基本信息

罗斯琼 女 博导 中国科学院西北生态环境资源研究院
电子邮件: lsq@lzb.ac.cn
通信地址: 甘肃省兰州市东岗西路320号
邮政编码: 730000
电子邮件: lsq@lzb.ac.cn
通信地址: 甘肃省兰州市东岗西路320号
邮政编码: 730000
招生信息
招生专业
070601-气象学070602-大气物理学与大气环境
招生方向
陆面过程与气候变化
教育背景
2003-09--2008-06 中国科学院研究生院 理学博士1999-09--2003-07 兰州大学 理学学士
学历
研究生学历
学位
理学博士
专利与奖励
专利成果
[1] 靳潇, 高晓清, 余晔, 李振朝, 罗斯琼. 一种基于Dobson介电模型的改进土壤半经验介电模型. CN: CN115203978A, 2022-10-18.[2] 靳潇, 杨文, 高晓清, 余晔, 罗斯琼. 基于双电层静电场特征函数的土壤复介电常数混合模型. CN: CN114910524A, 2022-08-16.
出版信息
发表论文
[1] Siqiong Luo, Jingyuan Wang, Xiaoqing Tan, Xianhong Meng, Lunyu Shang, Hongmei Li, Bingrong Zhou, Qi Chen. Characteristics of ground surface heat flux for alpine vegetation in freeze-thaw cycles in the three river source region. RENEWABLE ENERGY[J]. 2024, 221: http://dx.doi.org/10.1016/j.renene.2023.119793.[2] Luo, Siqiong, Chen Zihang, Wang Jingyuan. Impact of the initial soil conditions on soil hydrothermal and surface energy fluxes in the permafrost region on the Tibetan Plateau. Advances in Atmospheric Sciences[J]. 2024, 41: 717-736, https://doi.org/10.1007/s00376-023-3100-z.[3] Dong, Qingxue, Luo, Siqiong, Wen, Xiaohang, Wang, Jingyuan, Tan, Xiaoqing, Chen, Zihang, Wang, Ziyue. Response of surface energy fluxes and hydrothermal characteristics to night-time precipitation changes in the southeastern Tibetan Plateau. INTERNATIONAL JOURNAL OF CLIMATOLOGY. 2023, http://dx.doi.org/10.1002/joc.8316.[4] Wenjing Li, Siqiong Luo, Jingyuan Wang, Yuxuan Wang. Evaluation of Ten Fresh Snow Density Parameterization Schemes for Simulating Snow Depth and Surface Energy Fluxes on the Eastern Tibetan Plateau. ATMOSPHERE[J]. 2023, 14(10): https://doaj.org/article/3b74c39f77e04404a157a7d836372a04.[5] Feng, Tianwen, Hao, Xiaohua, Wang, Jian, Luo, Siqiong, Huang, Guanghui, Li, Hongyi, Zhao, Qin. Applicability of alpine snow depth estimation based on multitemporal UAV-LiDAR data: A case study in the Maxian Mountains, Northwest China. JOURNAL OF HYDROLOGY[J]. 2023, 617: http://dx.doi.org/10.1016/j.jhydrol.2022.129006.[6] Atmospherenull. 2023, [7] Ma, Jie, Wen, Xiaohang, Li, Maoshan, Luo, Siqiong, Zhu, Xian, Yang, Xianyu, Chen, Mei. Analysis of Surface Energy Changes over Different Underlying Surfaces Based on MODIS Land-Use Data and Green Vegetation Fraction over the Tibetan Plateau. REMOTE SENSING[J]. 2022, 14(12): http://apps.webofknowledge.com/CitedFullRecord.do?product=UA&colName=WOS&SID=5CCFccWmJJRAuMzNPjj&search_mode=CitedFullRecord&isickref=WOS:000816212300001.[8] 王梓月, 罗斯琼, 李文静, 王景元, 陈自航. 青藏高原东部多、少雪年地表能量和水分特征对比研究. 高原气象[J]. 2022, 41(2): 444-464, http://lib.cqvip.com/Qikan/Article/Detail?id=7107203681.[9] 冯晓莉, 李红梅, 罗斯琼, 白文蓉, 温婷婷. 1961-2020年三江源地区季节性冻土冻融特征分析. 高原气象[J]. 2022, 41(2): 295-305, http://lib.cqvip.com/Qikan/Article/Detail?id=7107203669.[10] Tan, Xiaoqing, Luo, Siqiong, Li, Hongmei, Hao, Xiaohua, Wang, Jingyuan, Dong, Qingxue, Chen, Zihang. Investigating the Effects of Snow Cover and Vegetation on Soil Temperature Using Remote Sensing Indicators in the Three River Source Region, China. REMOTE SENSING[J]. 2022, 14(16): http://dx.doi.org/10.3390/rs14164114.[11] 陈自航, 罗斯琼, 王景元, 谭晓晴, 董晴雪, 晋伟. 不同初始值对三江源西大滩站多年冻土水热过程模拟的影响. 高原气象[J]. 2022, 41(2): 282-294, http://lib.cqvip.com/Qikan/Article/Detail?id=7107203668.[12] 姜琪, 罗斯琼, 李明. 不同初始场及陆面方案对青藏高原中东部积雪消融过程的模拟研究. 高原气象[J]. 2022, 41(2): 430-443, http://lib.cqvip.com/Qikan/Article/Detail?id=7107203680.[13] 张一然, 文小航, 罗斯琼, 李茂善. 近20年若尔盖湿地植被覆盖变化与气候因子关系研究. 高原气象[J]. 2022, 41(2): 317-327, http://lib.cqvip.com/Qikan/Article/Detail?id=7107203671.[14] 谭晓晴, 罗斯琼, 舒乐乐, 李晓旭, 王景元, 曾礼, 董晴雪, 陈自航. 基于机器学习的土壤温度预估研究综述. 高原气象[J]. 2022, 41(2): 268-281, http://lib.cqvip.com/Qikan/Article/Detail?id=7107203667.[15] 董晴雪, 罗斯琼, 文小航, 王景元, 李文静. 近60年来藏东南降水变化及其对土壤温度与冻融过程的影响. 高原气象[J]. 2022, 41(2): 404-419, http://lib.cqvip.com/Qikan/Article/Detail?id=7107203678.[16] Zhao, Qin, Hao, Xiaohua, Wang, Jian, Luo, Siqiong, Shao, Donghang, Li, Hongyi, Feng, Tianwen, Zhao, Hongyu. Snow Cover Phenology Change and Response to Climate in China during 2000-2020. REMOTE SENSING[J]. 2022, 14(16): http://dx.doi.org/10.3390/rs14163936.[17] 罗斯琼, 李红梅, 马迪, 李文静, 王景元, 谭晓晴, 董晴雪. 三江源冻土-植被相互作用及气候效应研究现状及展望. 高原气象[J]. 2022, 41(2): 255-267, http://lib.cqvip.com/Qikan/Article/Detail?id=7107203666.[18] Wang, Jingyuan, Luo, Siqiong, Lv, Zhibang, Li, Wenjing, Tan, Xiaoqing, Dong, Qingxue, Chen, Zihang. Improving Ground Heat Flux Estimation: Considering the Effect of Freeze/Thaw Process on the Seasonally Frozen Ground. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES[J]. 2021, 126(24): [19] Di Ma, SiQiong Luo, DongLin Guo, ShiHua Lyu, XianHong Meng, BoLi Chen, LiHui Luo. Simulated effect of soil freeze-thaw process on surface hydrologic and thermal fluxes in frozen ground region of the Northern Hemisphere. 寒旱区科学:英文版[J]. 2021, 13(1): 18-29, http://lib.cqvip.com/Qikan/Article/Detail?id=7104224916.[20] 李文静, 罗斯琼, 郝晓华, 王景元, 王宇轩. 青藏高原东部不同季节积雪过程对地表能量和土壤水热影响的观测研究. 高原气象[J]. 2021, 40(3): 455-471, http://lib.cqvip.com/Qikan/Article/Detail?id=7104954461.[21] 罗斯琼. Comparative Analysis of water-energy cycle processes Based on HRADC data over Different Underlying Surfaces in Qinghai-Tibet Plateau. Frontiers in Earth Science. 2020, [22] Luo, Siqiong, Wang, Jingyuan, Pomeroy, John W, Lyu, Shihua. Freeze-Thaw Changes of Seasonally Frozen Ground on the Tibetan Plateau from 1960 to 2014. JOURNAL OF CLIMATE[J]. 2020, 33(21): 9427-9446, https://www.webofscience.com/wos/woscc/full-record/WOS:000589811900021.[23] Wen, Xiaohang, Liu, Chenghan, Luo, Siqiong. Comparative Analysis of Water-Energy Cycle Processes Based on High-Resolution Assimilation Dataset of the Water-Energy Cycle in China Data Over Different Underlying Surfaces in Qinghai-Tibet Plateau. FRONTIERSINEARTHSCIENCE[J]. 2020, 8: https://doaj.org/article/efcadbdcc590407e97c96a6292ca253d.[24] Yan, Dongdong, Liu, Tianya, Dong, Wenjie, Liao, Xiaohan, Luo, Siqiong, Wu, Kai, Zhu, Xian, Zheng, Zhiyuan, Wen, Xiaohang. Integrating remote sensing data with WRF model for improved 2-m temperature and humidity simulations in China. DYNAMICS OF ATMOSPHERES AND OCEANS[J]. 2020, 89: http://dx.doi.org/10.1016/j.dynatmoce.2019.101127.[25] 姜琪, 罗斯琼, 文小航, 吕世华. 1961-2014年青藏高原积雪时空特征及其影响因子. 高原气象[J]. 2020, 39(1): 24-36, http://lib.cqvip.com/Qikan/Article/Detail?id=7100970622.[26] Wen, Xiaohang, Pan, Wenqi, Sun, Xiaoguang, Li, Maoshan, Luo, Siqiong, Cao, Bangjun, Zhang, Shaobo, Wang, Chao, Zhang, Zihan, Meng, Linxi, Ruan, Yuqing, Xie, Bin. Study on the Variation Trend of Potential Evapotranspiration in the Three-River Headwaters Region in China Over the Past 20 years. FRONTIERS IN EARTH SCIENCE[J]. 2020, 8: https://doaj.org/article/9fe00e183b314562b54a70b715b713d6.[27] Zhao, Lin, Wang, S Y Simon, Wu, ChiHua, Los, Sebastian, Lyu, Shihua, Meng, Xianhong, Wen, Lijuan, Luo, Siqiong, Ao, Yinhuan, Li, Zhaoguo. Association of Diurnal Rainfall in Northeastern Tibetan Plateau with the Retreat of the South Asian High. ATMOSPHERE[J]. 2020, 11(1): https://doaj.org/article/4b0678fb99a84e59bb36b18f9612c19e.[28] Wang, Jingyuan, Luo, Siqiong, Li, Zhaoguo, Wang, Shaoying, Li, Zhenhua. The freeze/thaw process and the surface energy budget of the seasonally frozen ground in the source region of the Yellow River. THEORETICAL AND APPLIED CLIMATOLOGY[J]. 2019, 138(3-4): 1631-1646, http://dx.doi.org/10.1007/s00704-019-02917-6.[29] Hao, Xiaohua, Luo, Siqiong, Che, Tao, Wang, Jian, Li, Hongyi, Dai, Liyun, Huang, Xiaodong, Feng, Qisheng. Accuracy assessment of four cloud-free snow cover products over the Qinghai-Tibetan Plateau. INTERNATIONAL JOURNAL OF DIGITAL EARTH[J]. 2019, 12(4): 375-393, [30] Fang, Xuewei, Luo, Siqiong, Lyu, Shihua. Observed soil temperature trends associated with climate change in the Tibetan Plateau, 1960-2014. THEORETICAL AND APPLIED CLIMATOLOGY[J]. 2019, 135(1-2): 169-181, [31] Luo Siqiong, Chen Boli, Lyu Shihua, Fang Xuewei, Wang Jingyuan, Meng Xianhong, Shang Lunyu, Wang Shaoying, Ma Di. An improvement of soil temperature simulations on the Tibetan Plateau. SCIENCES IN COLD AND ARID REGIONS[J]. 2018, 10(1): 80-94, http://lib.cqvip.com/Qikan/Article/Detail?id=7000413235.[32] Chang, Yan, Lyu, Shihua, Luo, Siqiong, Li, Zhaoguo, Fang, Xuewei, Chen, Boli, Li, Ruiqing, Chen, Shiqiang. Estimation of permafrost on the Tibetan Plateau under current and future climate conditions using the CMIP5 data. INTERNATIONAL JOURNAL OF CLIMATOLOGY[J]. 2018, 38(15): 5659-5676, https://www.webofscience.com/wos/woscc/full-record/WOS:000452432200016.[33] 罗斯琼. Improving CLM4.5 Simulations of Land-Atmosphere Exchanges during Freeze-thaw Processes on the Tibetan Plateau. Journal of Meteorological Research. 2017, [34] Luo, Siqiong, Fang, Xuewei, Lyu, Shihua, Zhang, Yu, Chen, Boli. Improving CLM4.5 Simulations of Land-Atmosphere Exchange during Freeze-Thaw Processes on the Tibetan Plateau. JOURNAL OF METEOROLOGICAL RESEARCH[J]. 2017, 31(5): 916-930, http://lib.cqvip.com/Qikan/Article/Detail?id=81888887504849554853484857.[35] LunYu Shang, Yu Zhang, ShiHua Lyu, ShaoYing Wang, YinHuan Ao, SiQiong Luo, ShiQiang Chen. Winter estimation of surface roughness length over eastern Qinghai-Tibetan Plateau. 寒旱区科学:英文版[J]. 2017, 9(2): 151-157, http://lib.cqvip.com/Qikan/Article/Detail?id=7000193167.[36] Luo, Siqiong, Fang, Xuewei, Lyu, Shihua, Jiang, Qi, Wang, Jingyuan. Interdecadal Changes in the Freeze Depth and Period of Frozen Soil on the Three Rivers Source Region in China from 1960 to 2014. ADVANCES IN METEOROLOGY[J]. 2017, 2017: https://doaj.org/article/5da8d47b7d46455f92517b63ec0087ad.[37] Siqiong LUO, Xuewei FANG, Shihua LYU, Yu ZHANG, Boli CHEN. Improving CLM4.5 Simulations of Land–Atmosphere Exchange during Freeze–Thaw Processes on the Tibetan Plateau. 气象学报:英文版[J]. 2017, 916-930, http://lib.cqvip.com/Qikan/Article/Detail?id=81888887504849554853484857.[38] 陈渤黎, 罗斯琼, 吕世华, 方雪薇, 常燕. 基于CLM模式的青藏高原土壤冻融过程陆面特征研究. 冰川冻土[J]. 2017, 39(4): 760-770, http://lib.cqvip.com/Qikan/Article/Detail?id=673849129.[39] 罗斯琼. Interdecadal changes in the freeze depth and period of frozen soil on the Three River Source Region in China from 1960 to 2014.. Advances in Meteorology. 2017, [40] Fang, Xuewei, Luo, Siqiong, Lyu, Shihua, Chen, Boli, Zhang, Yu, Ma, Di, Chang, Yan. A Simulation and Validation of CLM during Freeze-Thaw on the Tibetan Plateau. ADVANCESINMETEOROLOGY[J]. 2016, 2016: https://doaj.org/article/67cea167c79a4a0c9325a05621926a80.[41] 常燕, 吕世华, 罗斯琼, 吴晶, 李瑞青, 李锁锁. CMIP5耦合模式对青藏高原冻土变化的模拟和预估. 高原气象[J]. 2016, 35(5): 1157-1168, https://d.wanfangdata.com.cn/periodical/gyqx201605003.[42] Luo, Siqiong, Fang, Xuewei, Lyu, Shihua, Ma, Di, Chang, Yan, Song, Minghong, Chen, Hao. Frozen ground temperature trends associated with climate change in the Tibetan Plateau Three River Source Region from 1980 to 2014. CLIMATE RESEARCH[J]. 2016, 67(3): 241-255, https://www.webofscience.com/wos/woscc/full-record/WOS:000372520800005.[43] 王宁练, 刘时银, 吴青柏, 赵林, 李震, 黄菲, 康世昌, 赵进平, 周建民, 罗斯琼, 车涛. 北半球冰冻圈变化及其对气候环境的影响. 中国基础科学[J]. 2015, 17(2): 9-14, http://lib.cqvip.com/Qikan/Article/Detail?id=664991380.[44] Chen, Boli, Luo, Siqiong, Lu, Shihua, Zhang, Yu, Ma, Di. Effects of the soil freeze-thaw process on the regional climate of the Qinghai-Tibet Plateau. CLIMATE RESEARCH[J]. 2014, 59(3): 243-257, https://www.webofscience.com/wos/woscc/full-record/WOS:000335828100005.[45] Song Minhong, Ma Yaoming, Zhang Yu, Ma Weiqiang, Luo Siqiong. An off-line simulation of land surface processes over the northern Tibetan Plateau. SCIENCES IN COLD AND ARID REGIONS[J]. 2014, 6(3): 236-246, http://sciencechina.cn/gw.jsp?action=detail.jsp&internal_id=5173026&detailType=1.[46] 罗斯琼. Simulated Effects of Soil Freeze-Thaw Process on Regional Climate over the Qinghai-Tibet Plateau. CLIMATERESEARCH. 2014, [47] 陈渤黎, 罗斯琼, 吕世华, 张宇. 黄河源区若尔盖站冻融期土壤温、湿度的模拟与改进. 高原气象[J]. 2014, 337-345, http://lib.cqvip.com/Qikan/Article/Detail?id=71898188504849524850484852.[48] 陈渤黎, 罗斯琼, 吕世华, 张宇. 陆面模式CLM对若尔盖站冻融期模拟性能的检验与对比. 气候与环境研究[J]. 2014, 19(5): 649-658, http://lib.cqvip.com/Qikan/Article/Detail?id=662543519.[49] 邱贵强, 李华, 张宇, 罗斯琼, 王少影, 尚伦宇. 高寒草原地区边界层参数化方案的适用性评估. 高原气象[J]. 2013, 32(1): 46-55, http://sciencechina.cn/gw.jsp?action=detail.jsp&internal_id=4780978&detailType=1.[50] 陈渤黎, 吕世华, 罗斯琼. CLM3.5模式对青藏高原玛曲站陆面过程的数值模拟研究. 高原气象[J]. 2012, 1511-1522, http://oa.las.ac.cn/oainone/service/browseall/read1?ptype=JA&workid=JA201804160004521LZ.[51] 尚伦宇, 吕世华, 张宇, 罗斯琼, 陈世强, 李锁锁. 青藏高原东部土壤冻融过程中近地层湍流统计特征分析. 高原气象[J]. 2011, 30(1): 30-37, http://lib.cqvip.com/Qikan/Article/Detail?id=36854948.[52] 奥银焕, 王毅, 张得文, 罗斯琼, 文小航, 毛云程, 王小勇. 平定高速公路沿线近40年气候特征分析. 高原气象[J]. 2010, 29(6): 1602-1608, http://lib.cqvip.com/Qikan/Article/Detail?id=36588705.[53] 罗斯琼. 2010年度大气科学领域基金项目评审与研究成果分析. 2010, [54] 尚伦宇, 吕世华, 张宇, 奥银焕, 罗斯琼, 李锁锁, 王少影. 青藏高原东部土壤冻融过程中地表粗糙度的确定. 高原气象[J]. 2010, 29(1): 17-22, http://lib.cqvip.com/Qikan/Article/Detail?id=33035331.[55] 郝晓华, 张璞, 王建, 罗斯琼. MODIS和VEGETATION雪盖产品在北疆的验证及比较. 遥感技术与应用[J]. 2009, 603-610, http://lib.cqvip.com/Qikan/Article/Detail?id=32243632.[56] 马迪, 吕世华, 陈世强, 罗斯琼, 权晓晶. 夏季金塔绿洲近地层通量足迹及源区分布特征分析. 高原气象[J]. 2009, 28(1): 28-35, http://lib.cqvip.com/Qikan/Article/Detail?id=29556445.[57] 罗斯琼, 吕世华, 张宇, 胡泽勇, 尚伦宇, 李锁锁. 青藏高原中部冻土环境下土壤水分监测. 冰川冻土[J]. 2009, http://lib.cqvip.com/Qikan/Article/Detail?id=1001277720.[58] 罗斯琼, 吕世华, 张宇, 胡泽勇, 马耀明, 李锁锁, 尚伦宇. 青藏高原中部土壤热传导率参数化方案的确立及在数值模式中的应用. 地球物理学报[J]. 2009, 919-928, http://lib.cqvip.com/Qikan/Article/Detail?id=30147607.[59] Luo, Siqiong, Lue, Shihua, Zhang, Yu. Development and validation of the frozen soil parameterization scheme in Common Land Model. COLD REGIONS SCIENCE AND TECHNOLOGY[J]. 2009, 55(1): 130-140, http://www.corc.org.cn/handle/1471x/2404880.[60] Meng, Xianhong, Lu, Shihua, Zhang, Tangtang, Guo, Juxin, Cao, Yanhong, Bao, Yan, Wen, Lijuan, Luo, Siqiong, Liu, Yuanpu. Numerical simulations of the atmospheric and land conditions over the Jinta oasis in northwestern China with satellite-derived land surface parameters. JOURNAL OF GEOPHYSICAL RESEARCH: EARTH SURFACE. 2009, 114: http://oa.las.ac.cn/oainone/service/browseall/read1?ptype=JA&workid=JA201804160003478LZ.[61] Luo S, Lu S, Zhang Y. Development and validation of the frozen soil parameterization scheme in Common Land Model (EI). COLD REGIONS SCIENCE AND TECHNOLOGY[J]. 2009, 55(1): 130-140, http://ir.casnw.net/handle/362004/22422.[62] 罗斯琼, 张宇, 吕世华. 黄土高原砂壤土冻融过程的观测和模拟. 冰川冻土[J]. 2008, 30(2): 234-243, http://lib.cqvip.com/Qikan/Article/Detail?id=27048167.[63] 罗斯琼, 吕世华, 张宇, 胡泽勇, 马耀明, 李锁锁, 尚伦宇. CoLM模式对青藏高原中部BJ站陆面过程的数值模拟. 高原气象[J]. 2008, 27(2): 259-271, http://lib.cqvip.com/Qikan/Article/Detail?id=27137886.[64] 吕世华, 尚伦宇, 梁玲, 罗斯琼. 金塔绿洲小气候效应的数值模拟. 高原气象[J]. 2005, 24(5): 649-655, http://lib.cqvip.com/Qikan/Article/Detail?id=20329736.[65] 罗斯琼, 陈世强, 吕世华. 不同土壤湿度条件下绿洲边界层特征的敏感性试验. 高原气象[J]. 2005, 24(4): 471-477, http://lib.cqvip.com/Qikan/Article/Detail?id=18114295.[66] 吕世华, 罗斯琼. 沙漠-绿洲大气边界层结构的数值模拟. 高原气象[J]. 2005, 24(4): 465-470, http://lib.cqvip.com/Qikan/Article/Detail?id=18114294.[67] 吕世华, 罗斯琼. 敦煌绿洲夏季边界层特征的数值模拟. 高原气象[J]. 2004, 23(2): 147-154, http://lib.cqvip.com/Qikan/Article/Detail?id=9445008.
科研活动
科研项目
( 1 ) 三江源区冻土对气候变化的响应与影响研究, 主持, 国家级, 2014-01--2017-12( 2 ) 青藏高原冻土冻融过程地气能水特征及气候效应研究, 主持, 国家级, 2016-01--2018-12( 3 ) 青藏高原积雪积累及消融过程对陆面能量与水分影响研究, 主持, 国家级, 2020-01--2023-12( 4 ) 亚洲水塔河湖源区域多尺度水汽输送与降特征分析, 主持, 国家级, 2019-11--2021-12( 5 ) 青藏高原冻土冻融过程地气能水特征及气候效应研究, 主持, 研究所(学校), 2019-01--2020-12( 6 ) 三江源冻土-植被相互作用及气候效应, 主持, 国家级, 2021-01--2024-12