基本信息

林名强  博导  中国科学院福建物质结构研究所
电子邮件: kdlmq@fjirsm.ac.cn
通信地址: 福州市鼓楼区杨桥西路155号
邮政编码:362200

研究领域

机器学习、复杂系统辨识

招生信息

   
招生专业
081104-模式识别与智能系统
招生方向
系统辨识
机器学习

教育背景

2011-09--2016-07   中国科学技术大学   博士
2007-09--2011-07   中国科学技术大学   学士
学位

博士

工作经历

   
工作简历
2024-01~现在, 中科院福建物质结构研究所, 正高级工程师
2019-01~2023-12,中科院福建物质结构研究所, 高级工程师
2016-07~2018-12,中科院福建物质结构研究所, 助理研究员

专利与奖励

   
专利成果
( 1 ) 一种基于分布式的油气储罐远程运维方法, 发明专利, 2022, 第 1 作者, 专利号: CN201911345790.6

( 2 ) 一种基于多模型融合的锂电池健康状态估计方法, 发明专利, 2022, 第 1 作者, 专利号: CN111090047B

出版信息

   
发表论文
[1] Wu, Ji, Cui, Xuchen, Meng, Jinhao, Peng, Jichang, Lin, Mingqiang. Data-Driven Transfer-Stacking-Based State of Health Estimation for Lithium-Ion Batteries. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS[J]. 2024, 第 5 作者  通讯作者  71(1): 604-614, http://dx.doi.org/10.1109/TIE.2023.3247735.
[2] Wei Wang, Chao Fang, Peng Si, Yan Wang, Mingqiang Lin. Reliability analysis of interval-valued multi-state sliding window system for sequential tasks. COMPUTERS & INDUSTRIAL ENGINEERING. 2024, 第 5 作者  通讯作者  188: http://dx.doi.org/10.1016/j.cie.2024.109924.
[3] Meng, Jinhao, You, Yuqiang, Lin, Mingqiang, Wu, Ji, Song, Zhengxiang. Multi-scenarios transferable learning framework with few-shot for early lithium-ion battery lifespan trajectory prediction. ENERGY[J]. 2024, 第 3 作者  通讯作者  286: http://dx.doi.org/10.1016/j.energy.2023.129682.
[4] jun han, chao yuan, Mingqiang Lin. An Ultrasonic Reflected Wave-Based Method for Estimating State of Charge of Hard-Shell Lithium-Ion Batteries. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT[J]. 2024, 第 3 作者  通讯作者  73(2510111): 
[5] Lin, Mingqiang, Wu, Jian, Meng, Jinhao, Wang, Wei, Wu, Ji. Screening of retired batteries with gramian angular difference fields and ConvNeXt. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE[J]. 2023, 第 1 作者123: http://dx.doi.org/10.1016/j.engappai.2023.106397.
[6] Mingqiang Lin, Chenhao Yan, Wei Wang, Guangzhong Dong, Jinhao Meng, Ji Wu. A data-driven approach for estimating state-of-health of lithium-ion batteries considering internal resistance. ENERGY. 2023, 第 1 作者277: http://dx.doi.org/10.1016/j.energy.2023.127675.
[7] Lin, Mingqiang, You, Yuqiang, Wang, Wei, Wu, Ji. Battery health prognosis with gated recurrent unit neural networks and hidden Markov model considering uncertainty quantification. RELIABILITY ENGINEERING & SYSTEM SAFETY[J]. 2023, 第 1 作者230: http://dx.doi.org/10.1016/j.ress.2022.108978.
[8] Wu, Ji, Fang, LeiChao, Dong, GuangZhong, Lin, MingQiang. State of health estimation for lithium-ion batteries in real-world electric vehicles. SCIENCE CHINA-TECHNOLOGICAL SCIENCES[J]. 2023, 第 4 作者  通讯作者  66(1): 47-56, 
[9] Ji Wu, Hao Su, Jinhao Meng, Mingqiang Lin. Electric vehicle charging scheduling considering infrastructure constraints. ENERGY. 2023, 第 4 作者278: http://dx.doi.org/10.1016/j.energy.2023.127806.
[10] Mingqiang Lin, Jian Wu, Jinhao Meng, Wei Wang, Ji Wu. State of health estimation with attentional long short-term memory network for lithium-ion batteries. ENERGY. 2023, 第 1 作者268: http://dx.doi.org/10.1016/j.energy.2023.126706.
[11] Wu, Ji, Su, Hao, Meng, Jinhao, Lin, Mingqiang. State of Health Estimation for Lithium-Ion Battery via Recursive Feature Elimination on Partial Charging Curves. IEEE JOURNAL OF EMERGING AND SELECTED TOPICS IN POWER ELECTRONICS[J]. 2023, 第 4 作者  通讯作者  11(1): 131-142, http://dx.doi.org/10.1109/JESTPE.2022.3177451.
[12] Lin, Mingqiang, You, Yuqiang, Meng, Jinhao, Wang, Wei, Wu, Ji, Stroe, DanielIoan. Lithium-ion battery degradation trajectory early prediction with synthetic dataset and deep learning. JOURNAL OF ENERGY CHEMISTRY[J]. 2023, 第 1 作者85: 534-546, http://dx.doi.org/10.1016/j.jechem.2023.06.036.
[13] Wei Wang, Mingqiang Lin, Peng Si, Yan Wang, Binning Fan. BCMS4W-ST: On the Bi-directional Circular Multi-State System with Spatiotemporal Sliding Window for Sequential Tasks. RELIABILITY ENGINEERING AND SYSTEM SAFETY. 2023, 第 2 作者  通讯作者  240: http://dx.doi.org/10.1016/j.ress.2023.109555.
[14] Wu, Ji, Fang, Leichao, Dong, Guangzhong, Lin, Mingqiang. State of health estimation of lithium-ion battery with improved radial basis function neural network. ENERGY[J]. 2023, 第 4 作者  通讯作者  262: http://dx.doi.org/10.1016/j.energy.2022.125380.
[15] Lin, Mingqiang, Wu, Denggao, Meng, Jinhao, Wu, Ji, Wu, Haitao. A multi-feature-based multi-model fusion method for state of health estimation of lithium-ion batteries. JOURNAL OF POWER SOURCES[J]. 2022, 第 1 作者518: http://dx.doi.org/10.1016/j.jpowsour.2021.230774.
[16] Mingqiang Lin, Chenhao Yan, Jinhao Meng, Wei Wang, Ji Wu. Lithium-ion batteries health prognosis via differential thermal capacity with simulated annealing and support vector regression. ENERGY. 2022, 第 1 作者250: http://dx.doi.org/10.1016/j.energy.2022.123829.
[17] Wu, Ji, Fang, Leichao, Meng, Jinhao, Lin, Mingqiang, Dong, Guangzhong. Optimized Multi-Source Fusion Based State of Health Estimation for Lithium-Ion Battery in Fast Charge Applications. IEEE TRANSACTIONS ON ENERGY CONVERSION[J]. 2022, 第 4 作者  通讯作者  37(2): 1489-1498, http://dx.doi.org/10.1109/TEC.2021.3137423.
[18] Mingqiang Lin, Shouxin Chen, Wei Wang, Ji Wu. Multi-feature fusion-based instantaneous energy consumption estimation for electric buses. IEEE/CAA J. Autom. Sinica[J]. 2022, 第 1 作者9(10): 1-3, 
[19] Lin, Mingqiang, Wu, Denggao, Zheng, Gengfeng, Wu, Ji. A novel long short-term memory network for lithium-ion battery health diagnosis using charging curve. TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL. 2021, 第 1 作者
[20] Dong, Guangzhong, Lin, Mingqiang. Model-based thermal anomaly detection for lithium-ion batteries using multiple-model residual generation. JOURNALOFENERGYSTORAGE[J]. 2021, 第 2 作者  通讯作者  40: http://dx.doi.org/10.1016/j.est.2021.102740.
[21] 赵光财, 林名强, 戴厚德, 武骥, 汪玉洁. 一种锂电池SOH估计的KNN-马尔科夫修正策略. 自动化学报[J]. 2021, 第 2 作者47(2): 453-463, http://www.aas.net.cn:80/cn/article/doi/10.16383/j.aas.c180124.
[22] Wu, Ji, Cui, Xuchen, Zhang, Hui, Lin, Mingqiang. Health Prognosis With Optimized Feature Selection for Lithium-Ion Battery in Electric Vehicle Applications. IEEE TRANSACTIONS ON POWER ELECTRONICS[J]. 2021, 第 4 作者  通讯作者  36(11): 12646-12655, http://dx.doi.org/10.1109/TPEL.2021.3075558.
[23] Lin, Mingqiang, Zeng, Xianping, Wu, Ji. State of health estimation of lithium-ion battery based on an adaptive tunable hybrid radial basis function network. JOURNAL OF POWER SOURCES[J]. 2021, 第 1 作者504: http://dx.doi.org/10.1016/j.jpowsour.2021.230063.
[24] 林名强, 吴登高, 郑耿峰, 武骥. 基于表面温度和增量容量的锂电池健康状态估计. 汽车工程[J]. 2021, 第 1 作者43(9): 1285-1290,1284, http://lib.cqvip.com/Qikan/Article/Detail?id=7105649662.
[25] Dai, Houde, Lin, Mingqiang, Jiang, Wei. Object detection based on visual memory: a feature learning and feature imagination process. ENTERPRISE INFORMATION SYSTEMS[J]. 2020, 第 2 作者  通讯作者  14(4): 515-531, http://dx.doi.org/10.1080/17517575.2018.1539775.
[26] Wang, Wei, Lin, Mingqiang, Fu, Yongnian, Luo, Xiaoping, Chen, Hanghang. Multi-objective optimization of reliability-redundancy allocation problem for multi-type production systems considering redundancy strategies. RELIABILITY ENGINEERING & SYSTEM SAFETY[J]. 2020, 第 2 作者  通讯作者  193: http://dx.doi.org/10.1016/j.ress.2019.106681.
[27] Dai, Houde, Zhao, Guangcai, Lin, Mingqiang, Wu, Ji, Zheng, Gengfeng. A Novel Estimation Method for the State of Health of Lithium-Ion Battery Using Prior Knowledge-Based Neural Network and Markov Chain. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS[J]. 2019, 第 3 作者  通讯作者  66(10): 7706-7716, 
[28] Dai, Houde, Hu, Chao, Su, Shijian, Lin, Mingqiang, Song, Shuang. Geomagnetic Compensation for the Rotating of Magnetometer Array During Magnetic Tracking. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT[J]. 2019, 第 11 作者68(9): 3379-3386, https://www.webofscience.com/wos/woscc/full-record/WOS:000480651000033.
[29] Bao, Hua, Lu, Yixiang, Dai, Houde, Lin, Mingqiang. Collaborative tracking based on contextual information and local patches. MACHINE VISION AND APPLICATIONS[J]. 2019, 第 4 作者  通讯作者  30(4): 587-601, http://dx.doi.org/10.1007/s00138-019-01011-1.
[30] Su, Shijian, Yang, Wanan, Dai, Houde, Xia, Xuke, Lin, Mingqiang, Sun, Bo, Hu, Chao. Investigation of the Relationship Between Tracking Accuracy and Tracking Distance of a Novel Magnetic Tracking System. IEEE SENSORS JOURNAL[J]. 2017, 第 5 作者  通讯作者  17(15): 4928-4937, https://www.webofscience.com/wos/woscc/full-record/WOS:000405691000028.
[31] Bao, Hua, Lin, Mingqiang, Chen, Zonghai. Robust visual tracking based on hierarchical appearance model. NEUROCOMPUTING[J]. 2017, 第 2 作者221: 108-122, http://dx.doi.org/10.1016/j.neucom.2016.09.069.
[32] Lin, Mingqiang, Zhang, Chenbin, Chen, Zonghai. Predicting salient object via multi-level features. NEUROCOMPUTING[J]. 2016, 第 1 作者205: 301-310, http://dx.doi.org/10.1016/j.neucom.2016.04.036.
[33] 林名强. Multi-camera handoff for person re-identification Article reference. Neurocomputing. 2016, 第 1 作者
[34] Lin, Mingqiang, Zhang, Chenbin, Chen, Zonghai. Global feature integration based salient region detection. NEUROCOMPUTING[J]. 2015, 第 1 作者159: 1-8, http://dx.doi.org/10.1016/j.neucom.2015.02.050.
[35] Wei Wang, Chao Fang, Peng Si, Yan Wang, Mingqiang Lin. Reliability Analysis of Interval-Valued Multi-State Sliding Window System for Sequential Tasks. COMPUTERS & INDUSTRIAL ENGINEERING. 第 5 作者  通讯作者  http://dx.doi.org/10.1016/j.cie.2024.109924.
[36] Wei Wang, Mingqiang Lin, Peng Si, Yan Wang, Binning Fan. BCMS4W-ST: On the Bi-directional Circular Multi-State System with Spatiotemporal Sliding Window for Sequential Tasks. RELIABILITY ENGINEERING AND SYSTEM SAFETY. 第 2 作者  通讯作者  http://dx.doi.org/10.1016/j.ress.2023.109555.

科研活动

   
科研项目
( 1 ) 智能新能源磨抛机关键技术研发与产业化, 负责人, 境内委托项目, 2024-02--2025-07
( 2 ) 退役动力电池梯次利用研究, 负责人, 地方任务, 2023-08--2025-08
( 3 ) 电动重型卡车电池管理系统研发, 负责人, 境内委托项目, 2023-05--2024-01
( 4 ) 基于不确定性量化的动力锂电池健康状态估计方法研究, 负责人, 国家任务, 2023-01--2025-12
( 5 ) 基于数据驱动的锂电池老化模型研究, 负责人, 地方任务, 2022-08--2024-08
( 6 ) 新能源地坪磨抛机研发, 负责人, 境内委托项目, 2022-03--2023-09
( 7 ) 基于激光雷达的自主导航地坪磨抛机研发, 负责人, 地方任务, 2020-03--2022-03
( 8 ) 福建省特种设备检验研究院机器人中心定位导航测试实验室测试环境搭建服务项目, 负责人, 境内委托项目, 2020-01--2020-07
( 9 ) 石化行业危化品库区关键技术装备远程运维标准研究及试验验证-数据采集规范标准制定, 负责人, 国家任务, 2018-09--2021-12
( 10 ) 高精度AGV激光导航技术研究及其应用, 负责人, 地方任务, 2018-04--2021-04
参与会议
(1)Object Tracking Based on Visual Attention   2016-07-31
(2)Salient Region Detection via Low-level Features and High-level Priors   2015-07-21