhao, Yanmin, Wang, Fenling, Tang, Yifa, Yang, Jiye. Superconvergence Analysis of Anisotropic FEMs for Time Fractional Variable Coefficient Diffusion Equations. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY[J]. 2020, 43(6): 4411-4429, https://www.webofscience.com/wos/woscc/full-record/WOS:000521901700001.
[18] Barletti, Luigi, Brugnano, Luigi, Tang, Yifa, Zhu, Beibei. Spectrally accurate space-time solution of Manakov systems. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS[J]. 2020, 377: http://dx.doi.org/10.1016/j.cam.2020.112918.
[19] Jin, Pengzhan, Zhang, Zhen, Zhu, Aiqing, Tang, Yifa, Karniadakis, George Em. SympNets: Intrinsic structure-preserving symplectic networks for identifying Hamiltonian systems. NEURAL NETWORKS[J]. 2020, 132: 166-179, http://dx.doi.org/10.1016/j.neunet.2020.08.017.
[20] Zhao, Yanmin, Wang, Fenling, Hu, Xiaohan, Shi, Zhengguang, Tang, Yifa. Anisotropic linear triangle finite element approximation for multi-term time-fractional mixed diffusion and diffusion-wave equations with variable coefficient on 2D bounded domain. COMPUTERS & MATHEMATICS WITH APPLICATIONS[J]. 2019, 78(5): 1705-1719, http://ir.amss.ac.cn/handle/2S8OKBNM/35379, http://www.irgrid.ac.cn/handle/1471x/6870924, http://ir.amss.ac.cn/handle/2S8OKBNM/35380, http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000482248100035&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=3a85505900f77cc629623c3f2907beab.
[21] Jianfei Huang, Yue Zhao, Sadia Arshad, Kuangying Li, Yifa Tang. ALTERNATING DIRECTION IMPLICIT SCHEMES FOR THE TWO-DIMENSIONAL TIME FRACTIONAL NONLINEAR SUPER-DIFFUSION EQUATIONS. 计算数学:英文版[J]. 2019, 37(3): 297-315, http://lib.cqvip.com/Qikan/Article/Detail?id=7002015321.
[22] Zhu, Beibei, Tang, Yifa, Zhang, Ruili, Zhang, Yihao. Symplectic simulation of dark solitons motion for nonlinear Schrodinger equation. NUMERICAL ALGORITHMS[J]. 2019, 81(4): 1485-1503, http://ir.amss.ac.cn/handle/2S8OKBNM/35355, http://www.irgrid.ac.cn/handle/1471x/6865799, http://ir.amss.ac.cn/handle/2S8OKBNM/35356, http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000478001200019&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=3a85505900f77cc629623c3f2907beab.
[23] Chen, Hu, Hu, Xiaohan, Ren, Jincheng, Sun, Tao, Tang, Yifa. L1 scheme on graded mesh for the linearized time fractional KdV equation with initial singularity. INTERNATIONAL JOURNAL OF MODELING SIMULATION AND SCIENTIFIC COMPUTING[J]. 2019, 10(1): [24] Huang, Jianfei, Zhao, Yue, Arshad, Sadia, Li, Kuangying, Tang, Yifa. ALTERNATING DIRECTION IMPLICIT SCHEMES FOR THE TWO-DIMENSIONAL TIME FRACTIONAL NONLINEAR SUPER-DIFFUSION EQUATIONS. JOURNAL OF COMPUTATIONAL MATHEMATICS[J]. 2019, 37(3): 297-315, http://lib.cqvip.com/Qikan/Article/Detail?id=7002015321.
[25] Zhang, Ruili, Liu, Jian, Qin, Hong, Tang, Yifa. Energy-preserving algorithm for gyrocenter dynamics of charged particles. NUMERICAL ALGORITHMS[J]. 2019, 81(4): 1521-1530, http://ir.amss.ac.cn/handle/2S8OKBNM/35288, http://www.irgrid.ac.cn/handle/1471x/6865750, http://ir.amss.ac.cn/handle/2S8OKBNM/35289, http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000478001200021&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=3a85505900f77cc629623c3f2907beab.
[26] Wang, Fenling, Zhao, Yanmin, Shi, Zhengguang, Shi, Yanhua, Tang, Yifa. High Accuracy Analysis of an Anisotropic Nonconforming Finite Element Method for Two-Dimensional Time Fractional Wave Equation. EAST ASIAN JOURNAL ON APPLIED MATHEMATICS[J]. 2019, 9(4): 797-817, http://ir.amss.ac.cn/handle/2S8OKBNM/35789, http://www.irgrid.ac.cn/handle/1471x/6870936, http://ir.amss.ac.cn/handle/2S8OKBNM/35790, http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000489324500009&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=3a85505900f77cc629623c3f2907beab.
[27] Fenling Wang, Yanmin Zhao, Chen Chen, Yabing Wei, Yifa Tang. A novel high-order approximate scheme for two-dimensional time-fractional diffusion equations with variable coefficient. Computers and Mathematics with Applications. 2019, 1288-1301, http://dx.doi.org/10.1016/j.camwa.2018.11.029.
[28] Wang, Fenling, Zhao, Yanmin, Chen, Chen, Wei, Yabing, Tang, Yifa. A novel high-order approximate scheme for two-dimensional time-fractional diffusion equations with variable coefficient. COMPUTERS & MATHEMATICS WITH APPLICATIONS[J]. 2019, 78(5): 1288-1301, http://ir.amss.ac.cn/handle/2S8OKBNM/35477, http://www.irgrid.ac.cn/handle/1471x/6870927, http://ir.amss.ac.cn/handle/2S8OKBNM/35478, http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000482248100005&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=3a85505900f77cc629623c3f2907beab.
[29] Huang, Jianfei, Arshad, Sadia, Jiao, Yandong, Tang, Yifa. Convolution Quadrature Methods for Time-Space Fractional Nonlinear Diffusion-Wave Equations. EAST ASIAN JOURNAL ON APPLIED MATHEMATICS[J]. 2019, 9(3): 538-557, http://ir.amss.ac.cn/handle/2S8OKBNM/34851, http://www.irgrid.ac.cn/handle/1471x/6870898, http://ir.amss.ac.cn/handle/2S8OKBNM/34852, http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000470088100008&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=3a85505900f77cc629623c3f2907beab.
[30] Yanmin Zhao, Fenling Wang, Xiaohan Hu, Zhengguang Shi, Yifa Tang. Anisotropic linear triangle finite element approximation for multi-term time-fractional mixed diffusion and diffusion-wave equations with variable coefficient on 2D bounded domain. Computers and Mathematics with Applications. 2019, 78(5): 1705-1719, http://ir.amss.ac.cn/handle/2S8OKBNM/35379, http://www.irgrid.ac.cn/handle/1471x/6870924, http://ir.amss.ac.cn/handle/2S8OKBNM/35380, http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000482248100035&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=3a85505900f77cc629623c3f2907beab.
[31] Sheng, Qin, Tang, Yifa, Wade, Bruce A, Wang, Yushun. Recent trends in highly accurate and structure-preserving numerical methods for partial differential equations PREFACE. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICSnull. 2018, 95(1): 1-2, https://www.webofscience.com/wos/woscc/full-record/WOS:000428749300001.
[32] 魏亚冰, 赵艳敏, 唐贻发, 王芬玲, 史争光, 李匡郢. 两项时间混合分数阶扩散波动方程的有限元高精度分析. 中国科学:信息科学[J]. 2018, 48(7): 871-887, http://lib.cqvip.com/Qikan/Article/Detail?id=676046805.
[33] Wei Yabing, Zhao Yanmin, Shi Zhengguang, Wang Fenling, Tang Yifa. Spatial High Accuracy Analysis of FEM for Two-dimensional Multi-term Time-fractional Diffusion-wave Equations. 应用数学学报:英文版[J]. 2018, 34(4): 828-, http://lib.cqvip.com/Qikan/Article/Detail?id=676567774.
[34] Shi, Zhengguang, Zhao, Yanmin, Tang, Yifa, Wang, Fenling, Shi, Yanhua. Superconvergence analysis of an H-1-Galerkin mixed finite element method for two-dimensional multi-term time fractional diffusion equations. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS[J]. 2018, 95(9): 1845-1857, https://www.webofscience.com/wos/woscc/full-record/WOS:000436081400008.
[35] Arshad, Sadia, Baleanu, Dumitru, Huang, Jianfei, Al Qurashi, Maysaa Mohamed, Tang, Yifa, Zhao, Yue. Finite Difference Method for Time-Space Fractional Advection-Diffusion Equations with Riesz Derivative. ENTROPY[J]. 2018, 20(5): https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512840/.
[36] Arshad, Sadia, Baleanu, Dumitru, Huang, Jianfei, Tang, Yifa, Zhao, Yue. A Fourth Order Finite Difference Method for Time-Space Fractional Diffusion Equations. EAST ASIAN JOURNAL ON APPLIED MATHEMATICS[J]. 2018, 8(4): 764-781, http://ir.amss.ac.cn/handle/2S8OKBNM/32317.
[37] Arshad, Sadia, Bu, Weiping, Huang, Jianfei, Tang, Yifa, Zhao, Yue. Finite difference method for time-space linear and nonlinear fractional diffusion equations. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS[J]. 2018, 95(1): 202-217, https://www.webofscience.com/wos/woscc/full-record/WOS:000428749300013.
[38] Wei, Yabing, Zhao, Yanmin, Shi, Zhengguang, Wang, Fenling, Tang, Yifa. Spatial High Accuracy Analysis of FEM for Two-dimensional Multi-term Time-fractional Diffusion-wave Equations. ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES[J]. 2018, 34(4): 828-841, http://lib.cqvip.com/Qikan/Article/Detail?id=676567774.
[39] Zhang, Ruili, Wang, Yulei, He, Yang, Xiao, Jianyuan, Liu, Jian, Qin, Hong, Tang, Yifa. Explicit symplectic algorithms based on generating functions for relativistic charged particle dynamics in time-dependent electromagnetic field. PHYSICS OF PLASMAS[J]. 2018, 25(2): https://www.webofscience.com/wos/woscc/full-record/WOS:000426584700021.
[40] Arshad, Sadia, Huang, Jianfei, Khaliq, Abdul Q M, Tang, Yifa. Trapezoidal scheme for time-space fractional diffusion equation with Riesz derivative. JOURNAL OF COMPUTATIONAL PHYSICS[J]. 2017, 350: 1-15, http://dx.doi.org/10.1016/j.jcp.2017.08.038.
[41] Zhao, Yue, Bu, Weiping, Zhao, Xuan, Tang, Yifa. Galerkin finite element method for two-dimensional space and time fractional Bloch-Torrey equation. JOURNAL OF COMPUTATIONAL PHYSICS[J]. 2017, 350: 117-135, http://dx.doi.org/10.1016/j.jcp.2017.08.051.
[42] Zhao, Yanmin, Zhang, Yadong, Liu, F, Turner, I, Tang, Yifa, Anh, V. Convergence and superconvergence of a fully-discrete scheme for multi-term time fractional diffusion equations. COMPUTERS & MATHEMATICS WITH APPLICATIONS[J]. 2017, 73(6): 1087-1099, http://dx.doi.org/10.1016/j.camwa.2016.05.005.
[43] Arshad, Sadia, Baleanu, Dumitru, Bu, Weiping, Tang, Yifa. Effects of HIV infection on CD4(+) T-cell population based on a fractional-order model. ADVANCES IN DIFFERENCE EQUATIONS[J]. 2017, 92(1): https://doaj.org/article/71d3794ba76844148ac25e22be5ce3a9.
[44] Aleroev, Temirkhan S, Aleroeva, Hedi T, Huang, Jianfei, Tamm, Mikhail V, Tang, Yifa, Zhao, Yue. Boundary value problems of fractional Fokker-Planck equations. COMPUTERS & MATHEMATICS WITH APPLICATIONS[J]. 2017, 73(6): 959-969, http://dx.doi.org/10.1016/j.camwa.2016.06.038.
[45] Zhao, Yanmin, Chen, Pan, Bu, Weiping, Liu, Xiangtao, Tang, Yifa. Two Mixed Finite Element Methods for Time-Fractional Diffusion Equations. JOURNAL OF SCIENTIFIC COMPUTING[J]. 2017, 70(1): 407-428, https://www.webofscience.com/wos/woscc/full-record/WOS:000391930500017.
[46] Zhu, Beibei, Zhang, Ruili, Tang, Yifa, Tu, Xiongbiao, Zhao, Yue. Splitting K-symplectic methods for non-canonical separable Hamiltonian problems. JOURNAL OF COMPUTATIONAL PHYSICS[J]. 2016, 322: 387-399, http://dx.doi.org/10.1016/j.jcp.2016.06.044.
[47] Beibei Zhu, Zhenxuan Hu, Yifa Tang, Ruili Zhang. Symmetric and symplectic methods for gyrocenter dynamics in time-independent magnetic fields. INTERNATIONAL JOURNAL OF MODELING SIMULATION AND SCIENTIFIC COMPUTING[J]. 2016, 7(2): [48] Zhang, Ruili, Qin, Hong, Tang, Yifa, Liu, Jian, He, Yang, Xiao, Jianyuan. Explicit symplectic algorithms based on generating functions for charged particle dynamics. PHYSICAL REVIEW E[J]. 2016, 94(1): https://www.webofscience.com/wos/woscc/full-record/WOS:000380117600009.
[49] Zhang RuiLi, Tang YiFa, Zhu BeiBei, Tu XiongBiao, Zhao Yue. Convergence analysis of the formal energies of symplectic methods for Hamiltonian systems. SCIENCE CHINA-MATHEMATICS[J]. 2016, 59(2): 379-396, http://ir.amss.ac.cn/handle/2S8OKBNM/41461, http://www.irgrid.ac.cn/handle/1471x/6871037, http://ir.amss.ac.cn/handle/2S8OKBNM/41462.
[50] Arshad, Sadia, Baleanu, Dumitru, Huang, Jianfei, Tang, Yifa, Al Qurashi, Maysaa Mohamed. Dynamical analysis of fractional order model of immunogenic tumors. ADVANCES IN MECHANICAL ENGINEERING[J]. 2016, 8(7): https://doaj.org/article/c1c0e2dffdd84ea8a04db2a6cfae504c.
[51] Zhang, Ruili, Liu, Jian, Qin, Hong, Tang, Yifa, He, Yang, Wang, Yulei. Application of Lie Algebra in Constructing Volume-Preserving Algorithms for Charged Particles Dynamics. COMMUNICATIONS IN COMPUTATIONAL PHYSICS[J]. 2016, 19(5): 1397-1408, https://www.webofscience.com/wos/woscc/full-record/WOS:000376456600015.
[52] Tu, Xiongbiao, Zhu, Beibei, Tang, Yifa, Qin, Hong, Liu, Jian, Zhang, Ruili. A family of new explicit, revertible, volume-preserving numerical schemes for the system of Lorentz force. PHYSICS OF PLASMAS[J]. 2016, 23(12): https://www.webofscience.com/wos/woscc/full-record/WOS:000392013000054.
[53] Liu, Na, Tobon, Luis, Tang, Yifa, Liu, Qing Huo. Mixed Spectral Element Method for 2D Maxwell's Eigenvalue Problem. COMMUNICATIONS IN COMPUTATIONAL PHYSICS[J]. 2015, 17(2): 458-486, https://www.webofscience.com/wos/woscc/full-record/WOS:000353693400006.
[54] Liu, Na, Eduardo Tobon, Luis, Zhao, Yanmin, Tang, Yifa, Liu, Qing Huo. Mixed Spectral-Element Method for 3-D Maxwell's Eigenvalue Problem. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES[J]. 2015, 63(2): 317-325, https://www.webofscience.com/wos/woscc/full-record/WOS:000349623300001.
[55] Zhao, Yanmin, Bu, Weiping, Huang, Jianfei, Liu, DaYan, Tang, Yifa. Finite element method for two-dimensional space-fractional advection-dispersion equations. APPLIED MATHEMATICS AND COMPUTATION[J]. 2015, 257: 553-565, https://www.webofscience.com/wos/woscc/full-record/WOS:000350996000050.
[56] Weiping Bu, Xiangtao Liu, Yifa Tang, Jiye Yang. Finite element multigrid method for multi-term time fractional advection diffusion equations. INTERNATIONAL JOURNAL OF MODELING SIMULATION AND SCIENTIFIC COMPUTING[J]. 2015, 6(1): [57] Bu, Weiping, Tang, Yifa, Wu, Yingchuan, Yang, Jiye. Crank-Nicolson ADI Galerkin finite element method for two-dimensional fractional FitzHugh-Nagumo monodomain model. APPLIED MATHEMATICS AND COMPUTATION[J]. 2015, 257: 355-364, https://www.webofscience.com/wos/woscc/full-record/WOS:000350996000033.
[58] Liu, Na, Cai, Guoxiong, Zhu, Chunhui, Tang, Yifa, Liu, Qing Huo. The Mixed Spectral-Element Method for Anisotropic, Lossy, and Open Waveguides. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES[J]. 2015, 63(10): 3094-3102, https://www.webofscience.com/wos/woscc/full-record/WOS:000362357900010.
[59] Bu, Weiping, Tang, Yifa, Wu, Yingchuan, Yang, Jiye. Finite difference/finite element method for two-dimensional space and time fractional Bloch-Torrey equations. JOURNAL OF COMPUTATIONAL PHYSICS[J]. 2015, 293: 264-279, http://dx.doi.org/10.1016/j.jcp.2014.06.031.
[60] JianFei Huang, NingMing Nie, YiFa Tang. A second order finite difference-spectral method for space fractional diffusion equations. Science China Mathematics,[J]. 2014, 57(6): 1303-1317, http://ir.amss.ac.cn/handle/2S8OKBNM/39282, http://www.irgrid.ac.cn/handle/1471x/6871007, http://ir.amss.ac.cn/handle/2S8OKBNM/39283.
[61] Zhang, Ruili, Liu, Jian, Tang, Yifa, Qin, Hong, Xiao, Jianyuan, Zhu, Beibei. Canonicalization and symplectic simulation of the gyrocenter dynamics in time-independent magnetic fields. PHYSICS OF PLASMAS[J]. 2014, 21(3): 032504-1-032504-11, https://www.webofscience.com/wos/woscc/full-record/WOS:000334180200064.
[62] Bu, Weiping, Tang, Yifa, Yang, Jiye. Galerkin finite element method for two-dimensional Riesz space fractional diffusion equations. JOURNAL OF COMPUTATIONAL PHYSICS[J]. 2014, 276: 26-38, http://dx.doi.org/10.1016/j.jcp.2014.07.023.
[63] Jiang, Wei, Liu, Na, Tang, Yifa, Liu, Qing Huo. Mixed Finite Element Method for 2D Vector Maxwell's Eigenvalue Problem in Anisotropic Media. PROGRESS IN ELECTROMAGNETICS RESEARCH-PIER[J]. 2014, 148: 159-170, https://www.webofscience.com/wos/woscc/full-record/WOS:000346151100014.
[64] Nie, Ningming, Huang, Jianfei, Wang, Wenjia, Tang, Yifa. Solving spatial-fractional partial differential diffusion equations by spectral method. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION[J]. 2014, 84(6): 1173-1189, https://www.webofscience.com/wos/woscc/full-record/WOS:000330705200003.
[65] Huang JianFei, Nie NingMing, Tang YiFa. A second order finite difference-spectral method for space fractional diffusion equations. SCIENCE CHINA-MATHEMATICS[J]. 2014, 57(6): 1303-1317, http://ir.amss.ac.cn/handle/2S8OKBNM/39282, http://www.irgrid.ac.cn/handle/1471x/6871007, http://ir.amss.ac.cn/handle/2S8OKBNM/39283.
[66] Huang, Jianfei, Tang, Yifa, Vazquez, Luis, Yang, Jiye. Two finite difference schemes for time fractional diffusion-wave equation. NUMERICAL ALGORITHMS[J]. 2013, 64(4): 707-720, https://www.webofscience.com/wos/woscc/full-record/WOS:000327859500007.
[67] Liu, Na, Tang, Yifa, Zhu, Xiaozhang, Tobon, Luis, Liu, Qinghuo, IEEE Antennas Propagat Soc. Higher-order Mixed Spectral Element Method for Maxwell Eigenvalue Problem. 2013 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM (APSURSI)null. 2013, 1646-+, [68] Huang, Jianfei, Tang, Yifa, Wang, Wenjia, Yang, Jiye, Xiao, TY, Zhang, L, Fei, M. A Compact Difference Scheme for Time Fractional Diffusion Equation with Neumann Boundary Conditions. ASIASIM 2012, PT Inull. 2012, 323: 273-+, [69] Bu, Weiping, Xiao, Aiguo, Tang, Yifa, Xiao, TY, Zhang, L, Ma, S. Finite Difference Methods for Space Fractional Advection-Diffusion Equations with Variable Coefficients. SYSTEM SIMULATION AND SCIENTIFIC COMPUTING, PT IInull. 2012, 327: 95-+, [70] Huang, Jianfei, Tang, Yifa, Vazquez, Luis. Convergence Analysis of a Block-by-Block Method for Fractional Differential Equations. NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS[J]. 2012, 5(2): 229-241, https://www.webofscience.com/wos/woscc/full-record/WOS:000306790000005.
[71] Chen, Yao, Sun, Yajuan, Tang, Yifa. Energy-preserving numerical methods for Landau-Lifshitz equation. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL[J]. 2011, 44(29): https://www.webofscience.com/wos/woscc/full-record/WOS:000292542100014.
[72] Scherer, Rudolf, Kalla, Shyam L, Tang, Yifa, Huang, Jianfei. The Grunwald-Letnikov method for fractional differential equations. COMPUTERS & MATHEMATICS WITH APPLICATIONS[J]. 2011, 62(3): 902-917, https://www.webofscience.com/wos/woscc/full-record/WOS:000294083500008.
[73] Zhu, Huajun, Song, Songhe, Tang, Yifa. Multi-symplectic wavelet collocation method for the nonlinear Schrodinger equation and the Camassa-Holm equation. COMPUTER PHYSICS COMMUNICATIONS[J]. 2011, 182(3): 616-627, https://www.webofscience.com/wos/woscc/full-record/WOS:000287432200008.
[74] 朱华君, 陈亚铭, 宋松和, 唐贻发. 二维非线性Schrdinger方程的辛与多辛格式. 计算数学[J]. 2010, 315-, http://ir.amss.ac.cn/handle/2S8OKBNM/42892, http://www.irgrid.ac.cn/handle/1471x/6871067, http://ir.amss.ac.cn/handle/2S8OKBNM/42893.
[75] Aleroev, T S, Aleroeva, H T, Huang, Jianfei, Nie, Ningming, Tang, Yifa, Zhang, Siyan. FEATURES OF SEEPAGE OF A LIQUID TO A CHINK IN THE CRACKED DEFORMABLE LAYER. INTERNATIONAL JOURNAL OF MODELING SIMULATION AND SCIENTIFIC COMPUTING[J]. 2010, 1(3): 333-347, [76] Zhu, Huajun, Tang, Lingyan, Song, Songhe, Tang, Yifa, Wang, Desheng. Symplectic wavelet collocation method for Hamiltonian wave equations. JOURNAL OF COMPUTATIONAL PHYSICS[J]. 2010, 229(7): 2550-2572, http://dx.doi.org/10.1016/j.jcp.2009.11.042.
[77] NINGMING NIE, YANMIN ZHAO, MIN LI, XIANGTAO LIU, SALVADOR JIMNEZ, YIFA TANG, LUIS VZQUEZ. SOLVING TWO-POINT BOUNDARY VALUE PROBLEMS OF FRACTIONAL DIFFERENTIAL EQUATIONS VIA SPLINE COLLOCATION METHODS. INTERNATIONAL JOURNAL OF MODELING SIMULATION AND SCIENTIFIC COMPUTING[J]. 2010, 1(1): 117-132, [78] 聂宁明, 赵艳敏, Salvador JimxE9nez, 李敏, 唐贻发, Luis VxE1zquez. 解Riemann-Liouville分数阶导数微分方程两点边值问题(英文). 系统仿真学报. 2010, http://kns.cnki.net/KCMS/detail/detail.aspx?QueryID=0&CurRec=3&recid=&FileName=XTFZ201001005&DbName=CJFD2010&DbCode=CJFQ&yx=&pr=&URLID=&bsm=QK0201;.
[79] Ding, Jiu, Tang, Yifa. NON-CONVEXITY OF THE DIMENSION FUNCTION FOR SIERPINSKI PEDAL TRIANGLES. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY[J]. 2010, 18(2): 191-195, https://www.webofscience.com/wos/woscc/full-record/WOS:000284705100005.
[80] 赵艳敏, 何沧平, 唐贻发. 并行多重网格光滑子JGS与PGS的性能比较. 系统仿真学报[J]. 2010, 38-40, http://lib.cqvip.com/Qikan/Article/Detail?id=32663025.
[81] QUANDONG FENG, JINGFANG HUANG, NINGMING NIE, ZAIJIU SHANG, YIFA TANG. IMPLEMENTING ARBITRARILY HIGH-ORDER SYMPLECTIC METHODS VIA KRYLOV DEFERRED CORRECTION TECHNIQUE. INTERNATIONAL JOURNAL OF MODELING SIMULATION AND SCIENTIFIC COMPUTING[J]. 2010, 1(2): 277-301, [82] Song YunZhong, Tang YiFa. Hierarchical-control-based output synchronization of coexisting attractor networks. CHINESE PHYSICS B[J]. 2010, 19(2): http://lib.cqvip.com/Qikan/Article/Detail?id=32885920.
[83] He, PingAn, Zhang, YanPing, Yao, YuHua, Tang, YiFa, Nan, XuYing. The Graphical Representation of Protein Sequences Based on the Physicochemical Properties and Its Applications. JOURNAL OF COMPUTATIONAL CHEMISTRY[J]. 2010, 31(11): 2136-2142, https://www.webofscience.com/wos/woscc/full-record/WOS:000279511200005.
[84] 聂宁明, 赵艳敏, Salvador, Jimenez, 李敏, 唐贻发, Luis, Vazquez. 解Riemann-Liouville分数阶导数微分方程两点边值问题. 系统仿真学报. 2010, 20-24, http://lib.cqvip.com/Qikan/Article/Detail?id=32663021.
[85] Guan, Hua, Jiao, Yandong, Liu, Ju, Tang, Yifa. Explicit Symplectic Methods for the Nonlinear Schrodinger Equation. COMMUNICATIONS IN COMPUTATIONAL PHYSICS[J]. 2009, 6(3): 639-654, https://www.webofscience.com/wos/woscc/full-record/WOS:000267111400011.
[86] Fu JingLi, Nie NingMing, Huang JianFei, Salvador, Jimenez, Tang YiFa, Luis, Vazquez, Zhao WeiJia. Noether conserved quantities and Lie point symmetries of difference Lagrange-Maxwell equations and lattices. CHINESE PHYSICS B[J]. 2009, 18(7): 2634-2641, http://lib.cqvip.com/Qikan/Article/Detail?id=31023176.
[87] Zhao, Yanmin, Dai, Guidong, Tang, Yifa, Liu, Qinghuo. Symplectic discretization for spectral element solution of Maxwell's equations. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL[J]. 2009, 42(32): https://www.webofscience.com/wos/woscc/full-record/WOS:000268342600010.
[88] Fu, Jingli, Jimenez, Salvador, Tang, Yifa, Vazquez, Luis. Construction of exact invariants of time-dependent linear nonholonomic dynamical systems. PHYSICS LETTERS A[J]. 2008, 372(10): 1555-1561, https://www.webofscience.com/wos/woscc/full-record/WOS:000254033900004.
[89] Jiao, Yandong, Dai, Guidong, Feng, Quandong, Tang, Yifa. Non-existence of conjugate-symplectic multi-step methods of odd order. JOURNAL OF COMPUTATIONAL MATHEMATICS[J]. 2007, 25(6): 690-696, http://lib.cqvip.com/Qikan/Article/Detail?id=25819160.
[90] Tang, Yifa, Cao, Jianwen, Liu, Xiangtao, Sun, Yuanchang. Symplectic methods for the Ablowitz-Ladik discrete nonlinear Schrodinger equation. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL[J]. 2007, 40(10): 2425-2437, https://www.webofscience.com/wos/woscc/full-record/WOS:000245035200015.
[91] 唐贻发. Hamilton系统辛几何算法及其对非线性薛定谔方程的应用. 2005, http://kns.cnki.net/KCMS/detail/detail.aspx?QueryID=0&CurRec=3583&recid=&FileName=AGLU200508002453&DbName=CPFD9908&DbCode=CPFD&yx=&pr=&URLID=&bsm=.
[92] Tang Yifa. expansionofsteptransitionoperatorofmultistepmethodanditsapplicationsi1. journalofcomputationalmathematics[J]. 2002, 20(2): 185-, http://ir.amss.ac.cn/handle/2S8OKBNM/44734, http://www.irgrid.ac.cn/handle/1471x/6871108, http://ir.amss.ac.cn/handle/2S8OKBNM/44735.
[93] Tang, YF. On conjugate symplecticity of multi-step methods. JOURNAL OF COMPUTATIONAL MATHEMATICS[J]. 2000, 18(4): 431-438, http://lib.cqvip.com/Qikan/Article/Detail?id=1004393820.
[94] Tang, YF. A note on construction of higher-order symplectic schemes from lower-order one via formal energies. JOURNAL OF COMPUTATIONAL MATHEMATICS[J]. 1999, 17(6): 561-568, http://lib.cqvip.com/Qikan/Article/Detail?id=3000875991.
[95] Konotop, VV, PerezGarcia, VM, Tang, YF, Vazquez, L. Interaction of a dark soliton with a localized impurity. PHYSICS LETTERS A[J]. 1997, 236(4): 314-318, https://www.webofscience.com/wos/woscc/full-record/WOS:000071015500010.
[96] 唐贻发. Hamilton系统辛算法及其对非线性Schrodinger方程的应用. 1997, [97] Tang, YF, PerezGarcia, VM, Vazquez, L. Symplectic methods for the Ablowitz-Ladik model. APPLIED MATHEMATICS AND COMPUTATION[J]. 1997, 82(1): 17-38, https://www.webofscience.com/wos/woscc/full-record/WOS:A1997WD49300002.
[98] Tang, YF, Vazquez, L, Zhang, F, PerezGarcia, VM. Symplectic methods for the nonlinear Schrodinger equation. COMPUTERS & MATHEMATICS WITH APPLICATIONS[J]. 1996, 32(5): 73-83, [99] Y.-F. Tang. Formal energy of a symplectic scheme for hamiltonian systems and its applications (I). Computers and Mathematics with Applications. 1994, 27(7): 31-39, http://dx.doi.org/10.1016/0898-1221(94)90147-3.
[100] Yi-Fa Tang, Yong-Hong Long. Formal energy of symplectic scheme for Hamiltonian systems and its applications (II). Computers and Mathematics with Applications. 1994, 27(12): 31-39, http://dx.doi.org/10.1016/0898-1221(94)90083-3.
[101] Yi-Fa Tang. The symplecticity of multi-step methods. Computers and Mathematics with Applications. 1993, 25(3): 83-90, http://dx.doi.org/10.1016/0898-1221(93)90146-M.
[102] TANG, YF. NON-CONSERVATIVITY OF TRADITIONAL SCHEMES FOR LIOUVILLE AND CONTACT SYSTEMS. COMPUTERS & MATHEMATICS WITH APPLICATIONS[J]. 1993, 25(8): 89-94, http://dx.doi.org/10.1016/0898-1221(93)90174-T.
[103] TANG, YF. THE NECESSARY CONDITION FOR A RUNGE-KUTTA SCHEME TO BE SYMPLECTIC FOR HAMILTONIAN-SYSTEMS. COMPUTERS & MATHEMATICS WITH APPLICATIONS[J]. 1993, 26(1): 13-20, http://dx.doi.org/10.1016/0898-1221(93)90082-7.
[104] TANG, YF. GEODESIC-FLOWS ON COMPACT SURFACES - AS AN APPLICATION OF HAMILTONIAN-FORMALISM. COMPUTERS & MATHEMATICS WITH APPLICATIONS[J]. 1993, 26(1): 21-33, http://dx.doi.org/10.1016/0898-1221(93)90083-8.

科研活动


科研项目
( 1 ) Hamilton系统的辛几何算法和对称算法的定性研究, 主持, 国家级, 2014-01--2017-12
( 2 ) 磁约束聚变等离子体模拟的几何方法及理论, 参与, 国家级, 2014-03--2019-02
( 3 ) 等离子体物理中的辛算法与平均方法, 主持, 国家级, 2018-01--2021-12
( 4 ) 非完全动态信息自适应博弈, 参与, 国家级, 2019-12--2022-12

指导学生

已指导学生

戴桂冬  博士研究生  070102-计算数学  

丰全东  博士研究生  070102-计算数学  

焦艳东  博士研究生  070102-计算数学  

赵艳敏  博士研究生  070104-应用数学  

李敏  博士研究生  070102-计算数学  

聂宁明  博士研究生  070102-计算数学  

何沧平  博士研究生  070102-计算数学  

黄健飞  博士研究生  070102-计算数学  

陈耀  博士研究生  070102-计算数学  

刘娜  博士研究生  070102-计算数学  

杨继业  博士研究生  070102-计算数学  

张瑞丽  博士研究生  070102-计算数学  

卜玮平  博士研究生  070102-计算数学  

赵越  硕士研究生  070102-计算数学  

朱贝贝  博士研究生  070102-计算数学  

涂雄标  博士研究生  070102-计算数学  

张宜浩  硕士研究生  070102-计算数学  

现指导学生

赵越  博士研究生  070102-计算数学  

金鹏展  博士研究生  070102-计算数学  

张嘉炜  博士研究生  070102-计算数学  

纪伦  博士研究生  070102-计算数学  

郭鑫祥  硕士研究生  070102-计算数学  

祝爱卿  博士研究生  070102-计算数学