基本信息
王冉冉  女  硕导  中国科学院上海硅酸盐研究所
电子邮件: wangranran@mail.sic.ac.cn
通信地址: 上海市嘉定区和硕585号
邮政编码:

研究领域

柔性电子、可穿戴传感器、低维导电材料、电子皮肤、可拉伸导体、柔性电极

教育背景

2010-10--2012-06   加州大学洛杉矶分校   联合培养
2007-09--2013-01   中国科学院上海硅酸盐研究所   研究生/博士
学历
研究生学历

学位
工学博士

工作经历

   
工作简历
2015-10~现在, 中国科学院上海硅酸盐研究所, 副研究员
2013-03~2015-09,中国科学院上海硅酸盐研究所, 助理研究员
社会兼职
2019-01-01-今,硅酸盐学会青年委员,
2014-01-01-今,中科院青年创新促进会会员,

专利与奖励

   
奖励信息
(1) 中科院青年创新促进会优秀会员, 院级, 2018
(2) 中国科协青年人才托举工程, 专项, 2018
(3) 上海市青年科技启明星, 省级, 2017
(4) 上海市优秀毕业论文, 省级, 2015
(5) 中科院青年创新促进会会员, 院级, 2014
(6) 中科院院长优秀奖, 院级, 2013
专利成果
( 1 ) 一种超长银纳米线及其制备方法, 发明, 2017, 第 1 作者, 专利号: CN201510100785.4
( 2 ) 一种复合黑色二氧化钛薄膜及其制备方法, 发明, 2016, 第 3 作者, 专利号: ZL201510093753.6
( 3 ) 铜纳米线/聚丙烯酸酯复合材料及其制备方法, 发明, 2016, 第 3 作者, 专利号: ZL201410106692.8
( 4 ) 石墨烯-铜纳米线复合薄膜及其制备方法, 发明, 2017, 第 3 作者, 专利号: ZL201410172931.X
( 5 ) 一种铜银双金属纳米线及其制备方法, 发明, 2017, 第 3 作者, 专利号: ZL201510100808.1
( 6 ) 一种超长铜镍合金纳米线及其制备方法, 发明, 2017, 第 3 作者, 专利号: ZL201410153158.2
( 7 ) 一种高弹性导电纤维及其制备方法, 发明, 2017, 第 3 作者, 专利号: ZL201510019494.2
( 8 ) 一种可穿戴电加热系统, 发明, 2017, 第 3 作者, 专利号: ZL201620507932.X
( 9 ) 一种超长铜纳米线和铜纳米线导电薄膜的制备方法, 发明, 2015, 第 3 作者, 专利号: ZL201210323822.4
( 10 ) 一种分散碳纳米管用的分散剂及制备碳纳米管薄膜的方法, 发明, 2012, 第 2 作者, 专利号: ZL200910247866.1
( 11 ) 一种去除金属纳米线表面氧化层和有机物的方法, 发明, 2018, 第 1 作者, 专利号: ZL201410723389.2
( 12 ) 一种铜纳米线导电体的处理方法, 发明, 2019, 第 3 作者, 专利号: ZL201610417155.4
( 13 ) 一种柔性可穿戴柔性纤维传感器及其制备方法和应用, 发明, 2019, 第 3 作者, 专利号: 201510518867.0

出版信息

   
发表论文
[1] Li, Yuxiang, Wang, Ranran, Wang, GuanE, Feng, Shiyang, Shi, Wenge, Cheng, Yin, Shi, Liangjing, Fu, Kaiyuan, Sun, Jing. Mutually Noninterfering Flexible Pressure-Temperature Dual-Modal Sensors Based on Conductive Metal-Organic Framework for Electronic Skin. ACS NANO[J]. 2022, 16(1): 473-484, [2] Yan, Qiuyang, Cheng, Yin, Wang, Ranran, Sun, Jing. Recent advances in 3D porous MXenes: structures, properties and applications. JOURNAL OF PHYSICS D-APPLIED PHYSICSnull. 2022, 55(9): [3] Hu, Ying, Yang, Lulu, Yan, Qiuyang, Ji, Qixiao, Chang, Longfei, Zhang, Chenchu, Yan, Jian, Wang, Ranran, Zhang, Lei, Wu, Guan, Sun, Jing, Zi, Bin, Chen, Wei, Wu, Yucheng. Self-Locomotive Soft Actuator Based on Asymmetric Microstructural Ti3C2Tx MXene Film Driven by Natural Sunlight Fluctuation. ACS NANO[J]. 2021, 15(3): 5294-5306, http://dx.doi.org/10.1021/acsnano.0c10797.
[4] Tang, Hao, Nie, Pu, Wang, Ranran, Sun, Jing. Piezoresistive electronic skin based on diverse bionic microstructure. SENSORS AND ACTUATORS A-PHYSICAL[J]. 2021, 318: http://dx.doi.org/10.1016/j.sna.2020.112532.
[5] Shi, Bingchao, Wang, Tao, Shi, Liangjing, Li, Jing, Wang, Ranran, Sun, Jing. Highly stretchable and strain sensitive fibers based on braid -like structure and sliver nanowires. APPLIED MATERIALS TODAY[J]. 2020, 19: http://dx.doi.org/10.1016/j.apmt.2020.100610.
[6] Li, Yuxiang, He, Tengyu, Shi, Liangjing, Wang, Ranran, Sun, Jing. Strain Sensor with Both a Wide Sensing Range and High Sensitivity Based on Braided Graphene Belts. ACS APPLIED MATERIALS & INTERFACES[J]. 2020, 12(15): 17691-17698, https://www.webofscience.com/wos/woscc/full-record/WOS:000526330900055.
[7] Shi, Liangjing, Wang, Ranran, Liu, Yangqiao, Sun, Jing. A facile strategy for the preparation of hybrid copper nanowire-TiO2 film. THIN SOLID FILMS[J]. 2020, 693: http://dx.doi.org/10.1016/j.tsf.2019.137677.
[8] Yang YiNa, Wang RanRan, Sun Jing. MXenes in Flexible Force Sensitive Sensors: a Review. JOURNAL OF INORGANIC MATERIALSnull. 2020, 35(1): 8-18, https://www.webofscience.com/wos/woscc/full-record/WOS:000505199800003.
[9] Wang, Xiao, Yang, Yina, Lu, Guanhong, Shi, Gansheng, Wang, Yan, Wang, Ranran, Xie, Xiaofeng, Sun, Jing. In-situ preparation of Ti3C2/Ti3+-TiO2 composites with mosaic structures for the adsorption and Photo-degradation of flowing acetaldehyde under visible light. APPLIED SURFACE SCIENCE[J]. 2020, 531: http://dx.doi.org/10.1016/j.apsusc.2020.147101.
[10] 杨以娜, 王冉冉, 孙静. MXenes在柔性力敏传感器中的应用研究进展. 无机材料学报. 2020, 8-18, https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFQ&dbname=CJFDLAST2020&filename=WGCL202001003&v=MDU4MjZHNEhOSE1ybzlGWjRSOGVYMUx1eFlTN0RoMVQzcVRyV00xRnJDVVI3cWVaK2R2RmlqZ1Y3L0lNaXJJWXI=.
[11] Yang, Yina, Cao, Zherui, Shi, Liangjing, Wang, Ranran, Sun, Jing. Enhancing the conductivity, stability and flexibility of Ti3C2Tx MXenes by regulating etching conditions. APPLIED SURFACE SCIENCE[J]. 2020, 533: http://dx.doi.org/10.1016/j.apsusc.2020.147475.
[12] Tang, Hao, Yang, Yina, Wang, Ranran, Sun, Jing. Improving the properties of 2D titanium carbide films by thermal treatment. JOURNAL OF MATERIALS CHEMISTRY C[J]. 2020, 8(18): 6214-6220, https://www.webofscience.com/wos/woscc/full-record/WOS:000535913600023.
[13] Yang, Yina, Shi, Liangjing, Cao, Zherui, Wang, Ranran, Sun, Jing. Strain Sensors with a High Sensitivity and a Wide Sensing Range Based on a Ti3C2Tx (MXene) Nanoparticle-Nanosheet Hybrid Network. ADVANCED FUNCTIONAL MATERIALS[J]. 2019, 29(14): https://www.webofscience.com/wos/woscc/full-record/WOS:000467109100008.
[14] Chen, Chen, Wang, Zeyu, Li, Wei, Chen, Hongyu, Mei, Zhenning, Yuan, Wei, Tao, Linkai, Zhao, Yuting, Huang, Gaoshan, Mei, Yongfeng, Cao, Zherui, Wang, Ranran, Chen, Wei. Novel Flexible Material-Based Unobtrusive and Wearable Body Sensor Networks for Vital Sign Monitoring. IEEE SENSORS JOURNAL[J]. 2019, 19(19): 8502-8513, [15] Yang, Yina, Cao, Zherui, He, Peng, Shi, Liangjing, Ding, Guqiao, Wang, Ranran, Sun, Jing. Ti3C2Tx MXene-graphene composite films for wearable strain sensors featured with high sensitivity and large range of linear response. NANO ENERGY[J]. 2019, 66: http://dx.doi.org/10.1016/j.nanoen.2019.104134.
[16] Wang Xiao, Wang RanRan, Shi LiangJing, Sun Jing. Synthesis, Optimization of Cu Nanowires and Application of Its Transparent Electrodes. JOURNAL OF INORGANIC MATERIALSnull. 2019, 34(1): 49-59, [17] Huang, Tao, He, Peng, Wang, Ranran, Yang, Siwei, Sun, Jing, Xie, Xiaoming, Ding, Guqiao. Porous Fibers Composed of Polymer Nanoball Decorated Graphene for Wearable and Highly Sensitive Strain Sensors. ADVANCED FUNCTIONAL MATERIALS[J]. 2019, 29(45): http://dx.doi.org/10.1002/adfm.201903732.
[18] Cao, Zherui, Yang, Yina, Zheng, Yinghui, Wu, Wei, Xu, Fangfang, Wang, Ranran, Sun, Jing. Highly flexible and sensitive temperature sensors based on Ti3C2Tx (MXene) for electronic skin. JOURNAL OF MATERIALS CHEMISTRY A[J]. 2019, 7(44): 25314-25323, [19] 王晓, 王冉冉, 施良晶, 孙静. 铜纳米线的合成、优化及其透明电极的应用. 无机材料学报. 2019, 34(1): 49-59, http://lib.cqvip.com/Qikan/Article/Detail?id=7001185379.
[20] Zhai, Haitao, Li, Yang, Chen, Liwei, Wang, Xiao, Shi, Liangjing, Wang, Ranran, Sun, Jing. Semi-transparent polymer solar cells with all-copper nanowire electrodes. NANO RESEARCH[J]. 2018, 11(4): 1956-1966, http://lib.cqvip.com/Qikan/Article/Detail?id=674998915.
[21] Zhai, Haitao, Li, Yang, Chen, Liwei, Wang, Xiao, Shi, Liangjing, Wang, Ranran, Sun, Jing. Copper nanowire-TiO2-polyacrylate composite electrodes with high conductivity and smoothness for flexible polymer solar cells. NANO RESEARCH[J]. 2018, 11(4): 1895-1904, http://lib.cqvip.com/Qikan/Article/Detail?id=674998909.
[22] He, Tengyu, Lin, Chucheng, Shi, Liangjing, Wang, Ranran, Sun, Jing. Through-Layer Buckle Wavelength-Gradient Design for the Coupling of High Sensitivity and Stretchability in a Single Strain Sensor. ACS APPLIED MATERIALS & INTERFACES[J]. 2018, 10(11): 9653-9662, http://ir.sic.ac.cn/handle/331005/25082.
[23] Wang, Xiao, Wang, Ranran, Zhai, Haitao, Shi, Liangjing, Sun, Jing. 'Leaf vein' inspired structural design of Cu nanowire electrodes for the optimization of organic solar cells. JOURNAL OF MATERIALS CHEMISTRY C[J]. 2018, 6(21): 5738-5745, http://ir.sic.ac.cn/handle/331005/24872.
[24] Cheng, Yin, Wang, Ranran, Chan, Kwok Hoe, Lu, Xin, Sun, Jing, Ho, Ghim Wei. A Biomimetic Conductive Tendril for Ultrastretchable and Integratable Electronics, Muscles, and Sensors. ACS NANO[J]. 2018, 12(4): 3898-3907, http://ir.sic.ac.cn/handle/331005/25031.
[25] 王冉冉. Semitransparent Polymer Solar Cells with All-Copper Nanowire Based Electrodes. Nano Research. 2018, [26] Wang, Xiao, Wang, Ranran, Shi, Liangjing, Sun, Jing. Kinetically controlled synthesis of Cu nanowires with tunable diameters and their applications in transparent electrodes. JOURNAL OF MATERIALS CHEMISTRY C[J]. 2018, 6(5): 1048-1056, http://ir.sic.ac.cn/handle/331005/24496.
[27] Cao, Zherui, Wang, Ranran, He, Tengyu, Xu, Fangfang, Sun, Jing. Interface-Controlled Conductive Fibers for Wearable Strain Sensors and Stretchable Conducting Wires. ACS APPLIED MATERIALS & INTERFACES[J]. 2018, 10(16): 14087-14096, http://ir.sic.ac.cn/handle/331005/24973.
[28] Zhai Haitao, Li Yang, Chen Liwei, Wang Xiao, Shi Liangjing, Wang Ranran, Sun Jing. Copper nanowire-TiO2-polyacrylate composite electrodes with high conductivity and smoothness for flexible polymer solar cells. 纳米研究:英文版[J]. 2018, 11(4): 1895-1904, http://lib.cqvip.com/Qikan/Article/Detail?id=674998909.
[29] Zhai Haitao, Li Yang, Chen Liwei, Wang Xiao, Shi Liangjing, Wang Ranran, Sun Jing. Semi-transparent polymer solar cells with all-copper nanowire electrodes. 纳米研究:英文版[J]. 2018, 11(4): 1956-1966, http://lib.cqvip.com/Qikan/Article/Detail?id=674998915.
[30] Xu, Xiaojuan, Wang, Ranran, Nie, Pu, Cheng, Yin, Lu, Xiaoyu, Shi, Liangjing, Sun, Jing. Copper Nanowire-Based Aerogel with Tunable Pore Structure and Its Application as Flexible Pressure Sensor. ACS APPLIED MATERIALS & INTERFACES[J]. 2017, 9(16): 14273-14280, https://www.webofscience.com/wos/woscc/full-record/WOS:000400321800052.
[31] Nie, Pu, Wang, Ranran, Xu, Xiaojuan, Cheng, Yin, Wang, Xiao, Shi, Liangjing, Sun, Jing. High-Performance Piezoresistive Electronic Skin with Bionic Hierarchical Microstructure and Microcracks. ACS APPLIED MATERIALS & INTERFACES[J]. 2017, 9(17): 14911-14919, https://www.webofscience.com/wos/woscc/full-record/WOS:000400802700038.
[32] Nie, Pu, Wang, Ranran, Xu, Xiaojuan, Cheng, Yin, Wang, Xiao, Shi, Liangjing, Sun, Jing. High-Performance Piezoresistive Electronic Skin with Bionic Hierarchical Microstructure and Microcracks. ACS Applied Materials and Interfaces[J]. 2017, 9(17): 14911-14919, http://ir.sic.ac.cn/handle/331005/25993.
[33] Xu, Xiaojuan, Wang, Ranran, Nie, Pu, Cheng, Yin, Lu, Xiaoyu, Shi, Liangjing, Sun, Jing. Copper Nanowire-Based Aerogel with Tunable Pore Structure and Its Application as Flexible Pressure Sensor. ACS Applied Materials and Interfaces[J]. 2017, 9(16): 14273-14280, http://ir.sic.ac.cn/handle/331005/25998.
[34] Cheng, Yin, Wang, Ranran, Zhai, Haitao, Sun, Jing. Stretchable electronic skin based on silver nanowire composite fiber electrodes for sensing pressure, proximity, and multidirectional strain. NANOSCALE[J]. 2017, 9(11): 3834-3842, http://www.irgrid.ac.cn/handle/1471x/1790983.
[35] Lu, Xiaoyu, Bai, Yang, Wang, Ranran, Sun, Jing. A high-performance flexible and weavable asymmetric fiber-shaped solid-state supercapacitor enhanced by surface modifications of carbon fibers with carbon nanotubes. JOURNAL OF MATERIALS CHEMISTRY A[J]. 2016, 4(46): 18164-18173, http://www.irgrid.ac.cn/handle/1471x/1161579.
[36] Wang, Ranran, Zhai, Haitao, Wang, Tao, Wang, Xiao, Cheng, Yin, Shi, Liangjing, Sun, Jing. Plasma-induced nanowelding of a copper nanowire network and its application in transparent electrodes and stretchable conductors. NANO RESEARCH[J]. 2016, 9(7): 2138-2148, http://www.irgrid.ac.cn/handle/1471x/1176920.
[37] Wang, Tao, Wang, Ranran, Cheng, Yin, Sun, Jing. Quasi In Situ Polymerization To Fabricate Copper Nanowire-Based Stretchable Conductor and Its Applications. ACS APPLIED MATERIALS & INTERFACES[J]. 2016, 8(14): 9297-9304, http://www.irgrid.ac.cn/handle/1471x/1176970.
[38] Cheng, Yin, Zhang, Hange, Wang, Ranran, Wang, Xiao, Zhai, Haitao, Wang, Tao, Jin, Qinghui, Sun, Jing. Highly Stretchable and Conductive Copper Nanowire Based Fibers with Hierarchical Structure for Wearable Heaters. ACS APPLIED MATERIALS & INTERFACES[J]. 2016, 8(48): 32925-32933, http://www.irgrid.ac.cn/handle/1471x/1161574.
[39] Wang, Xiao, Wang, Ranran, Zhai, Haitao, Shen, Xi, Wang, Tao, Shi, Liangjing, Yu, Richeng, Sun, Jing. Room-Temperature Surface Modification of Cu Nanowires and Their Applications in Transparent Electrodes, SERS-Based Sensors, and Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES[J]. 2016, 8(42): 28831-28837, https://www.webofscience.com/wos/woscc/full-record/WOS:000386540300065.
[40] Zhai, Haitao, Wang, Ranran, Wang, Xiao, Cheng, Yin, Shi, Liangjing, Sun, Jing. Transparent heaters based on highly stable Cu nanowire films. NANO RESEARCH[J]. 2016, 9(12): 3924-3936, http://www.irgrid.ac.cn/handle/1471x/1161582.
[41] Zhai, Haitao, Wang, Ranran, Wang, Weiqi, Wang, Xiao, Cheng, Yin, Shi, Liangjing, Liu, Yangqiao, Sun, Jing. Novel fabrication of copper nanowire/cuprous oxidebased semiconductor-liquid junction solar cells. NANO RESEARCH[J]. 2015, 8(10): 3205-3215, https://www.webofscience.com/wos/woscc/full-record/WOS:000362588100009.
[42] Cheng, Yin, Wang, Ranran, Sun, Jing, Gao, Lian. A Stretchable and Highly Sensitive Graphene-Based Fiber for Sensing Tensile Strain, Bending, and Torsion. ADVANCED MATERIALS[J]. 2015, 27(45): 7365-+, http://www.irgrid.ac.cn/handle/1471x/1110730.
[43] Cheng, Yin, Wang, Ranran, Sun, Jing, Gao, Lian. Highly Conductive and Ultrastretchable Electric Circuits from Covered Yarns and Silver Nanowires. ACS NANO[J]. 2015, 9(4): 3887-3895, [44] Wang, Xiao, Wang, Ranran, Shi, Liangjing, Sun, Jing. Synthesis of Metal/Bimetal Nanowires and Their Applications as Flexible Transparent Electrodes. SMALL[J]. 2015, 11(36): 4737-4744, https://www.webofscience.com/wos/woscc/full-record/WOS:000362819300015.
[45] Shi, Liangjing, Wang, Ranran, Zhai, Haitao, Liu, Yangqiao, Gao, Lian, Sun, Jing. A long-term oxidation barrier for copper nanowires: graphene says yes. PHYSICAL CHEMISTRY CHEMICAL PHYSICS[J]. 2015, 17(6): 4231-4236, https://www.webofscience.com/wos/woscc/full-record/WOS:000349005900032.
[46] Cheng, Yin, Wang, Shouling, Wang, Ranran, Sun, Jing, Gao, Lian. Copper nanowire based transparent conductive films with high stability and superior stretchability. JOURNAL OF MATERIALS CHEMISTRY C[J]. 2014, 2(27): 5309-5316, https://www.webofscience.com/wos/woscc/full-record/WOS:000338601800008.
[47] Wang, Shouling, Cheng, Yin, Wang, Ranran, Sun, Jing, Gao, Lim. Highly Thermal Conductive Copper Nanowire Composites with Ultralow Loading: Toward Applications as Thermal Interface Materials. ACS APPLIED MATERIALS & INTERFACES[J]. 2014, 6(9): 6481-6486, https://www.webofscience.com/wos/woscc/full-record/WOS:000336075300059.
[48] Wang, Ranran, Chen, Zheng, Yu, Hang, Jia, Xilai, Gao, Lian, Sun, Jing, Hicks, Robert F, Lu, Yunfeng. A novel method to enhance the conductance of transitional metal oxide electrodes. NANOSCALE[J]. 2014, 6(7): 3791-3795, https://www.webofscience.com/wos/woscc/full-record/WOS:000333042500047.
[49] Zhang, Dieqing, Wang, Ranran, Wen, Meicheng, Weng, Ding, Cui, Xia, Sun, Jing, Li, Hexing, Lu, Yunfeng. Synthesis of Ultralong Copper Nanowires for High-Performance Transparent Electrodes. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY[J]. 2012, 134(35): 14283-14286, http://www.irgrid.ac.cn/handle/1471x/659123.
[50] 王冉冉. 基于碳/金属纳米材料的导电薄膜及纤维的制备、性能及应用研究. 2012, [51] Wang, Ranran, Sun, Jing, Gao, Lian, Xu, Chaohe, Zhang, Jing. Fibrous nanocomposites of carbon nanotubes and graphene-oxide with synergetic mechanical and actuative performance. CHEMICAL COMMUNICATIONS[J]. 2011, 47(30): 8650-8652, https://www.webofscience.com/wos/woscc/full-record/WOS:000292986800052.
[52] Wang, Ranran, Sun, Jing, Gao, Lian, Xu, Chaohe, Zhang, Jing, Liu, Yangqiao. Effective post treatment for preparing highly conductive carbon nanotube/reduced graphite oxide hybrid films. NANOSCALE[J]. 2011, 3(3): 904-906, https://www.webofscience.com/wos/woscc/full-record/WOS:000288218300012.
[53] Wang, Ranran, Sun, Jing, Gao, Lian, Zhang, Jing. Base and Acid Treatment of SWCNT-RNA Transparent Conductive Films. ACS NANO[J]. 2010, 4(8): 4890-4896, https://www.webofscience.com/wos/woscc/full-record/WOS:000281052700067.
[54] Wang, Ranran, Sun, Jing, Gao, Lian, Zhang, Jing. Dispersion of single-walled carbon nanotubes by DNA for preparing transparent conductive films. JOURNAL OF MATERIALS CHEMISTRY[J]. 2010, 20(33): 6903-6909, https://www.webofscience.com/wos/woscc/full-record/WOS:000280818000010.
[55] Wang, Ranran, Sun, Jing, Gao, Lian. Liquid-Crystal Phase Reinforced Carbon Nanotube Fibers. JOURNAL OF PHYSICAL CHEMISTRY C[J]. 2010, 114(11): 4923-4928, https://www.webofscience.com/wos/woscc/full-record/WOS:000275708600024.

科研活动

   
科研项目
( 1 ) 基于低维柔性导电材料的多功能纤维 及智能织物研究, 主持, 省级, 2017-01--2019-12
( 2 ) 面向航天用金属纳米线适形性加热器件的结构设计与精确调控, 主持, 市地级, 2017-07--2019-06
( 3 ) 金属纳米线基仿生微结构柔性触觉传感器的构筑和响应机理研究, 参与, 省级, 2016-07--2019-06
( 4 ) Ti3C2多维杂化导电网络及其应变感应机理研究, 主持, 国家级, 2019-01--2022-12
( 5 ) 大尺寸柔性电子皮肤近圆式拉制一体仪, 主持, 部委级, 2019-01--2020-12
( 6 ) 中科院青年创新促进会优秀会员, 主持, 部委级, 2019-01--2021-12
( 7 ) 中国科协青年人才托举工程, 主持, 研究所(学校), 2018-06--2021-05
( 8 ) 发电纤维与织物的研制及其在能量采集和传感中的应用, 主持, 部委级, 2020-01--2022-12
( 9 ) xxx, 主持, 国家级, 2018-07--2019-06
( 10 ) xxx传感技术, 主持, 国家级, 2019-06--2020-12
( 11 ) 等离子体增强高性能铜纳米 线/石墨烯透明导电薄膜研究, 主持, 国家级, 2014-01--2016-12
( 12 ) 铜纳米线/石墨烯柔性、透 明、导电薄膜的制备与性能 研究, 主持, 省级, 2013-10--2016-09
( 13 ) 金属纳米线的可控合成与应 用研究, 主持, 部委级, 2014-01--2017-12

合作情况


项目协作单位
中科院北京纳米能源所、微电子所、苏州医工所、合肥工业大学、复旦大学


指导学生

现指导学生

闫秋阳  硕士研究生  080501-材料物理与化学