基本信息
罗德军  男  博导  中国科学院数学与系统科学研究院
电子邮件: luodj@amss.ac.cn
通信地址: 北京市海淀区中关村东路55号思源楼
邮政编码: 100190

研究领域

随机分析

招生信息

   
招生专业
070103-概率论与数理统计
招生方向
随机分析

教育背景

2005-09--2008-09   University of Bourgogne, France   博士
2003-09--2008-06   北京师范大学数学科学学院   博士
1999-09--2003-06   北京师范大学数学系   本科
学历
-- 研究生
学位
-- 博士

工作经历

   
工作简历
2018-12~2019-11,意大利比萨高等师范学校, 合作研究
2017-05~2018-03,意大利比萨大学数学系, 访问学者
2014-09~现在, 中国科学院大学, 岗位教师
2014-03~现在, 中科院数学院应用数学所, 副研究员
2009-03~2011-02,University of Luxembourg, 博士后
2008-07~2014-02,中科院数学院应用数学所, 助理研究员

教授课程

微积分习题课

专利与奖励

   
奖励信息
(1) 中国科学院青年创新促进会会员, , 院级, 2017
(2) 中科院数学与系统科学研究院“陈景润未来之星”, 研究所(学校), 2016

出版信息

   
发表论文
[1] Flandoli, Franco, Galeati, Lucio, Luo, Dejun. Eddy heat exchange at the boundary under white noise turbulence. Philosophical Transactions of the Royal Society A[J]. 2022, [2] Flandoli, Franco, Galeati, Lucio, Luo, Dejun. Scaling limit of stochastic 2D Euler equations with transport noises to the deterministic Navier-Stokes equations. JOURNAL OF EVOLUTION EQUATIONS[J]. 2021, 21(1): 567-600, https://www.webofscience.com/wos/woscc/full-record/WOS:000541309100001.
[3] Luo, Dejun. Convergence of stochastic 2D inviscid Boussinesq equations with transport noise to a deterministic viscous system. NONLINEARITY[J]. 2021, 34(12): 8311-8330, [4] Luo, Dejun, Zhu, Rongchan. Stochastic mSQG equations with multiplicative transport noises: White noise solutions and scaling limit. STOCHASTIC PROCESSES AND THEIR APPLICATIONS[J]. 2021, 140: 236-286, http://dx.doi.org/10.1016/j.spa.2021.06.013.
[5] Flandoli, Franco, Luo, Dejun, Ricci, Cristiano. A numerical approach to Kolmogorov equation in high dimension based on Gaussian analysis. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS[J]. 2021, 493(1): http://dx.doi.org/10.1016/j.jmaa.2020.124505.
[6] Luo, De Jun, Saal, Martin. Regularization by Noise for the Point Vortex Model of mSQG Equations. ACTA MATHEMATICA SINICA-ENGLISH SERIES[J]. 2021, 37(3): 408-422, http://lib.cqvip.com/Qikan/Article/Detail?id=7104357508.
[7] Flandoli, Franco, Luo, Dejun. Point vortex approximation for 2D Navier-Stokes equations driven by space-time white noise. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS[J]. 2021, 493(2): http://dx.doi.org/10.1016/j.jmaa.2020.124560.
[8] Flandoli, Franco, Luo, Dejun. High mode transport noise improves vorticity blow-up control in 3D Navier-Stokes equations. PROBABILITY THEORY AND RELATED FIELDS[J]. 2021, 180(1-2): 309-363, http://dx.doi.org/10.1007/s00440-021-01037-5.
[9] Flandoli, Franco, Galeati, Lucio, Luo, Dejun. Delayed blow-up by transport noise. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS[J]. 2021, 46(9): 1757-1788, http://dx.doi.org/10.1080/03605302.2021.1893748.
[10] Flandoli, Franco, Luo, Dejun. Energy conditional measures and 2D turbulence. JOURNAL OF MATHEMATICAL PHYSICS[J]. 2020, 61(1): https://www.webofscience.com/wos/woscc/full-record/WOS:000518009800001.
[11] Luo, Dejun, Saal, Martin. A scaling limit for the stochastic mSQG equations with multiplicative transport noises. STOCHASTICS AND DYNAMICS[J]. 2020, 20(6): https://www.webofscience.com/wos/woscc/full-record/WOS:000580940600002.
[12] Flandoli, Franco, Luo, Dejun. CONVERGENCE OF TRANSPORT NOISE TO ORNSTEIN-UHLENBECK FOR 2D EULER EQUATIONS UNDER THE ENSTROPHY MEASURE. ANNALS OF PROBABILITY[J]. 2020, 48(1): 264-295, https://www.webofscience.com/wos/woscc/full-record/WOS:000521825900007.
[13] Flandoli, Franco, Grotto, Francesco, Luo, Dejun. FOKKER-PLANCK EQUATION FOR DISSIPATIVE 2D EULER EQUATIONS WITH CYLINDRICAL NOISE. THEORY OF PROBABILITY AND MATHEMATICAL STATISTICS[J]. 2020, 102: 117-143, [14] Flandoli, Franco, Luo, Dejun. KOLMOGOROV EQUATIONS ASSOCIATED TO THE STOCHASTIC TWO DIMENSIONAL EULER EQUATIONS. SIAM JOURNAL ON MATHEMATICAL ANALYSIS[J]. 2019, 51(3): 1761-1791, https://www.webofscience.com/wos/woscc/full-record/WOS:000473082300007.
[15] Flandoli, Franco, Luo, Dejun. EULER-LAGRANGIAN APPROACH TO 3D STOCHASTIC EULER EQUATIONS. JOURNAL OF GEOMETRIC MECHANICS[J]. 2019, 11(2): 153-165, http://ir.amss.ac.cn/handle/2S8OKBNM/34620, http://www.irgrid.ac.cn/handle/1471x/6869275, http://ir.amss.ac.cn/handle/2S8OKBNM/34621, http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000467023900004&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=3a85505900f77cc629623c3f2907beab.
[16] Dejun Luo, Jian Wang. Refined basic couplings and Wasserstein-type distances for SDEs with Lévy noises. Stochastic Processes and their Applications. 2019, 129(9): 3129-3173, http://dx.doi.org/10.1016/j.spa.2018.09.003.
[17] Li, Huaiqian, Luo, Dejun. Quantitative stability estimates for Fokker-Planck equations. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES[J]. 2019, 122: 125-163, http://ir.amss.ac.cn/handle/2S8OKBNM/32465.
[18] Luo Dejun, Wang Jian. Coupling by Reflection and Hölder Regularity for Non-Local Operators of Variable Order. Transactions of the American Mathematical Society[J]. 2019, [19] Flandoli, Franco, Luo, Dejun. rho-White noise solution to 2D stochastic Euler equations. PROBABILITY THEORY AND RELATED FIELDS[J]. 2019, 175(3-4): 783-832, [20] Luo, Dejun. The Ito SDEs and Fokker-Planck equations with Osgood and Sobolev coefficients. STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES[J]. 2018, 90(3): 379-410, https://www.webofscience.com/wos/woscc/full-record/WOS:000427283600004.
[21] Fang, Shizan, Luo, Dejun. Constantin and Iyer's Representation Formula for the Navier-Stokes Equations on Manifolds. POTENTIAL ANALYSIS[J]. 2018, 48(2): 181-206, https://www.webofscience.com/wos/woscc/full-record/WOS:000422968600003.
[22] Luo, Dejun, Wang, Jian. Exponential convergence in L-p-Wasserstein distance for diffusion processes without uniformly dissipative drift. MATHEMATISCHE NACHRICHTEN[J]. 2016, 289(14-15): 1909-1926, https://www.webofscience.com/wos/woscc/full-record/WOS:000386185200011.
[23] Luo, Dejun. A characterization of the rate of change of Phi-entropy via an integral form curvature-dimension condition. ADVANCES IN GEOMETRY[J]. 2016, 16(3): 277-290, https://www.webofscience.com/wos/woscc/full-record/WOS:000381015500002.
[24] Luo, Dejun, Wang, Jian. Holder continuity of semigroups for time changed symmetric stable processes. FRONTIERS OF MATHEMATICS IN CHINA[J]. 2016, 11(1): 109-121, https://www.webofscience.com/wos/woscc/full-record/WOS:000365760000008.
[25] Fuzhou Gong, Huaiqian Li, Dejun Luo. Erratum to: A Probabilistic Proof of the Fundamental Gap Conjecture Via the Coupling by Reflection. Potential Analysis,. 2016, 44(3): [26] Huaiqian Li, Dejun Luo. A unified treatment for ODEs under Osgood and Sobolev type conditions. Bulletin des sciences mathématiques. 2015, 139(1): 114-133, http://dx.doi.org/10.1016/j.bulsci.2014.08.005.
[27] Li, Huaiqian, Luo, Dejun, Wang, Jian. Harnack inequalities for SDEs with multiplicative noise and non-regular drift. STOCHASTICS AND DYNAMICS[J]. 2015, 15(3): https://www.webofscience.com/wos/woscc/full-record/WOS:000355016700002.
[28] Luo, Dejun. Generalized stochastic flow associated to the Ito SDE with partially Sobolev coefficients and its application. ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE[J]. 2015, 14(2): 535-573, https://www.webofscience.com/wos/woscc/full-record/WOS:000360771300008.
[29] Luo, Dejun. Dimension-Independent Estimates on the Densities of Wiener Functionals via the Log-Sobolev Inequality. POTENTIAL ANALYSIS[J]. 2014, 41(3): 903-915, https://www.webofscience.com/wos/woscc/full-record/WOS:000343134200013.
[30] Gong, FuZhou, Liu, Yong, Liu, Yuan, Luo, DeJun. Spectral gaps of Schrodinger operators and diffusion operators on abstract Wiener spaces. JOURNAL OF FUNCTIONAL ANALYSIS[J]. 2014, 266(9): 5639-5675, https://www.webofscience.com/wos/woscc/full-record/WOS:000334652000005.
[31] Luo, Dejun. Uniqueness of degenerate Fokker-Planck equations with weakly differentiable drift whose gradient is given by a singular integral. ELECTRONIC COMMUNICATIONS IN PROBABILITY[J]. 2014, 19: 1-14, https://www.webofscience.com/wos/woscc/full-record/WOS:000341867000001.
[32] Luo, De Jun. Fokker-Planck type equations with Sobolev diffusion coefficients and BV drift coefficients. ACTA MATHEMATICA SINICA-ENGLISH SERIES[J]. 2013, 29(2): 303-314, http://ir.amss.ac.cn/handle/2S8OKBNM/49872, http://www.irgrid.ac.cn/handle/1471x/6869702, http://ir.amss.ac.cn/handle/2S8OKBNM/49873.
[33] Lim, Adrian P C, Luo, Dejun. Asymptotic estimates on the time derivative of entropy on a Riemannian manifold. ADVANCES IN GEOMETRY[J]. 2013, 13(1): 97-115, https://www.webofscience.com/wos/woscc/full-record/WOS:000316858900006.
[34] Lim, Adrian P C, Luo, Dejun. A note on Gaussian correlation inequalities for nonsymmetric sets. STATISTICS & PROBABILITY LETTERS[J]. 2012, 82(1): 196-202, https://www.webofscience.com/wos/woscc/full-record/WOS:000298204800030.
[35] Li, Huaiqian, Luo, Dejun. Quasi-Invariant Flow Generated by Stratonovich SDE with BV Drift Coefficient. STOCHASTIC ANALYSIS AND APPLICATIONS[J]. 2012, 30(2): 258-284, https://www.webofscience.com/wos/woscc/full-record/WOS:000302370000005.
[36] Luo, Dejun. Pathwise uniqueness of multi-dimensional stochastic differential equations with Holder diffusion coefficients. FRONTIERS OF MATHEMATICS IN CHINA[J]. 2011, 6(1): 129-136, https://www.webofscience.com/wos/woscc/full-record/WOS:000286193500009.
[37] Fang, Shizan, Li, Huaiqian, Luo, Dejun. Heat semi-group and generalized flows on complete Riemannian manifolds. BULLETIN DES SCIENCES MATHEMATIQUES[J]. 2011, 135(6-7): 565-600, http://dx.doi.org/10.1016/j.bulsci.2011.05.002.
[38] Luo, Dejun. Absolute continuity under flows generated by SDE with measurable drift coefficients. STOCHASTIC PROCESSES AND THEIR APPLICATIONS[J]. 2011, 121(10): 2393-2415, http://dx.doi.org/10.1016/j.spa.2011.05.012.
[39] Luo, Dejun. WELL-POSEDNESS OF FOKKER-PLANCK TYPE EQUATIONS ON THE WIENER SPACE. INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS[J]. 2010, 13(2): 273-304, https://www.webofscience.com/wos/woscc/full-record/WOS:000279726900006.
[40] Fang, Shizan, Luo, Dejun, Thalmaier, Anton. Stochastic differential equations with coefficients in Sobolev spaces. JOURNAL OF FUNCTIONAL ANALYSIS[J]. 2010, 259(5): 1129-1168, http://dx.doi.org/10.1016/j.jfa.2010.02.014.
[41] Fang, Shizan, Luo, Dejun. Transport equations and quasi-invariant flows on the Wiener space. BULLETIN DES SCIENCES MATHEMATIQUES[J]. 2010, 134(3): 295-328, http://dx.doi.org/10.1016/j.bulsci.2009.01.001.

科研活动

   
科研项目
( 1 ) (带边)黎曼轨道空间与环空间上的随机分析, 参与, 国家级, 2014-01--2017-12
( 2 ) 面向流体力学的随机偏微分方程的分析和渐近性质研究, 参与, 国家级, 2015-01--2019-12
( 3 ) 关于不可压缩的Navier-Stokes方程组的随机刻画的若干问题, 主持, 国家级, 2016-01--2019-12
( 4 ) 中科院青年创新促进会, 主持, 部委级, 2017-01--2020-12
( 5 ) 非局部狄氏型和随机偏微分方程若干问题研究, 参与, 国家级, 2020-01--2024-12
( 6 ) 几类有重要物理背景的随机(偏)微分方程的动力学行为, 参与, 国家级, 2021-01--2025-12
( 7 ) 随机分析的基础理论研究, 参与, 国家级, 2020-12--2024-11
参与会议
(1)传输型噪声对三维Navier-Stokes方程的正则化作用   2020-05-16
(2)High mode transport noise improves vorticity blow-up control in 3D Navier-Stokes equations   2019-11-11
(3)Some scaling limits of the 2D Euler equation with transport noises   2019-07-18
(4)Some recent results on white noise solutions to stochastic 2D Euler equations   2019-05-11
(5)Particle system approximation for 2D Navier-Stokes equations driven by space-time white noise   第十一届全国概率统计年会   2018-10-25
(6)Convergence of transport noise to Ornstein-Uhlenbeck for 2D Euler equations under the enstrophy measure   2018-09-03
(7)随机二维欧拉方程的一个极限定理   2018年随机过程与应用概率论研讨会   2018-07-06
(8)Kolmogorov equations associated to 2D stochastic Euler equations   中美数学会联合会议   2018-06-11
(9)White noise solution to 2D stochastic Euler equations   狄氏型及随机分析学术研讨会   2018-05-11
(10)Kolmogorov equations associated to the stochastic 2D Euler equations   随机分析及其应用研讨会   2018-04-13
(11)The Ito SDEs and Fokker–Planck equations with Osgood and Sobolev coefficients   2016-07-13
(12)Wasserstein-type distances and ergodicity for SDEs with Levy Noises via the refined basic coupling   2016-04-28
(13)A class of stochastic differential equations with Osgood and Sobolev coefficients   2016-04-01
(14)Exponential convergence in L^p Wasserstein distance for diffusion process without uniformly dissipative drift   Dejun Luo, Jian Wang   2015-12-01
(15)A probabilistic proof of the spectral gap comparison theorem   武汉大学青年概率学者研讨会   Fuzhou Gong, Huaiqian Li, Dejun Luo   2015-05-01
(16)Quasi-invariance of the Stochastic Flow Associated to Itos SDE with Singular   Dejun Luo   2014-08-14
(17)A characterization of the rate of change of Phi-entropy via an integral form curvature-dimension condition   Dejun Luo   2014-07-04
(18)A probabilistic proof of the fundamental gap conjecture via the coupling by reflection   Fuzhou Gong, Huaiqian Li, Dejun Luo   2013-10-28
(19)The fundamental gap conjecture: a probabilistic approach via the coupling by reflection   Fuzhou Gong, Huaiqian Li, Dejun Luo   2013-07-06
(20)Logarithmic Sobolev inequality for the ground state of a Schrodinger operator   Fuzhou Gong, Huaiqian Li, Dejun Luo   2013-07-01