发表论文
[1] Li, Xianquan, Pang, Jifeng, Wang, Chan, Li, Lin, Pan, XiaoLi, Zheng, Mingyuan, Zhang, Tao. Conversion of ethanol to 1,3-butadiene over high-performance Mg-ZrOx/MFI nanosheet catalysts via the two-step method. GREEN CHEMISTRY[J]. 2020, 22(9): 2852-2861, https://www.webofscience.com/wos/woscc/full-record/WOS:000533979200018.[2] Pang, Jifeng, Zheng, Mingyuan, Wang, Chan, Yang, Xiaofeng, Liu, Hua, Liu, Xiaoyan, Sun, Junming, Wang, Yong, Zhang, Tao. Hierarchical Echinus-like Cu-MFI Catalysts for Ethanol Dehydrogenation. ACS CATALYSIS[J]. 2020, 10(22): 13624-13629, https://www.webofscience.com/wos/woscc/full-record/WOS:000592978900046.[3] Wang, Chan, Zheng, Mingyuan, Li, Xinsheng, Li, Xianquan, Zhang, Tao. Catalytic conversion of ethanol into butadiene over high performance LiZnHf-MFI zeolite nanosheets. GREEN CHEMISTRY[J]. 2019, 21(5): 1006-1010, http://www.corc.org.cn/handle/1471x/2372643.[4] Pang, Jifeng, Zheng, Mingyuan, Li, Xinsheng, Sebastian, Joby, Jiang, Yu, Zhao, Yu, Wang, Aiqin, Zhang, Tao. Unlock the Compact Structure of Lignocellulosic Biomass by Mild Ball Milling for Ethylene Glycol Production. ACS SUSTAINABLE CHEMISTRY & ENGINEERING[J]. 2019, 7(1): 679-687, http://www.corc.org.cn/handle/1471x/2372902.[5] Sebastian, Joby, Zheng, Mingyuan, Jiang, Yu, Zhao, Yu, Wang, Hua, Song, Zhendong, Li, Xinsheng, Pang, Jifeng, Zhang, Tao. One-pot conversion of lysine to caprolactam over Ir/H-Beta catalysts. GREEN CHEMISTRY[J]. 2019, 21(9): 2462-2468, http://cas-ir.dicp.ac.cn/handle/321008/171919.[6] Sebastian, Joby, Zheng, Mingyuan, Li, Xinsheng, Pang, Jifeng, Wang, Chan, Zhang, Tao. Catalytic conversion of glucose to small polyols over a binary catalyst of vanadium modified beta zeolite and Ru/C. JOURNAL OF ENERGY CHEMISTRY[J]. 2019, 34: 88-95, http://dx.doi.org/10.1016/j.jechem.2018.10.003.[7] Pang, Jifeng, Zheng, Mingyuan, Li, Xinsheng, Jiang, Yu, Zhao, Yu, Wang, Aiqin, Wang, Junhu, Wang, Xiaodong, Zhang, Tao. Selective conversion of concentrated glucose to 1,2-propylene glycol and ethylene glycol by using RuSn/AC catalysts. APPLIED CATALYSIS B-ENVIRONMENTAL[J]. 2018, 239: 300-308, http://cas-ir.dicp.ac.cn/handle/321008/166840.[8] Ai, Shuo, Zheng, Mingyuan, Jiang, Yu, Pang, Jifeng, Wang, Chan, Wang, Aiqin, Wang, Xiaodong, Zhang, Tao. Kinetic study on catalytic dehydration of 1,2-propanediol and 1,2-butanediol over H-Beta for bio-ethylene glycol purification. CHEMICAL ENGINEERING JOURNAL[J]. 2018, 335: 530-538, http://cas-ir.dicp.ac.cn/handle/321008/169172.[9] Sun, Ruiyan, Zheng, Mingyuan, Li, Xinsheng, Pang, Jifeng, Wang, Aiqin, Wang, Xiaodong, Zhang, Tao. Production of renewable 1,3-pentadiene from xylitol via formic acid-mediated deoxydehydration and palladium-catalyzed deoxygenation reactions. GREEN CHEMISTRY[J]. 2017, 19(3): 638-642, http://cas-ir.dicp.ac.cn/handle/321008/169486.[10] 张涛. Selectivity Control for Cellulose to Diols: Dancing on Eggs. ACS CATAL. 2017, 7: 1939-1954, [11] 张涛. Ethylene glycol production from glucose over W-Ru catalysts: Maximizing yield by kinetic modeling and simulation. AICHE J. 2017, 63: 2072-2080, [12] 张涛. One-pot synthesis of 2-hydroxymethyl-5-methylpyrazine from renewable 1,3-dihydroxyacetone. GREEN CHEM. 2017, 19: 3515-3519, [13] 张涛. Catalytic Conversion of Carbohydrates to Methyl Lactate Using Isolated Tin Sites in SBA-15. CHEMISTRYSELECT[J]. 2017, 2(1): 309-314, http://cas-ir.dicp.ac.cn/handle/321008/169580.[14] 张涛. Selective removal of 1,2-propanediol and 1,2-butanediol from bio-ethylene glycol by catalytic reaction. AICHE J. 2017, 63: 4032-4042, [15] Li, Guangyi, Li, Ning, Zheng, Mingyuan, Li, Shanshan, Wang, Aiqin, Cong, Yu, Wang, Xiaodong, Zhang, Tao. Industrially scalable and cost-effective synthesis of 1,3-cyclopentanediol with furfuryl alcohol from lignocellulose. GREEN CHEMISTRY[J]. 2016, 18(12): 3607-3613, http://cas-ir.dicp.ac.cn/handle/321008/170506.[16] 张涛. Upgrading ethanol to n-butanol over highly dispersed Ni-MgAlO catalysts. J CATAL. 2016, 344: 184-193, [17] Pang, Jifeng, Zheng, Mingyuan, Sun, Ruiyan, Wang, Aiqin, Wang, Xiaodong, Zhang, Tao. Synthesis of ethylene glycol and terephthalic acid from biomass for producing PET. GREEN CHEMISTRY[J]. 2016, 18(2): 342-359, http://cas-ir.dicp.ac.cn/handle/321008/171170.[18] 张涛. Selectivity-Switchable Conversion of Cellulose to Glycols over Ni-Sn Catalysts. ACS CATAL. 2016, 6: 191-201, [19] 孙睿岩, 郑明远, 庞纪峰, 王爱琴, 张涛, 郑明远, 张涛. Selectivity-switchable conversion of cellulose to glycols over Ni-Sn catalysts. 2016, http://cas-ir.dicp.ac.cn/handle/321008/160727.[20] 张涛. Catalytic conversion of cellulosic biomass to ethylene glycol: Effects of inorganic impurities in biomass. BIORESOUR TECHNOL. 2015, [21] 张涛. Remarkable effect of extremely dilute H2SO4 on the cellulose conversion to ethylene glycol. APPL CATAL A-GEN. 2015, [22] 张涛. Synthesis and Characterization of Poly(ethylene terephthalate) from Biomass-Based Ethylene Glycol: Effects of Miscellaneous Diols. IND ENG CHEM RES. 2015, [23] 张涛. Catalytic conversion of Jerusalem artichoke tuber into hexitols using the bifunctional catalyst Ru/(AC-SO3H). CHIN J CATAL. 2015, [24] 张涛. Versatile Nickel-Lanthanum(III) Catalyst for Direct Conversion of Cellulose to Glycols. ACS CATAL. 2015, 5(2): ,874-883, [25] 张涛. Catalytic Conversion of Concentrated Miscanthus in Water for Ethylene Glycol Production. AICHE J. 2014, 60(6): ,2254-2262, [26] Zheng, Mingyuan, Pang, Jifeng, Wang, Aiqin, Zhang, Tao. One-pot catalytic conversion of cellulose to ethylene glycol and other chemicals: From fundamental discovery to potential commercialization. CHINESEJOURNALOFCATALYSIS[J]. 2014, 35(5): 602-613, http://dx.doi.org/10.1016/S1872-2067(14)60013-9.[27] 张涛. Catalytic Conversion of Cellulose to Ethylene Glycol over a Low-Cost Binary Catalyst of Raney Ni and Tungstic Acid. CHEMSUSCHEM[J]. 2013, 6(4): 652-658, http://www.irgrid.ac.cn/handle/1471x/858477.[28] Zhao, Guanhong, Zheng, Mingyuan, Zhang, Junying, Wang, Aiqin, Zhang, Tao. Catalytic Conversion of Concentrated Glucose to Ethylene Glycol with Semicontinuous Reaction System. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH[J]. 2013, 52(28): 9566-9572, http://159.226.238.44/handle/321008/119196.[29] 张涛. Selective production of 1,2-propylene glycol from Jerusalem artichoke tuber on Ni-W2C/AC catalysts. CHEMSUSCHEM[J]. 2012, 5(5): 932, http://cas-ir.dicp.ac.cn/handle/321008/117881.[30] 张涛. Catalytic conversion of cellulose to hexitols with mesoporous carbon supported Ni-based bimetallic catalysts. GREEN CHEM. 2012, 14(3): ,614-617, [31] Li, Changzhi, Zheng, Mingyuan, Wang, Aiqin, Zhang, Tao. One-pot catalytic hydrocracking of raw woody biomass into chemicals over supported carbide catalysts: simultaneous conversion of cellulose, hemicellulose and lignin. ENERGY & ENVIRONMENTAL SCIENCE[J]. 2012, 5(4): 6383-6390, http://dx.doi.org/10.1039/c1ee02684d.[32] 张涛. Nickel-Promoted Tungsten Carbide Catalysts for Cellulose Conversion: Effect of Preparation Methods. CHEMSUSCHEM[J]. 2012, 5(5): 939-944, http://www.irgrid.ac.cn/handle/1471x/721221.[33] 张涛. Temperature-controlled phase-transfer catalysis for ethylene glycol production from cellulose. CHEM COMMUN. 2012, [34] 张涛. Catalytic Hydrogenation of Corn Stalk to Ethylene Glycol and 1,2-Propylene Glycol. IND ENG CHEM RES. 2011, 50(11): ,6601-6608, [35] 张涛. Hydrolysis of cellulose into glucose over carbons sulfonated at elevated temperatures. CHEM COMMUN. 2010, [36] 张涛. Selective Transformation of Cellulose into Sorbitol by Using a Bifunctional Nickel Phosphide Catalyst. CHEMSUSCHEM[J]. 2010, 3(7): 818-821, http://159.226.238.44/handle/321008/141993.[37] 张涛. Production of 5-hydroxymethylfurfural in ionic liquids under high fructose concentration conditions. CARBOHYDR RES. 2010, [38] 张涛. A novel route to the preparation of carbon supported nickel phosphide catalysts by a microwave heating process. CATAL LETT. 2010, [39] 张涛. Transition Metal-Tungsten Bimetallic Catalysts for the Conversion of Cellulose into Ethylene Glycol. CHEMSUSCHEM[J]. 2010, 3(1): 63-66, http://159.226.238.44/handle/321008/103309.[40] Ding, Lining, Shu, Yuying, Wang, Aiqing, Zheng, Mingyuan, Li, Lin, Wang, Xiaodong, Zhang, Tao. Preparation and catalytic performances of ternary phosphides NiCoP for hydrazine decomposition. APPLIED CATALYSIS A-GENERAL[J]. 2010, 385(1-2): 232-237, http://dx.doi.org/10.1016/j.apcata.2010.07.020.[41] 张涛. Direct catalytic conversion of cellulose into ethylene glycol using nickel-promoted tungsten carbide catalysts. ANGEW CHEM INT EDIT. 2008,