王培松 硕导 中国科学院自动化研究所 模式识别国家重点实验室
电子邮件: peisong.wang@nlpr.ia.ac.cn
个人主页: https://peiswang.github.io
通信地址: 北京市海淀区中关村东路95号
邮政编码: 100190
招生信息
招生专业
招生方向
教育背景
工作经历
2021-04~现在, 中国科学院自动化研究所 模式识别国家重点实验室, 副研究员
2018-07~2021-04,中国科学院自动化研究所 模式识别国家重点实验室, 助理研究员
奖励与荣誉
2024 电子工业出版社2024年度优秀作者奖
2023 入选CCF-百度松果基金学者
2023 入选中科院特聘研究骨干
2022 入选北京科协青年人才托举工程
2022 IEEE国际标准突出贡献奖
2021 入选微软亚洲研究院“铸星计划”
2019 NeurIPS 2019国际神经网络压缩挑战赛MicroNet Challenge冠军
2018 NVIDIA奖学金
出版信息
发表论文
2024
Zhengyang Zhuge, JiaxingWang, Yong Li, Yongjun Bao, PeisongWang, Jian Cheng, Patch-Aware Sample Selection for Efficient Masked Image Modeling, AAAI 2024.
Zhengyang Zhuge, Peisong Wang, Xingting Yao, Jian Cheng. Towards Efficient Spiking Transformer: a Token Sparsification Framework for Training and Inference Acceleration. ICML, 2024.
- Zeyu Zhu, Peisong Wang, Qinghao Hu, Gang Li, Xiaoyao Liang, Jian Cheng. FastGL: A GPU-Efficient Framework for Accelerating Sampling-Based GNN Training at Large Scale. ASPLOS, 2024.
2023
- Weihan Chen, Peisong Wang, Jian Cheng. Towards automatic model compression via a unified two-stage framework. Pattern Recognation (PR), 2023.
- Tianqi Chen, Weixiang Xu, Weihan Chen, Peisong Wang, Jian Cheng. Towards Efficient and Accurate Winograd Convolution via Full Quantization. NeurIPS, 2023.
2022
- Peisong Wang, Weihan Chen, Xiangyu He, Qiang Chen, Qingshan Liu, Jian Cheng. Optimization-based Post-training Quantization with Bit-split and Stitching. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2022.
- Peisong Wang*, Xiangyu He*, Jian Cheng. Towards Accurate Binarized Neural Networks with Sparsity for Mobile Application. IEEE Transactions on Neural Networks and Learning Systems (TNNLS), 2022.
- Weixiang Xu*, Fanrong Li*, Yingying Jiang, Yong A, Xiangyu He, Peisong Wang, Jian Cheng. Improving Extreme Low-bit Quantization with Soft Threshold. IEEE Transactions on Circuits and Systems for Video Technology (TCSVT), 2022.
- Anda Cheng, Peisong Wang, Xi Sheryl Zhang, Jian Cheng. Differentially Private Federated Learning with Local Regularization and Sparsification. CVPR, 2022.
- Weixiang Xu, Xiangyu He, Ke Cheng, Peisong Wang, Jian Cheng. Towards Fully Sparse Training: Information Restoration with Spatial Similarity. AAAI, 2022.
- Anda Cheng, Jiaxing Wang, Xi Sheryl Zhang, Qiang Chen, Peisong Wang, Jian Cheng. Dpnas: Neural architecture search for deep learning with differential privacy. AAAI, 2022.
2021
- Peisong Wang*, Fanrong Li*, Gang Li, Jian Cheng. Extremely Sparse Networks via Binary Augmented Pruning for Fast Image Classification. IEEE Transactions on Neural Networks and Learning Systems (TNNLS), 2021.
- Weihan Chen, Peisong Wang, Jian Cheng. Towards mixed-precision quantization of neural networks via constrained optimization. ICCV, 2021.
2020
- Peisong Wang, Xiangyu He, Qiang Chen, Anda Cheng, Qingshan Liu and Jian Cheng. Unsupervised Network Quantization via Fixed-point Factorization. IEEE Transactions on Neural Networks and Learning Systems (TNNLS), 2020.
- Qiang Chen, Anda Cheng, Xiangyu He, Peisong Wang, Jian Cheng. Spatialflow: Bridging all tasks for panoptic segmentation. IEEE Transactions on Circuits and Systems for Video Technology (TCSVT), 2020.
- Qiang Chen, Peisong Wang, Anda Cheng, Wanguo Wang, Yifan Zhang, Jian Cheng. Robust one-stage object detection with location-aware classifiers. Pattern Recognition (PR), 2020.
- Peisong Wang, Qiang Chen, Xiangyu He and Jian Cheng. Towards Accurate Post-training Network Quantization via Bit-Split and Stitching. ICML, 2020.
- Peisong Wang*, Xiangyu He*, Gang Li, Tianli Zhao and Jian Cheng. Sparsity-Inducing Binarized Neural Networks. AAAI, 2020.
- Gang Li, Peisong Wang, Zejian Liu, Cong Leng, Jian Cheng. Hardware acceleration of CNN with one-hot quantization of weights and activations. DATE, 2020.
- Weixiang Xu, Xiangyu He, Tianli Zhao, Qinghao Hu, Peisong Wang, Jian Cheng. Soft Threshold Ternary Networks. IJCAI, 2020.
- Xiangyu He, Zitao Mo, Ke Cheng, Weixiang Xu, Qinghao Hu, Peisong Wang, Qingshan Liu, Jian Cheng. Proxybnn: Learning binarized neural networks via proxy matrices. ECCV, 2020.
- Weihan Chen, Peisong Wang, Jian Cheng. Towards Convolutional Neural Networks Compression via Global&Progressive Product Quantization. BMVC, 2020.
2019
- Xiangyu He, Peisong Wang, Jian Cheng. K-nearest neighbors hashing. CVPR, 2019.
- Xiangyu He, Zitao Mo, Peisong Wang, Yang Liu, Mingyuan Yang, Jian Cheng. Ode-inspired network design for single image super-resolution. CVPR, 2019.
- Zhe Li, Peisong Wang, Hanqing Lu, Jian Cheng. Reading selectively via Binary Input Gated Recurrent Unit. IJCAI, 2019.
2018及以前
- Peisong Wang, Qinghao Hu, Zhiwei Fang, Chaoyang Zhao and Jian Cheng. DeepSearch: A fast image search framework for mobile devices. ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM), 2018.
- Jian Cheng, Peisong Wang, Gang Li, Qing-hao Hu, Hanqing Lu. Recent advances in efficient computation of deep convolutional neural networks. Frontiers of Information Technology & Electronic Engineering (FITEE), 2018.
- Peisong Wang, Qinghao Hu, Yifang Zhang, Chunjie Zhang, Yang Liu and Jian Cheng. Two-Step Quantization for Low-bit Neural Networks. CVPR, 2018.
- Qinghao Hu, Peisong Wang, Jian Cheng. From hashing to cnns: Training binary weight networks via hashing. AAAI, 2018.
- Qinghao Hu, Gang Li, Peisong Wang, Yifan Zhang, Jian Cheng. Training binary weight networks via semi-binary decomposition. ECCV, 2018.
- Guibo Zhu, Jinqiao Wang, Peisong Wang, Yi Wu, Hanqing Lu. Feature distilled tracking. IEEE transactions on cybernetics, 2017.
- Peisong Wang and Jian Cheng. Fixed-point Factorized Networks. CVPR, 2017.
- Peisong Wang, Qiang Song, Hua Han, Jian Cheng. Sequentially supervised long short-term memory for gesture recognition. Cognitive Computation, 2016.
- Peisong Wang and Jian Cheng. Accelerating Convolutional Neural Networks for Mobile Applications. ACM Multimedia, 2016.
科研活动
科研项目
( 1 ) 深度神经网络无监督定点量化方法研究, 负责人, 国家自然科学基金青年基金, 2020-01--2022-12
( 2 ) 基于目标行为的视频流内容安全分析与智能检索, 课题负责人, 国家自然科学基金重点项目, 2020-01--2023-12
( 3 ) 进化与推演环境-软硬协同的底层加速库, 子课题负责人, 中科院战略先导A类项目, 2020-07--2025-06
( 4 ) 面向通用视觉的机器学习理论与方法,子课题负责人,科技创新2030重大项目,2023-01--2025-12
( 5 ) 面向大模型的异构算力融合的智能编译器研发,课题负责人,江苏省科技重大专项项目,2025-01--2027-12
( 6 ) 深度学习模型小型化和硬件加速合作项目(四期),负责人,华为合作项目,2022-09--2023-07
( 7 ) LLM长序列推理加速算法技术合作项目,负责人,华为合作项目,2024-06--2025-05
( 8 ) 基于自适应低精度和混合精度计算的模型训练加速方法研究,负责人,百度松果基金,2023-11--2024-10