发表论文
[1] AIChE Journal. 2025, 通讯作者 [2] The Innovation. 2024, 通讯作者 [3] Nature Communications. 2024, 通讯作者 [4] ACS Catalysis. 2024, 通讯作者 [5] ACS Catalysis. 2024, 通讯作者 [6] Physical Chemistry Chemical Physics. 2024, 通讯作者 [7] Angewandte Chemie International Edition. 2024, 通讯作者 [8] Physical Chemistry Chemical Physics. 2024, 通讯作者 [9] Xiaowei Shi, Yan Zhang, Huandi Zhang, Zehua Zhao, Bihe Liu, Jiamei Liu, Xingchen Liu, Lei Li. Graphene Enables Aluminum Current Collectors of 5 V Class Battery. Nano Letters[J]. 2024, 第 7 作者 通讯作者 24(40): 12398-12405, https://pubs.acs.org/doi/full/10.1021/acs.nanolett.4c02772.[10] Liang, Haojie, Zhang, Bin, Hong, Mei, Yang, Xinchun, Zhu, Ling, Liu, Xingchen, Qi, Yuntao, Zhao, Shichao, Wang, Guofu, van Bavel, Alexander P, Wen, Xiaodong, Qin, Yong. Operando Mobile Catalysis for Reverse Water Gas Shift Reaction. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION[J]. 2024, 第 6 作者 通讯作者 63(12): http://dx.doi.org/10.1002/anie.202318747.[11] Qian, Fei, Bai, Jiawei, Cai, Yi, Yang, Hui, Cao, XueMin, Liu, Xingchen, Liu, XingWu, Yang, Yong, Li, YongWang, Ma, Ding, Wen, XiaoDong. Stabilized ε-Fe 2 C catalyst with Mn tuning to suppress C1 byproduct selectivity for high-temperature olefin synthesis. NATURE COMMUNICATIONS[J]. 2024, 第 6 作者 通讯作者 15(1): http://dx.doi.org/10.1038/s41467-024-49472-x.[12] Bai, Jiawei, Liu, Xingchen, Lei, Tingyu, Zhou, Yuwei, Guo, Wenping, Salahub, Dennis R, Wen, Xiaodong. Automated Exploration of Heterogeneous Catalysis with a Gas-Solid Nanoreactor. ACS CATALYSIS[J]. 2024, 第 2 作者 通讯作者 14(24): 18570-18578, http://dx.doi.org/10.1021/acscatal.4c06026.[13] Ma, Huan, Jiao, Yueyue, Guo, Wenping, Liu, Xingchen, Li, Yongwang, Wen, Xiaodong. Machine learning predicts atomistic structures of multielement solid surfaces for heterogeneous catalysts in variable environments. The INNOVATION[J]. 2024, 第 4 作者 通讯作者 5(2): 79-87, http://dx.doi.org/10.1016/j.xinn.2024.100571.[14] Zhu, Ling, Lei, Tingyu, Liu, Xingchen, Yang, Xinchun, Zhang, Bin, Jiao, Haijun, Guo, Wenping, Teng, Botao, Wen, Xiaodong. Proton Transfers at the Water/Solid Interface of α-Al2O3 -Supported Ni Clusters under Steam Reforming Conditions: An AIMD Study. ACS CATALYSIS[J]. 2024, 第 3 作者 通讯作者 14(16): 12342-12350, http://dx.doi.org/10.1021/acscatal.4c02514.[15] Journal of Physical Chemistry A. 2023, 通讯作者 [16] ACS Catalysis. 2023, 通讯作者 [17] Nature Catalysis. 2023, 通讯作者 [18] Kang, Hui, Zhu, Ling, Li, Shiyan, Yu, Shuwen, Niu, Yiming, Zhang, Bingsen, Chu, Wei, Liu, Xingchen, Perathoner, Siglinda, Centi, Gabriele, Liu, Yuefeng. Generation of oxide surface patches promoting H-spillover in Ru/(TiO x )MnO catalysts enables CO 2 reduction to CO. NATURE CATALYSIS[J]. 2023, 第 8 作者 通讯作者 6(11): 1062-1072, http://dx.doi.org/10.1038/s41929-023-01040-0.[19] Bai, Jiawei, Liu, Xingchen, Guo, Wenping, Lei, Tingyu, Teng, Botao, Xiang, Hongwei, Wen, Xiaodong. An Efficient Way to Model Complex Iron Carbides: A Benchmark Study of DFTB2 against DFT. JOURNAL OF PHYSICAL CHEMISTRY A[J]. 2023, 第 2 作者 通讯作者 127(9): 2071-2080, http://dx.doi.org/10.1021/acs.jpca.2c06805.[20] Wang, Ziwei, Ren, Dandan, He, Yue, Hong, Mei, Bai, Yu, Jia, Aiping, Liu, Xiaochun, Tang, Cen, Gong, Peijun, Liu, Xingchen, Huang, Weixin, Zhang, Zhenhua. Tailoring Electronic Properties and Atom Utilizations of the Pd Species Supported on Anatase TiO2{101} for Efficient CO2 Hydrogenation to Formic Acid. ACS CATALYSIS[J]. 2023, 第 10 作者 通讯作者 13(15): 10056-10064, http://dx.doi.org/10.1021/acscatal.3c02428.[21] Gao, Mengting, Zhang, Jin, Zhu, Pengqi, Liu, Xingchen, Zheng, Zhanfeng. Unveiling the origin of alkali metal promotion in CO2 methanation over Ru/ZrO2. APPLIED CATALYSIS B-ENVIRONMENTAL[J]. 2022, 第 4 作者 通讯作者 314: http://dx.doi.org/10.1016/j.apcatb.2022.121476.[22] Xu, Jun, Liu, Xingwu, Liu, Xingchen, Yan, Tao, Wan, Hongliu, Cao, Zhi, Reimer, Jeffrey A. Deconvolution of metal apportionment in bulk metal-organic frameworks. SCIENCE ADVANCES[J]. 2022, 第 3 作者8(44): http://dx.doi.org/10.1126/sciadv.add5503.[23] Yuxing Xu, Bei Li, Jiafei Zhang, Ge Bai, Xiaolong Zhang, Qinglan Hao, Yahao Wang, Xiaoshun Zhou, Botao Teng, Xingchen Liu. Exploration of Metal-Molecule interaction of subnanometric heterogeneous catalysts via simulated Raman spectrum. APPLIED SURFACE SCIENCE. 2022, 第 10 作者 通讯作者 579: http://dx.doi.org/10.1016/j.apsusc.2021.152194.[24] Yang, Xinchun, Xing, Caihong, Zhang, Bin, Liu, Xingchen, Liang, Haojie, Luo, Gen, Zhang, Guikai, Li, Zhuo, Zhao, Shichao, Zhang, Jing, Wang, Guofu, Qin, Yong. Direct Bonding of CpCo- Fragments on Pt Nanoparticles and their Electronic Effect for Alkyne Semihydrogenation. ACS CATALYSIS[J]. 2022, 第 4 作者 通讯作者 12(17): 10849-10856, http://dx.doi.org/10.1021/acscatal.2c03024.[25] Cao, DongBo, Liu, Xingchen, Lewis, James P, Guo, Wenping, Wen, Xiaodong. Tuning Surface-Electron Spins on Fe3O4 (111) through Chemisorption of Carbon Monoxide. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION[J]. 2022, 第 2 作者 通讯作者 61(26): http://dx.doi.org/10.1002/anie.202202751.[26] Xu, Yuxing, Li, Bei, Zhang, Jiafei, Bai, Ge, Zhang, Xiaolong, Hao, Qinglan, Wang, Yahao, Zhou, Xiaoshun, Teng, Botao, Liu, Xingchen. Exploration of Metal-Molecule interaction of subnanometric heterogeneous catalysts via simulated Raman spectrum. APPLIED SURFACE SCIENCE[J]. 2022, 第 10 作者 通讯作者 579: http://dx.doi.org/10.1016/j.apsusc.2021.152194.[27] ACS Catalysis. 2022, 通讯作者 [28] Science Advances. 2022, 第 3 作者[29] Gao, Mengting, Tan, Hao, Zhu, Pengqi, Zhang, Jin, Wang, Hao, Liu, Xingchen, Zheng, Zhanfeng. Why phenol is selectively hydrogenated to cyclohexanol on Ru (0001): An experimental and theoretical study. APPLIED SURFACE SCIENCE[J]. 2021, 第 6 作者 通讯作者 558: http://dx.doi.org/10.1016/j.apsusc.2021.149880.[30] Liu, Xingchen, Liu, Jinjia, Yang, Yong, Li, YongWang, Wen, Xiaodong. Theoretical Perspectives on the Modulation of Carbon on Transition-Metal Catalysts for Conversion of Carbon-Containing Resources. ACS CATALYSIS. 2021, 第 1 作者11(4): 2156-2181, http://dx.doi.org/10.1021/acscatal.0c04739.[31] Lei, Tingyu, Liu, Xingchen, Pathak, Amar Deep, Shetty, Sharan, Liu, Qingya, Wen, Xiaodong. Insights into Coke Formation and Removal under Operating Conditions with a Quantum Nanoreactor Approach. JOURNAL OF PHYSICAL CHEMISTRY LETTERS[J]. 2021, 第 2 作者 通讯作者 12(39): 9413-9421, http://dx.doi.org/10.1021/acs.jpclett.1c02892.[32] Xing, Mengjiao, Pathak, AmarDeep, Sanyal, Suchismita, Peng, Qing, Liu, Xingchen, Wen, Xiaodong. Temperature-dependent surface free energy and the Wulff shape of iron and iron carbide nanoparticles: A molecular dynamics study. APPLIED SURFACE SCIENCE[J]. 2020, 第 5 作者 通讯作者 509: http://dx.doi.org/10.1016/j.apsusc.2019.144859.[33] Zhao, Peng, Cao, Zhi, Liu, Xingchen, Ren, Pengju, Cao, DongBo, Xiang, Hongwei, Jiao, Haijun, Yang, Yong, Li, YongWang, Wen, XiaoDong. Morphology and Reactivity Evolution of HCP and FCC Ru Nanoparticles under CO Atmosphere. ACS CATALYSIS[J]. 2019, 第 3 作者 通讯作者 9(4): 2768-2776, http://dx.doi.org/10.1021/acscatal.8b05074.[34] Liu, Xingchen, Wen, Xiaodong, Hoffmann, Roald. Surface Activation of Transition Metal Nanoparticles for Heterogeneous Catalysis: What We Can Learn from Molecular Dynamics. ACS CATALYSIS[J]. 2018, 第 1 作者8(4): 3365-3375, https://www.webofscience.com/wos/woscc/full-record/WOS:000430154100083.[35] Bai, Yunxing, Zhang, Junfeng, Yang, Guohui, Zhang, Qingde, Pan, Junxuan, Xie, Hongjuan, Liu, Xingchen, Han, Yizhuo, Tan, Yisheng. Insight into the Nanoparticle Growth in Supported Ni Catalysts during the Early Stage of CO Hydrogenation Reaction: The Important Role of Adsorbed CO Molecules. ACS CATALYSIS[J]. 2018, 第 7 作者 通讯作者 8(7): 6367-6374, https://www.webofscience.com/wos/woscc/full-record/WOS:000438475100072.