基本信息

任凯亮 男 中国科学院北京纳米能源与系统研究所
电子邮件:renkailiang@binn.cas.cn
通信地址:北京市怀柔区雁栖经济开发区杨雁东一路8号
邮政编码:101400

研究领域

研究方向:新型压电纳米复合材料、铁电材料及应用,主要有:
基于压电纳米材料的柔性可穿戴器件以及能量能量收集器件
压电材料的电卡效应
挠曲电效应提升的铁电光伏效应

招生信息

中国科学院北京纳米能源与系统研究所任凯亮课题组由于科研工作的需要,现面向海内外招聘助理研究员1人、博士后2人。

一、开展以下数方面研究工作:
方向1:压电换能器与驱动器:Piezoelectric transducer and actuator
方向2:基于MEMS的传感器:MEMS based piezoelectric sensor
方向3:新型压电聚合物的开发与利用: The development of new piezoelectric polymers
岗位要求:具有微电子、声学、化学、机械等相关专业博士学位,有从事MEMS, 压电换能器或者化学合成方面的研究经历。

其他要求:
申请人需要具有在科研上的充分的自主能动性,对科研的浓厚兴趣以及原创性思维。 The candidate must have a self-motivation in doing research; He/she should have strong interests and creativity in what they are doing.
申请人需要具有很好的团队精神,领导能力,与人为善并活泼开朗,并协助导师对博士生的指导及管理。材料科学是一门交叉性学科,因此要求申请人具有广泛的物理或者化学方面的基础知识具有极强的动手能力。The candidate must have excellent teamwork, leadership and easy-going attitude to life; he/she should help advisor to give Master and PhD student direction. He/she should have strong background in either physics or chemistry.

岗位待遇:按纳米能源所和中国科学院有关规定执行。
联系方式:
有意者请将个人简历(包括个人情况、教育经历、工作经历、论文成果目录、研究兴趣,代表性论文等)及能体现个人能力的相关资料email至renkailiang@binn.cas.cn。
招生专业
080903-微电子学与固体电子学
080901-物理电子学
招生方向
压电聚合物及其器件应用
MEMS传感器
纳米发电机,能量收获和能量储存器件

教育背景

2005-01--2007-12 The Pennsylvania State University 博士
2003-05--2005-05 The Pennsylvania State University 硕士
1993-09--1997-06 天津大学 本科
学历
博士
学位
Ph.D. 2007

工作经历

   
工作简历
2011-01--2014-12 Johns Hopkins University 博士后
2009-09--2010-12 The Pennsylvania State University 博士后
2007-10--2009-08 The Strategic Polymer Science, Inc 器件工程师

出版信息

   
发表论文
[1] Gong, Shaobo, Zhang, Jinxi, Wang, Chenchen, Ren, Kailiang. Theoretical and experimental study of a monocharged electret for pressure sensor applications. JOURNAL OF APPLIED PHYSICS[J]. 2021, 129(3): https://www.webofscience.com/wos/woscc/full-record/WOS:000610090300001.
[2] Wang, Chenchen, Zhang, Yang, Zhang, Bowen, Wang, Bo, Zhang, Jinxi, Chen, LongQing, Zhang, Qiming, Wang, Zhong Lin, Ren, Kailiang. Flexophotovoltaic Effect in Potassium Sodium Niobate/Poly(Vinylidene Fluoride-Trifluoroethylene) Nanocomposite. ADVANCED SCIENCE[J]. 2021, 8(8): https://doaj.org/article/a6669d583b82484199a994819ede311f.
[3] Zhang, Shuangzhe, Zhang, Bowen, Zhang, Jinxi, Ren, Kailiang. Enhanced Piezoelectric Performance of Various Electrospun PVDF Nanofibers and Related Self-Powered Device Applications. ACS APPLIED MATERIALS & INTERFACES[J]. 2021, 13(27): 32242-32250, http://dx.doi.org/10.1021/acsami.1c07995.
[4] Li, Jiayuan, Zhang, Jinxi, Zhang, Shuangzhe, Ren, Kailiang. 2D MoS2 Nanosheet-Based Polyimide Nanocomposite with High Energy Density for High Temperature Capacitor Applications. MACROMOLECULAR MATERIALS AND ENGINEERING[J]. 2021, 306(7): http://dx.doi.org/10.1002/mame.202100079.
[5] Han, Feifei, Hu, Yuhao, Peng, Biaolin, Liu, Laijun, Yang, Rusen, Ren, Kailiang. High dielectric tunability with high thermal stability of the (111) highly oriented 0.85Pb(Mg1/3Nb2/3)-0.15PbTiO3 thin film prepared by a sol-gel method. JOURNAL OF THE EUROPEAN CERAMIC SOCIETY[J]. 2021, 41(13): 6482-6489, http://dx.doi.org/10.1016/j.jeurceramsoc.2021.06.034.
[6] Wang, Yonggui, Zhang, Jinxi, Zhang, Bowen, Ren, Kailiang. Poly(lactic acid)-Based Film with Excellent Thermal Stability for High Energy Density Capacitor Applications. MACROMOLECULAR MATERIALS AND ENGINEERING[J]. 2021, 306(11): [7] Ren Kailiang. Biodegradable Poly(lactic acid)-Based Hybrid Piezoelectric and Electret Nanogenerator for Electronic Skin and Remote Control Applications. Advanced Functional Materials. 2020, [8] Qiao, Shuang, Chen, Mingjing, Wang, Yu, Liu, Jihong, Lu, Junfeng, Li, Fangtao, Fu, Guangsheng, Wang, Shufang, Ren, Kailiang, Pan, Caofeng. Ultrabroadband, Large Sensitivity Position Sensitivity Detector Based on a Bi2Te2.7Se0.3/Si Heterojunction and Its Performance Improvement by Pyro-Phototronic Effect. ADVANCED ELECTRONIC MATERIALS[J]. 2019, 5(12): https://www.webofscience.com/wos/woscc/full-record/WOS:000486905700001.
[9] Zhang, Jinxi, Gong, Shaobo, Wang, Chenchen, Jeong, DaeYong, Wang, Zhong Lin, Ren, Kailiang. Biodegradable Electrospun Poly(lactic acid) Nanofibers for Effective PM 2.5 Removal. MACROMOLECULAR MATERIALS AND ENGINEERING[J]. 2019, 304(10): [10] Zhao, Chunlin, Zhang, Qian, Zhang, Wenliang, Du, Xinyu, Zhang, Yang, Gong, Shaobo, Ren, Kailiang, Sun, Qijun, Wang, Zhong Lin. Hybrid piezo/triboelectric nanogenerator for highly efficient and stable rotation energy harvesting. NANO ENERGY[J]. 2019, 57: 440-449, http://dx.doi.org/10.1016/j.nanoen.2018.12.062.
[11] Gong, Shaobo, Zhang, Jinxi, Wang, Chenchen, Ren, Kailiang, Wang, Zhong Lin. A Monocharged Electret Nanogenerator-Based Self-Powered Device for Pressure and Tactile Sensor Applications. ADVANCED FUNCTIONAL MATERIALS[J]. 2019, 29(41): https://www.webofscience.com/wos/woscc/full-record/WOS:000489051200013.
[12] Qiao, Shuang, Liu, Jihong, Fu, Guangsheng, Wang, Shufang, Ren, Kailiang, Pan, Caofeng. Laser-induced photoresistance effect in Si-based vertical standing MoS2 nanoplate heterojunctions for self-powered high performance broadband photodetection. JOURNAL OF MATERIALS CHEMISTRY C[J]. 2019, 7(34): 10642-10651, https://www.webofscience.com/wos/woscc/full-record/WOS:000483684600023.
[13] Gong, Shaobo, Wang, Chenchen, Zhang, Jinxi, Zhang, Chi, West, James E, Ren, Kailiang. Monocharged Electret Generator for Wearable Energy Harvesting Applications. ADVANCED SUSTAINABLE SYSTEMS[J]. 2018, 2(5): https://www.webofscience.com/wos/woscc/full-record/WOS:000431962800004.
[14] Zhang, Jinxi, Du, Xinyu, Wang, Chenchen, Ren, Kailiang. Poly(vinylidene fluoride-hexafluoropropylene) based blend film for ultrahigh energy density capacitor applications. JOURNAL OF PHYSICS D-APPLIED PHYSICS[J]. 2018, 51(25): https://www.webofscience.com/wos/woscc/full-record/WOS:000434266600003.
[15] Qiao, Shuang, Liu, Jihong, Niu, Xiaona, Liang, Baolai, Fu, Guangsheng, Li, Zhiqiang, Wang, Shufang, Ren, Kailiang, Pan, Caofeng. Piezophototronic Effect Enhanced Photoresponse of the Flexible Cu(In,Ga)Se-2 (CIGS) Heterojunction Photodetectors. ADVANCED FUNCTIONAL MATERIALS[J]. 2018, 28(19): https://www.webofscience.com/wos/woscc/full-record/WOS:000431615300011.
[16] Qiao, Shuang, Liu, Jihong, Fu, Guangsheng, Ren, Kailiang, Li, Zhiqiang, Wang, Shufang, Pan, Caofeng. ZnO nanowire based CIGS solar cell and its efficiency enhancement by the piezo-phototronic effect. NANO ENERGY[J]. 2018, 49: 508-514, http://dx.doi.org/10.1016/j.nanoen.2018.04.070.
[17] Wang, Chenchen, Zhang, Jinxi, Gong, Shaobo, Ren, Kailiang. Significantly enhanced breakdown field for core-shell structured poly(vinylidene fluoride-hexafluoropropylene)/TiO2 nanocomposites for ultra-high energy density capacitor applications. JOURNAL OF APPLIED PHYSICS[J]. 2018, 124(15): https://www.webofscience.com/wos/woscc/full-record/WOS:000448317300060.
[18] Qiao, Shuang, Cong, Ridong, Liu, Jihong, Liang, Baolai, Fu, Guangsheng, Yu, Wei, Ren, Kailiang, Wang, Shufang, Pan, Caofeng. A vertically layered MoS2/Si heterojunction for an ultrahigh and ultrafast photoresponse photodetector. JOURNAL OF MATERIALS CHEMISTRY C[J]. 2018, 6(13): 3233-3239, https://www.webofscience.com/wos/woscc/full-record/WOS:000431290600009.
[19] Wang, Aochen, Liu, Zhuo, Hu, Ming, Wang, Chenchen, Zhang, Xiaodi, Shi, Bojing, Fan, Yubo, Cui, Yonggang, Li, Zhou, Ren, Kailiang. Piezoelectric nanofibrous scaffolds as in vivo energy harvesters for modifying fibroblast alignment and proliferation in wound healing. NANO ENERGY[J]. 2018, 43: 63-71, http://dx.doi.org/10.1016/j.nanoen.2017.11.023.
[20] Zhao, Gengrui, Huang, Baisheng, Zhang, Jinxi, Wang, Aochen, Ren, Kailiang, Wang, Zhong Lin. Electrospun Poly(l-Lactic Acid) Nanofibers for Nanogenerator and Diagnostic Sensor Applications. MACROMOLECULAR MATERIALS AND ENGINEERING[J]. 2017, 302(5): https://www.webofscience.com/wos/woscc/full-record/WOS:000401186200003.
[21] Zhao, Chunlin, Zhang, Jinxi, Wang, Zhong Lin, Ren, Kailiang. A Poly(L-Lactic Acid) Polymer-Based Thermally Stable Cantilever for Vibration Energy Harvesting Applications. ADVANCED SUSTAINABLE SYSTEMS[J]. 2017, 1(9): https://www.webofscience.com/wos/woscc/full-record/WOS:000424595000006.
[22] Du, Xinyu, Zhao, Chunlin, Zhang, Jinxi, Ren, Kailiang. Study of field-induced chain conformation transformation in poly(L-lactic acid) based piezoelectric film by infrared spectroscopy. JOURNAL OF APPLIED PHYSICS[J]. 2016, 120(16): https://www.webofscience.com/wos/woscc/full-record/WOS:000387580600020.
[23] Ren, Kailiang, Bortolin, Robert S, Zhang, Q M. An investigation of a thermally steerable electroactive polymer/shape memory polymer hybrid actuator. APPLIED PHYSICS LETTERS[J]. 2016, 108(6): https://www.webofscience.com/wos/woscc/full-record/WOS:000373056300030.
[24] Ren Kailiang. "Planar microphone based on piezoelectric electrospun poly(γ-benzyl-?,L-glutamate) nanofibers. the Journal of the Acoustical Society of America (JASA)-Express Letter. 2014, [25] Ren Kailiang. "Piezoelectric Property at Hot Pressed Electrospun PBLG (poly (γ-benzyl-L-glutamate) Polymers". Applied Physics A: Materials Sciences and Processing. 2012, [26] Ren, Kailiang, Kao, Ping, Pisani, Marcelo B, Tadigadapa, Srinivas. Monitoring biochemical reactions using Y-cut quartz thermal sensors. ANALYST[J]. 2011, 136(14): 2904-2911, https://www.webofscience.com/wos/woscc/full-record/WOS:000292114000005.
[27] Farrar, Dawnielle, Ren, Kailiang, Cheng, Derek, Kim, Sungjoo, Moon, Wonkyu, Wilson, William L, West, James E, Yu, S Michael. Permanent Polarity and Piezoelectricity of Electrospun alpha-Helical Poly(alpha-Amino Acid) Fibers. ADVANCED MATERIALS[J]. 2011, 23(34): 3954-+, https://www.webofscience.com/wos/woscc/full-record/WOS:000295227600013.
[28] Pisani, Marcelo B, Ren, Kailiang, Kao, Ping, Tadigadapa, Srinivas. Application of Micromachined Y-Cut-Quartz Bulk Acoustic Wave Resonator for Infrared Sensing. JOURNAL OF MICROELECTROMECHANICAL SYSTEMS[J]. 2011, 20(1): 288-296, https://www.webofscience.com/wos/woscc/full-record/WOS:000286934900035.
[29] Ren, Kailiang, Liu, Sheng, Lin, Minren, Wang, Yong, Zhang, Q M. A compact electroactive polymer actuator suitable for refreshable Braille display. SENSORS AND ACTUATORS A-PHYSICAL[J]. 2008, 143(2): 335-342, http://dx.doi.org/10.1016/j.sna.2007.10.083.
[30] Ren Kailiang. "An Active Energy Harvesting Scheme with An Electroactive Polymers". Appl. Phys. Lett.,. 2007, [31] Wang, Yong, Ren, Kailiang, Zhang, Q M. Direct piezoelectric response of piezopolymer polyvinylidene fluoride under high mechanical strain and stress. APPLIED PHYSICS LETTERS[J]. 2007, 91(22): https://www.webofscience.com/wos/woscc/full-record/WOS:000251324600060.
[32] Neese, Bret, Wang, Yong, Chu, Baojin, Ren, Kailiang, Liu, Sheng, Zhang, Q M, Huang, Cheng, West, James. Piezoelectric responses in poly(vinylidene fluoride/hexafluoropropylene) copolymers. APPLIED PHYSICS LETTERS[J]. 2007, 90(24): https://www.webofscience.com/wos/woscc/full-record/WOS:000247305400082.
[33] Chen, Qin, Ren, Kailiang, Chu, Baojin, Liu, Yiming, Zhang, Q M, Bobnar, Vid, Levstik, A. Relaxor ferroelectric polymers - Fundamentals and applications. FERROELECTRICS[J]. 2007, 354: 178-+, https://www.webofscience.com/wos/woscc/full-record/WOS:000249241900023.
[34] Zhang, SH, Chu, BJ, Neese, B, Ren, KL, Zhou, X, Zhang, QM. Direct spectroscopic evidence of field-induced solid-state chain conformation transformation in a ferroelectric relaxor polymer. JOURNAL OF APPLIED PHYSICS[J]. 2006, 99(4): https://www.webofscience.com/wos/woscc/full-record/WOS:000235663100043.
[35] Zhang, Shihai, Neese, Bret, Ren, Kailiang, Chu, Baojin, Zhang, Q M. Microstructure and electromechanical responses in semicrystalline ferroelectric relaxor polymer blends. JOURNAL OF APPLIED PHYSICS[J]. 2006, 100(4): https://www.webofscience.com/wos/woscc/full-record/WOS:000240236800097.
[36] Zhang, SH, Klein, RJ, Ren, KL, Chu, BJ, Zhang, X, Runt, J, Zhang, QM. Normal ferroelectric to ferroelectric relaxor conversion in fluorinated polymers and the relaxor dynamics. JOURNAL OF MATERIALS SCIENCE[J]. 2006, 41(1): 271-280, https://www.webofscience.com/wos/woscc/full-record/WOS:000236166300024.
[37] Chu, Baojin, Zhou, Xin, Ren, Kailiang, Neese, Bret, Lin, Minren, Wang, Qing, Bauer, F, Zhang, Q M. A dielectric polymer with high electric energy density and fast discharge speed. SCIENCE[J]. 2006, 313(5785): 334-336, https://www.webofscience.com/wos/woscc/full-record/WOS:000239154300039.
[38] Ren, KL, Liu, YM, Geng, XC, Hofmann, HF, Zhang, QMM. Single crystal PMN-PT/epoxy 1-3 composite for energy-harvesting application. IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL[J]. 2006, 53(3): 631-638, https://www.webofscience.com/wos/woscc/full-record/WOS:000235784900015.
[39] Liu, YM, Ren, KL, Hofmann, HF, Zhang, QM. Investigation of electrostrictive polymers for energy harvesting. IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL[J]. 2005, 52(12): 2411-2417, https://www.webofscience.com/wos/woscc/full-record/WOS:000234398700027.
[40] Ren Kailiang. "Microstructure and Electromechanical Properties of Nanotube/Poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) Composite". Advanced Materials. 2005, [41] Ao Yan, Xiaoting Yuan, Zhanmiao Li, Jikun Yang, Kailiang Ren, Shuxiang Dong. 3D-printed flexible, layered ceramic-polymer composite grid with integrated structural-self-sensing function. Sensors and Actuators: A. Physical.