General

YangqiaoLiu, Dr./Prof., doctoral supervisor, Shanghai Institute of Ceramics, Chinese Academy of Sciences
Email: yqliu@mail.sic.ac.cn
Telephone: 021-69987698 
Address: 215 Chengbei Road, Jiading District,  Shanghai

Research Areas

(1) High-performance nano materials for environmental purification (catalyst, adsobent, separators)

(2) High-value functional materials from solid wastes

(3) Low-dimensional carbon-based materials


Recently (2021-2023), our research group is recruiting several young researchers and postdoctors!

Welcome doctoral/postgraduate students who are interested in the direction of advanced materials for solid waste recycling and wastewater treatment to join the research group!




Education

l  September 1998-June 2001, Ph.D. degree in Materials Science and Engineering, Shanghai Institute of Ceramics, Chinese Academy of Sciences;

l  September 1993-April 1996, Master degree in Chemical Engineering, Dalian University of Technology;

l  September 1989-July 1993, Bachelor degree in Chemical Engineering, East China University of Science and Technology


Experience

   
Work Experience


Honors & Distinctions

1. Shanghai Youth Rising Star in Science and Technology, 2008

2. Shanghai First-class Prize in Science and Technology Development, 2005

Publications

   
Papers

1.   Fly ash derived calcium silicate hydrate as a highly efficient and fast adsorbent for Cu(II) ions: role of copolymer functionalization, RSC Adv., 2022, 12, 22843

2. Synergistic oxygen vacancy-rich CuO/visible light activation of peroxymonosulfate for degradation of rhodamine B: fast catalyst synthesis and degradation mechanism, RSC Adv., 2022, 12, 2928–2937

 3.  Adsorption removal of organic phosphonate HEDP by magnetic composite doped with different rare earth elementsChemical Engineering Journal Advances9100221-100220 (2022).

2.       Removal of organic phosphonate HEDP by Eu-MOF/GO composite membrane, Journal of Environmental Chemical Engineering 9106895-106906 (2021).

3.       Adsorption and mechanism study for phosphonate antiscalant HEDP removal from reverse osmosis concentrates by magnetic La/Zn/ Fe3O4@PAC composite, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 613: 126056-126067 (2021).

4.       Highly efficient persulfate oxidation process activated with NiO nanosheets with dominantly exposed {110} reactive facets for degradation of RhB, Applied Surface Science, 505: 144318-144327 (2020).

5.       Dual surfactants coassisted synthesis of CuO nanoleaves for activation of peroxymonosulfate to degrade acid orange 7, Chemical Physics Letters, 752:137557-137562 (2020).

6.       TiO2 coupled to predominantly metallic MoS2 for photocatalytic degradation of rhodamine B, Journal of Materials Science, 55: 12274-12286 (2020).

7.       Solvent Effect on the Solvothermal Synthesis of Mesoporous NiO Catalysts for Activation of Peroxymonosulfate to Degrade Organic Dyes, ACS Omega, 4:17672-17683 2019.

8.       Synthesis of AuPd nanoparticle-decorated graphene-coated ZnO nanorod arrays with enhanced photoelectrochemical performance and stability, RSC Advances, 92666-26729 (2019).

9.       Micron-sized columnar grains of CH3NH3PbI3 grown by solvent-vapor assisted low-temperature (75 oC) solid-state reaction: the role of non-coordinating solvent-vapor, Appl. Surface Sci., 437:82-91(2018).

10.    Design and Fabrication of superhydrophobic/superoleophilic Ni3S2 nanorods/Ni mesh for oil-water separation, Surface Coatings Technology, 337:370-378 (2018).

11.    Low-temperature (75oC) solid-state reaction enhanced by less-crystallized nanoporous PbI2 films for efficient CH3NH3PbI3 perovskite solar cellsAppl. Surface Sci., 405:412-419 (2017).

12.    Growing large columnar grains of CH3NH3PbI3 using the solid-state reaction method enhanced by less-crystallized nanoporous PbI2 films, J Power Sources, 2017, 344:46-55(2017).

13.    A facile way to prepare nanoporous PbI2 films and their application in fast conversion to CH3NH3PbI3, RSC Adv., 6: 1611-1617(2016).

14.    VOx Effectively Doping CVD-Graphene for Transparent Conductive FilmsAppl. Surface Sci., 387: 51–57 (2016).

15.    Jing Sun, Effects of low pressure plasma treatments on DSSCs based on rutile TiO2 array photoanodes, Appl. Surface Sci., 324: 143-151 (2015).

16.    A long-term oxidation barrier for copper nanowires: graphene says yes, Phys. Chem. Chem. Phys., 17(6): 4231-4236 (2015).

17.    Novel fabrication of copper nanowire/cuprous oxide based semiconductor-liquid junction solar cells, Nano Res., 8(10): 3205-3215 (2015).

18.    A symmetrical bi-electrode electrochemical technique for high-efficiency transfer of CVD-grown graphene, Nanotechnology, 25: 145704-145712 (2014)

19.    Heat-induced formation of porous and free-standing MoS2/GS hybrid electrodes for binder-free and ultralong-life lithium ion batteriesNano Energy, 8: 183-195 (2014).

20.    Promotion of charge transport in low-temperature fabricated TiO2 electrodes by curing-induced compression stress, Electrochimica Acta, 100: 85-92 (2013).

21.    Free-standing and binder-free lithium-ion electrodes based on robust layered assembly of graphene and Co3O4 nanosheets, Nanoscale, 5(15): 6960-6967 (2013).

22.    A facile method to observe graphene growth on copper foil, Nanotechnology 23475705-475713 (2012).

23.    A bilayer structure of a titania nanoparticle/highly-ordered nanotube array for low-temperature dye-sensitized solar cells, RSC Advances, 2, 1884–1889 (2012).

24.    Highly Transparent AlON Pressurelessly Sintered from Powder Synthesized by a Novel Carbothermal Nitridation MethodJ. Am. Ceram. Soc., 95(9): 2801–2807 (2012).

25.    High Efficiency Semiconductor-Liquid Junction Solar Cells based on Cu/Cu2O, Adv. Funct. Mater. , 2218):3907-3912 (2012).

26.    Yangqiao Liu, Optimization of the cutting process of multi-wall carbon nanotubes for enhanced dye-sensitized solar cells, Thin Solid Films, 519: 2273-2279 (2011).

27.    Assembly of CdSe nanoparticles on Graphene for low-temperature fabrication of quantum dot-sensitized solar cells, Appl. Phys. Lett., 98:093112-093114 (2011).

28.    Effective post treatment for preparing highly conductive carbon nanotube/reduced graphite oxide hybrid films, Nanoscale, 3: 904(2011).

29.    Enhanced dye-sensitized solar cells using graphene-TiO2 photoanode prepared by heterogeneous coagulation, Appl. Phys. Lett., 96, 083113-083115 (2010).

30.    Humic Acid Fouling Mitigation by Antiscalant in Reverse Osmosis System, Environ. Sci. Technol., 445153-5158 (2010).

31.    Control of protein (BSA) fouling in RO system by antiscalants, J. Membrane Sci., 364(1-2)364-379 (2010).

32.    pH-Sensitive Highly Dispersed Reduced Graphene Oxide Solution Using Lysozyme via an in Situ Reduction Method, J. Phys. Chem. C,  114(50):22085-22091 (2010)

33.    Stable Nafion-functionalized graphene dispersions for transparent conducting films, Nanotechnology 20: 465605-11 (2009).

34.    The effect of electro-degradation processing on microstructure of polyaniline/single-wall carbon nanotube composite filmsCarbon, 46: 1145-1151 (2008).

35.    Debundling of Single-Walled Carbon Nanotubes by a Nanoball-Penetrating MethodJ. Phys. Chem. C, 1121789-1794 (2008).

36.    Dispersion of Single-walled Carbon Nanotubes by Nafion in Water/Ethanol for Preparing Transparent Conducting Films, J. Phys. Chem. C, 112 (42), 16370–16376 (2008).

37.    Influence of the coexisting contaminants on bisphenol a sorption and desorption in soil, J. Hazard. Mater., 151 (2-3): 389-393 (2008)

38.     

39.    Noncovalent Functionalization of Carbon Nanotubes with Sodium Lignosulfonate and Subsequent Quantum Dot Decoration, J. Phys. Chem. C, 111 (3): 1223-1229 (2007).

40.    A multi-step strategy for cutting and purification of single-walled carbon nanotubes, Carbon, 45: 1972-1978 (2007).

41.    Debundling of single-walled carbon nanotubes by using natural polyelectrolytes, Nanotechnology, 18: 365702-365707 (2007).

42.    Influence of the Presence of Heavy Metals and Surface-Active Compounds on the Sorption of Bisphenol A to Sediment, Chemosphere, 68(7): 1298-1303 (2007)

43.    An Integrated Route for Purification, Cutting and Dispersion of Single-walled Carbon Nanotubes , Chem. Phys. Lett., 432: 205-209 (2006).

44.    Sintering and Thermal Properties of Multiwalled Carbon Naotube-BaTiO3 composites J. Mater. Chem., 15(20): 1995-2001 (2005).

45.    A Study of the Electrical Properties of Carbon Nanotube-NiFe2O4 Composites: Effect of the Surface Treatment of Carbon Nanotubes Carbon, 43: 47-52 (2005).

46.    Effect of 2-Phosphonobutane-1,2,4-Tricarboxylic Acid Adsorption on the Stability and Rheological Properties of Aqueous Nano-sized 3mol%-Yttria-Stabilized Tetragonal Zirconia Polycrystal Suspensions , J. Am. Ceram. Soc., 86 (7): 1106-1113 (2003).

47.    Low-Temperature Synthesis of Nanocrystalline Yttrium Aluminum Garnet Powder Using Triethanolamine, J. Am. Ceram. Soc., 86(10): 1651-1653 (2003).

48.    Improving the Fluidity of Alumina Suspensions by Adsorption of Polyelectrolytes Mater. Chem. Phys., 82 (2) 362-369 (2003).

49.    Adsorption of Salicylic Acid, 5-Sulfosalicylic Acid and Tiron at the Alumina-water Interface, Colloids Surf. A, 211, 165-172 (2002).

50.    Effect of Acrylic Copolymer Adsorption on the Colloidal Stability of Y-TZP Suspension, J. Eur. Ceram. Soc., 22 (6): 863-871 (2002).

51.    Investigation of Induction Period and Morphology of CaCO3 Fouling on Heated Surface, Chem. Eng. Sci., 57(6), 921-931 (2002).

52.    Yangqiao Liu, Lian Gao and Jingkun Guo, Comparative Study of the Stabilizing Effect of PBTCA and Citric Acid for Alumina Suspensions, Colloids Surf. A, 193187-195 (2001).

53.    Qingfeng Yang, Yangqiao Liu, Anzhong Gu, Jie Ding and Ziqiu Shen, Investigation of Calcium Carbonate Scaling Inhibition and Scale Morphology by AFM, J. Colloid Interf. Sci., 240 (2): 608-621 (2001).

54.    Adsorption of Acrylic Copolymers at the Alumina–Water Interface, Colloids Surf. A, 174(3): 349-356 (2000).

55.    Adsorption of PBTCA on Alumina Surfaces and its Influence on the Fractal Characteristics of Sediments, J. Colloid Interf. Sci., 227 (1): 164-170 (2000). 


Research Interests

(1) High-performance nano materials for environmental purification (catalyst, adsobent, separators)

(2) High-value functional materials from solid wastes

(3) Low-dimensional carbon-based materials

Students

已指导学生

纪庆华  硕士研究生  085216-化学工程  

顾雅洁  硕士研究生  080501-材料物理与化学  

兰青  硕士研究生  085204-材料工程