General
Ping Wang, Professor, Institute of High Energy Physics, Chinese Academy of Sciences
E-mail: pwang4@ihep.ac.cn
Mailing address: P.O. Box 918 (4), No. 19-B Yuquan Road, Beijing 100049


Research Areas

Hadron structure is one of the main research topics in hadron physics. How to calculate non-perturbative physical quantities beyond the power counting region of effective field theory has been a challenge in hadron physics for decades. We proposed the nonlocal chiral effective field theory and applied it to study the structure of hadrons, including the form factors, parton distribution functions, generalized parton distribution functions, transverse momentum dependent distribution functions, and so on. Based on the same idea as nonlocal effective field theory, we applied the nonlocal behavior to the fundamental interactions of the Standard Model. We proposed a general form of nonlocal QED and used it to investigate the g-2 anomaly of leptons. The unique advantage of our nonlocal QED method is that the Lagrangian has the same gauge symmetry as traditional QED, and the g-2 deviation of electrons and muons can be explained simultaneously without introducing any new particles.


Education

1996. 9 - 1999. 7, Physics Department, Fudan University, Ph. D in Physics

1993. 9 - 1996. 7, Physics Department, Wuhan University, Master in Physics

​1989. 9 - 1993. 7, Physics Department, Wuhan University, B.S. in Physics


Experience

2009. 10 – Present, Professor, Institute of High Energy Physics, China

2007. 8 – 2009. 10, Postdoctoral research fellow,  Jefferson Lab, USA

2006. 1 – 2007. 7, Postdoctoral research fellow,  North Carolina State University, USA

2003.11 – 2005.11, Postdoctoral research fellow, Adelaide Univerity, Australia

2001. 8 – 2003. 10, Humboldt research fellow, Tuebingen University, Germany

1999. 8 – 2001. 7, Postdoctoral research fellowInstitute of High Energy Physics, China


Publications

[1] Wang, P. Color confinement, dark matter and the missing of anti-matter. 2021, [2] He, Fangcheng, Leinweber, D B, Thomas, A W, Wang, P. Chiral extrapolation of the charged-pion magnetic polarizability with Pad\'e approximant. 2021, http://arxiv.org/abs/2104.09963.
[3] Yang, Mingyang, Wang, Ping. Electromagnetic form factors of octet baryons with the nonlocal chiral effective theory. 2020, http://arxiv.org/abs/2005.11971.
[4] He, Fangcheng, Wang, P. Pauli form factors of electron and muon in nonlocal quantum electrodynamics. EUROPEAN PHYSICAL JOURNAL PLUS[J]. 2020, 135(2): http://dx.doi.org/10.1140/epjp/s13360-020-00151-y.
[5] He, Fangcheng, Leinweber, D B, Thomas, A W, Wang, P. Chiral extrapolation of the magnetic polarizability of the neutral pion. 2020, http://arxiv.org/abs/2010.01580.
[6] Yang, MingYang, Wang, Ping. Sea quark contributions to nucleon electromagnetic form factors with the nonlocal chiral effective Lagrangian *. CHINESE PHYSICS C[J]. 2020, 44(5): 1-7, http://lib.cqvip.com/Qikan/Article/Detail?id=7101713951.
[7] Wang, X G, Ji, ChuengRyong, Melnitchouk, W, Salamu, Y, Thomas, A W, Wang, P. Strange quark helicity in the proton from chiral effective theory. PHYSICAL REVIEW D[J]. 2020, 102(11): https://www.webofscience.com/wos/woscc/full-record/WOS:000602847800005.
[8] Wang Ping. The opportunity to find  d*(2380) in the Y(ns) decay. Phys. Rev. D 99 (2019) 036015. 2019, [9] Salamu, Y, Ji, ChuengRyong, Melnitchouk, W, Thomas, A W, Wang, P. Parton distributions from nonlocal chiral SU(3) effective theory: Splitting functions. PHYSICAL REVIEW D[J]. 2019, 99(1): https://www.webofscience.com/wos/woscc/full-record/WOS:000457059500005.
[10] Salamu, Y, Ji, ChuengRyong, Melnitchouk, W, Thomas, A W, Wang, P, Wang, X G. Parton distributions from nonlocal chiral SU(3) effective theory: Flavor asymmetries. PHYSICAL REVIEW D[J]. 2019, 100(9): [11] Wang Ping. Sivers distribution functions of sea quark in proton with chiral effective theory. Phys. Rev. D 100 (2019) 074032. 2019, [12] Lu ChaoYi, Wang P, Dong Y B, Shen P N, Zhang Z Y, Li D M. Phenomenological study on the decay widths of Upsilon(nS)->(d)over-bar*(2380)+X. CHINESE PHYSICS C[J]. 2018, 42(6): http://www.corc.org.cn/handle/1471x/2177506.
[13] He, Fangcheng, Wang, P. Strange form factors of the nucleon with a nonlocal chiral effective Lagrangian. PHYSICAL REVIEW D[J]. 2018, 98(3): https://www.webofscience.com/wos/woscc/full-record/WOS:000441235800009.
[14] Wang Ping. Nucleon electromagnetic form factos with a nonlocal chiral effective Lagrangian. Phys. Rev. D 97 (2018) 036007. 2018, [15] Wang Ping. Dirac and Pauli form factors of nucleon using nonlocal chiral effective Lagrangian. Chin. Phys. C (2017) 114106. 2017, [16] Wang, X G, Ji, ChuengRyong, Melnitchouk, W, Salamu, Y, Thomas, A W, Wang, P. Strange-quark asymmetry in the proton in chiral effective theory. PHYSICAL REVIEW D[J]. 2016, 94(9): http://dx.doi.org/10.1103/PhysRevD.94.094035.
[17] Wang Ping. Constraints on s - sbar asymmetry of the proton in chiral effective theory. Phys. Lett. B 762 (2016) 52. 2016, [18] Li, Hongna, Wang, P. Chiral extrapolation of nucleon axial charge g(A) in effective field theory. CHINESE PHYSICS C[J]. 2016, 40(12): https://www.webofscience.com/wos/woscc/full-record/WOS:000392556900006.
[19] Hongna Li, P Wang, D B Leinweber, A W Thomas. The Spin of the proton in chiral effective field theory. 2016, http://www.chinaxiv.org/abs/201609.01051.
[20] Wang Ping. dbar-ubar asymmetry in the proton in chiral effective theory. Phys. Rev. Lett. 114 (2015) 122001. 2015, [21] Wang Ping. Flavour asymmetry in the proton in chiral effective field theory. Few. Body. Syst. 56 (2015) 355. 2015, [22] Wang Ping. Pure sea quark contribution to the magnetic form factors of Sigma baryons. Phys. Rev. D 92 (2015) 034508.. 2015, [23] Xie Wei, Wang Ping. Unified Hamiltonian model for mesons and baryons. CHINESE PHYSICS C[J]. 2015, 39(5): http://ir.ihep.ac.cn/handle/311005/228541.
[24] Wang, P, Leinweber, D B, Thomas, A W. Strange magnetic form factor of the nucleon in a chiral effective model at next to leading order. PHYSICAL REVIEW D[J]. 2014, 89(3): http://dx.doi.org/10.1103/PhysRevD.89.033008.
[25] Wang, P. Nucleon magnetic form factors with non-local chiral effective Lagrangian. EUROPEAN PHYSICAL JOURNAL A[J]. 2014, 50(11): http://dx.doi.org/10.1140/epja/i2014-14172-0.
[26] Xie, W, Mo, L Q, Wang, Ping, Cotanch, Stephen R. Coulomb gauge model for hidden charm tetraquarks. PHYSICS LETTERS B[J]. 2013, 725(1-3): 148-152, http://dx.doi.org/10.1016/j.physletb.2013.07.003.
[27] Wang, P, Wang, X G. Study of X(3872) from Effective Field Theory with Pion-Exchange Interaction. PHYSICAL REVIEW LETTERS[J]. 2013, 111(4): http://dx.doi.org/10.1103/PhysRevLett.111.042002.
[28] Guo, FengKun, Liu, Liuming, Meissner, UlfG, Wang, Ping. Tetraquarks, hadronic molecules, meson-meson scattering, and disconnected contributions in lattice QCD. PHYSICAL REVIEW D[J]. 2013, 88(7): http://dx.doi.org/10.1103/PhysRevD.88.074506.
[29] Wang, P, Leinweber, D B, Thomas, A W, Young, R D. Chiral extrapolation of nucleon magnetic moments at next-to-leading-order. PHYSICAL REVIEW D[J]. 2012, 86(9): http://dx.doi.org/10.1103/PhysRevD.86.094038.
[30] Wang Ping. Study on 0+ states with open charm in unitarized heavy meson chiral approach. Phys. Rev. D. 2012, [31] Wang, P, Thomas, A W. First moments of nucleon generalized parton distributions. PHYSICAL REVIEW D[J]. 2010, 81(11): http://ir.ihep.ac.cn/handle/311005/240946.
[32] Wang, P.. Solid quantization for non-point particles. http://arxiv.org/abs/1006.0842.


Students

已指导学生

谢伟  博士研究生  070201-理论物理  

玉苏普江·萨拉木  硕士研究生  070201-理论物理  

玉苏普江·萨拉木  博士研究生  070201-理论物理  

何方成  博士研究生  070201-理论物理  

现指导学生

杨明炀  博士研究生  070201-理论物理  

李航  博士研究生  070201-理论物理  

高正阳  硕士研究生  070201-理论物理