基本信息
刘宏斌  男  博导  中国科学院自动化研究所
电子邮件: liuhongbin@ia.ac.cn
通信地址: 北京市海淀区中关村东路95号自动化大厦
邮政编码:

研究领域

2010年获英国伦敦大学国王学院 (King's College London, UK)博士学位,并留校任教。历任工程系讲师,副教授,生命科学与医学部-生物医学工程学院-医疗机器人学(准)教授(Reader in Medical Robotics)。在伦敦国王学院期间创建触觉医疗机器人实验室,并任主任 (www.kclhammerlab.com)。 该实验室依托在世界享有盛誉的 King's College London 生物医学工程学院 ,及盖伊和圣托马斯 NHS 基金会,致力于研发具有触觉感知能力的柔性微创医疗器械及机器人系统,以使未来手术操作更加安全高效,并与诸多国际顶尖医院,研究机构与科技公司如IBM、华为、爱立信等保持长期深入合作。作为项目负责人多次获得英国EPSRC,InnovateUK,及工业界的资助,共发表国际机器人顶尖期刊与会议超过110余篇,H影响因子33。2020年加入中国科学院自动化所,组建智能微创医疗技术团队。

微创外科,尤其使用柔性器械的微创手术及介入治疗是未来手术发展的大趋势。伴随着医疗诊断技术的进步,早期发现病症并通过微创技术治愈且不伤害人体的观念已经被越来越多的医患所认可。目前柔性微创器械存在着控制性差,触感缺失,难以通过复杂狭窄腔道等主要技术瓶颈,从而使其操作困难,手术时间延长,手术失误率风险增大。借助于前期取得的良好研究基础,以及与国际组织间紧密的合作关系,智能微创医疗科技团队聚焦于研发适用于微创手术的柔性体机器人系统及机器人自主智能技术,重点突破手术机器人的触觉感知,触感-图像融合下机器人导引与控制技术。使得机器人在与人体组织交互过程中,在保证安全性与稳定性的前提下,具备执行复杂操作的能力,实现微创手术安全,快速,准确的目标。 从而通过技术创新为目前临床治疗上无法的解决的难题提供全新的解决方案,造福患者与医生。


研究方向:

应用于微创手术的精准触觉传感技术:触感能力缺失是当前制约微创手术机器人效率及安全性的关键性难题。传统触觉传感器技术无法满足医疗手术器械微型化,及手术中体内特殊工作环境等需求。本团队以光学原理与接触力学建模为研究基础,并结合软体材料与先进制造技术等领域的最新技术,研发适用于微创手术的触觉传感的关键技术

应用于人体自然腔道的软体机器人系统:本团队聚焦研发可经过人体自然腔道(如消化道,呼叫道,血管等)抵达病变部位的手术机器人系统。在此领域内已成功的开创性研发了经食道,经肠道软体内窥镜机器人系统,并开展技术临床转化工作。研发技术范围包括柔性体机器人新型驱动技术,柔性体机器人形态感知技术,柔性体机器人体内定位与跟踪技术,柔性体机器人机械结构及传感驱动电路设计等。

触觉视觉感知融合和交互控制技术:团队开展基于机器人视觉信息与触觉感知两者融合的控制算法研究,以提高机器人运动控制的准确性,自适应性,以适应人体狭窄自然腔道的复杂动态工作环境。

招生信息

本课题组(智能微创医疗技术团队)计划招收具有自动化,电子信息工程、计算机科学,机械工程背景的硕士生、博士生。课题组在北京与深圳均设有办公室与实验室,北京部位于中关村自动化所内自动化大厦, 深圳实验室位于深圳湾科技生态园。


招生专业
080202-机械电子工程
081101-控制理论与控制工程
081203-计算机应用技术
招生方向
微创手术机器人
触觉传感技术
机器人多模态融合感知与控制

教育背景

2005-10--2010-03   伦敦大学国王学院   硕士,机器人学博士
2001-09--2005-07   西北工业大学   学士

工作经历

   
工作简历
2020-08~现在, 中国科学院自动化研究所, 研究员,博导
2012-08~现在, 伦敦大学国王学院, 助理教授,副教授,准教授
2009-04~2012-08,伦敦大学国王学院, 研究助理

专利与奖励

   
专利成果
[1] 侯西龙, 刘宏斌. 一种末端运动机构及医疗机器人系统. 2023118574550, 2023-12-29.
[2] 刘宏斌, 黄远睿, 马润禹. 磁性医疗器械控制系统、方法和电子设备. CN: CN115599012A, 2023-01-13.
[3] 刘宏斌, 肖莹. 柔性末端可控医疗器械进给系统和进给方法. CN: CN115281746A, 2022-11-04.
[4] 肖莹, 刘宏斌. 柔性可控器械拉线的张紧装置. 202210773097.4, 2022-06-30.
[5] 刘宏斌, 肖莹. 柔性末端可控医疗器械运动控制系统及医疗设备. 202210773102.1, 2022-06-30.
[6] 刘宏斌, 张子惠, 王怡虎, 陈健, 赵文达, 田庆瑶. 柔性内窥镜机器人控制系统及柔性内窥镜机器人模拟方法. CN: CN115281584B, 2023-08-15.
[7] 肖莹, 刘宏斌. 柔性可控器械拉线的拉力传感器. CN: CN115342953A, 2022-11-15.
[8] 陈健, 刘宏斌. 控制柔性内窥镜机器人的方法及装置. CN: CN115281587B, 2023-08-04.
[9] 陈健, 刘宏斌. 控制柔性内窥镜机器人的方法及装置. CN: CN115281587A, 2022-11-04.
[10] 刘宏斌, 肖莹. 柔性末端可控医疗器械运动控制系统及医疗设备. CN: CN115281588A, 2022-11-04.
[11] 刘宏斌, 肖莹, 陈健. 柔性末端可控医疗器械进给机构. 202210779055.1, 2022-06-30.
[12] 刘宏斌, 陈健. 柔性内窥镜及柔性内窥镜机器人. CN: CN115281586A, 2022-11-04.
[13] 肖莹, 刘宏斌. 柔性可控器械拉线的张紧装置. CN: CN115316913A, 2022-11-11.
[14] 肖莹, 刘宏斌. 快速拆卸连接机构和柔性末端可控医疗器械进给机构. CN: CN217960295U, 2022-12-06.
[15] 刘宏斌, 肖莹. 柔性末端可控医疗器械进给系统和进给方法. 202210786893.1, 2022-06-30.
[16] 刘宏斌, 肖莹, 陈健. 柔性末端可控医疗器械进给机构. 202221682520.1, 2022-06-30.
[17] 肖莹, 刘宏斌. 柔性可控器械拉线的拉力传感器. 202210771465.1, 2022-06-30.
[18] 肖莹, 刘宏斌, 陈健. 柔性末端可控医疗器械工具通道的导入结构. CN: CN218186899U, 2023-01-03.
[19] 刘宏斌, 肖莹. 柔性末端可控医疗器械运动控制系统及医疗设备. CN: CN115281588B, 2023-02-03.
[20] 刘宏斌, 肖莹, 陈健. 柔性末端可控医疗器械夹持机构. CN: CN217938166U, 2022-12-02.
[21] 刘宏斌, 赵文达. 机器人主操作手. CN: CN115227390A, 2022-10-25.
[22] 刘宏斌, 张子惠, 王怡虎, 陈健, 赵文达, 田庆瑶. 柔性内窥镜机器人控制系统及柔性内窥镜机器人模拟方法. CN: CN115281584A, 2022-11-04.
[23] 肖莹, 刘宏斌, 陈健. 柔性末端可控医疗器械工具通道的导入结构. 202221682513.1, 2022-06-30.
[24] 肖莹, 刘宏斌. 柔性可控器械的拉线驱动装置. 202210771507.1, 2022-06-30.
[25] 肖莹, 刘宏斌. 快速拆卸连接机构和柔性末端可控医疗器械进给机构. 202221684088.X, 2022-06-30.
[26] 肖莹, 刘宏斌. 快速拆卸连接装置及柔性可控医疗设备. 202210773046.1, 2022-06-30.
[27] 刘宏斌, 肖莹, 陈健. 柔性末端可控医疗器械进给机构. CN: CN115227299A, 2022-10-25.
[28] 刘宏斌, 肖莹, 陈健. 柔性末端可控医疗器械夹持机构. 202221682666.6, 2022-06-30.
[29] 刘宏斌, 肖莹. 柔性末端可控医疗器械运动控制系统及医疗设备. 202210773103.6, 2022-06-30.
[30] 刘宏斌, 肖莹, 陈健. 柔性末端可控医疗器械进给机构. CN: CN217960173U, 2022-12-06.
[31] 肖莹, 刘宏斌. 柔性可控器械的拉线驱动装置. CN: CN115281585A, 2022-11-04.

出版信息

   
发表论文
[1] Wu, Zhiying, Lau, Chun Yin, Zhou, Qianang, Wu, Jinlin, Wang, Yuxi, Liu, Qifeng, Lei, Zhen, Liu, Hongbin. Surgivisor: Transformer-based semi-supervised instrument segmentation for endoscopic surgery. BIOMEDICAL SIGNAL PROCESSING AND CONTROL[J]. 2024, 87: http://dx.doi.org/10.1016/j.bspc.2023.105434.
[2] Hu, Jian, Cao, Danqian, Li, Yue, Liu, Hongbin. Polymer-Based Optical Waveguide Tactile Sensing Method for 3-D Surfaces. IEEE SENSORS JOURNAL[J]. 2023, 23(8): 8761-8768, http://dx.doi.org/10.1109/JSEN.2023.3252263.
[3] Yuanrui Huang, Runyu Ma, Hongbin Liu. A hybrid force-magnetic control scheme for flexible medical device steering. MECHATRONICS. 2023, 95: http://dx.doi.org/10.1016/j.mechatronics.2023.103072.
[4] Wu, Zicong, Reyzabal, Mikel De Iturrate, Sadati, S M Hadi, Liu, Hongbin, Ourselin, Sebastien, Leff, Daniel, Katzschmann, Robert K K, Rhode, Kawal, Bergeles, Christos. Towards a Physics-Based Model for Steerable Eversion Growing Robots. IEEE ROBOTICS AND AUTOMATION LETTERS[J]. 2023, 8(2): 1005-1012, http://dx.doi.org/10.1109/LRA.2023.3234823.
[5] Lindenroth, Lukas, Stoyanov, Danail, Rhode, Kawal, Liu, Hongbin. Toward Intrinsic Force Sensing and Control in Parallel Soft Robots. IEEE-ASME TRANSACTIONS ON MECHATRONICS[J]. 2023, 28(1): 80-91, http://dx.doi.org/10.1109/TMECH.2022.3210065.
[6] 谢亿平, 郭君, 邓兆锟, 侯西龙, Housden James, Rhode Kawal, 刘宏斌, 侯增广, 王双翌. Robot-Assisted Trans-Esophageal Ultrasound and the Virtual Admittance-Based Master-Slave Control Method Thereof. IEEE/ASME TRANSACTIONS ON MECHATRONICS[J]. 2023, 在线发表-, [7] 曹广林, 陈明聪, 胡健, 刘宏斌. An Ultra-fast Intrinsic Contact Sensing Method for Medical Instruments with Arbitrary Shape. IEEE Robotics and Automation Letters[J]. 2023, [8] Cao, Danqian, Hu, Jian, Li, Yue, Wang, Stephen, Liu, Hongbin. Polymer-Based Optical Waveguide Triaxial Tactile Sensing for 3-Dimensional Curved Shell. IEEE ROBOTICS AND AUTOMATION LETTERS[J]. 2022, 7(2): 3443-3450, [9] Yue Li, Jian Hu, Danqian Cao, Stephen Wang, Prokar Dasgupta, Hongbin Liu. Optical-Waveguide Based Tactile Sensing for Surgical Instruments of Minimally Invasive Surgery. FRONTIERS IN ROBOTICS AND AI[J]. 2022, 8: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8808597/.
[10] Heng Wang, Shuangyi Wang, Hongbin Liu, Zeng-Guang Hou, Kawal Rhode, Rajesh Rajamani. 3-D Electromagnetic Position Estimation System Using High-Magnetic-Permeability Metal for Continuum Medical Robots. IEEE ROBOTICS AND AUTOMATION LETTERS[J]. 2022, 7(2): 2581-2588, [11] Crinnion, William, Jackson, Ben, Sood, Avnish, Lynch, Jeremy, Bergeles, Christos, Liu, Hongbin, Rhode, Kawal, Mendes Pereira, Vitor, Booth, Thomas Calvert. Robotics in neurointerventional surgery: a systematic review of the literature. JOURNAL OF NEUROINTERVENTIONAL SURGERYnull. 2022, 14(6): 539-+, http://dx.doi.org/10.1136/neurintsurg-2021-018096.
[12] Hu, Jian, Back, Junghwan, Dasgupta, Prokar, Liu, Hongbin. Embedding Soft Material Channels for Tactile Sensing of Complex Surfaces-Mathematical Modeling. IEEE SENSORS JOURNAL[J]. 2021, 21(3): 3172-3183, http://dx.doi.org/10.1109/JSEN.2020.3025250.
[13] Wang, Shuangyi, Wang, Kehao, Liu, Hongbin, Hou, Zengguang. Design of a Low-cost Miniature Robot to Assist the COVID-19 Nasopharyngeal Swab Sampling. 2020, http://arxiv.org/abs/2005.12679.
[14] Sun, Teng, Liu, Hongbin. Adaptive force and velocity control based on intrinsic contact sensing during surface exploration of dynamic objects. AUTONOMOUS ROBOTS[J]. 2020, 44(5): 773-790, https://www.webofscience.com/wos/woscc/full-record/WOS:000535010100004.
[15] Ciuti, Gastone, SkoniecznaZydecka, Karolina, Marlicz, Wojciech, Iacovacci, Veronica, Liu, Hongbin, Stoyanov, Danail, Arezzo, Alberto, Chiurazzi, Marcello, Toth, Ervin, Thorlacius, Henrik, Dario, Paolo, Koulaouzidis, Anastasios. Frontiers of Robotic Colonoscopy: A Comprehensive Review of Robotic Colonoscopes and Technologies. JOURNAL OF CLINICAL MEDICINEnull. 2020, 9(6): https://doaj.org/article/d55b676c705a450c96c4db3e5c9ecf7d.
[16] Lindenroth, Lukas, Housden, Richard James, Wang, Shuangyi, Back, Junghwan, Rhode, Kawal, Liu, Hongbin. Design and Integration of a Parallel, Soft Robotic End-Effector for Extracorporeal Ultrasound. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING[J]. 2020, 67(8): 2215-2229, http://dx.doi.org/10.1109/TBME.2019.2957609.
[17] Yu, Chen, Lindenroth, Lukas, Hu, Jian, Back, Junghwan, Abrahams, George, Liu, Hongbin. A Vision-Based Soft Somatosensory System for Distributed Pressure and Temperature Sensing. IEEE ROBOTICS AND AUTOMATION LETTERS[J]. 2020, 5(2): 3323-3329, http://dx.doi.org/10.1109/LRA.2020.2974649.
[18] De Chiara, Federica, Wang, Shuxin, Liu, Hongbin. Creating a Soft Tactile Skin Employing Fluorescence Based Optical Sensing. IEEE ROBOTICS AND AUTOMATION LETTERS[J]. 2020, 5(2): 3375-3381, http://dx.doi.org/10.1109/LRA.2020.2976303.
[19] Luo, Shan, Mou, Wenxuan, Althoefer, Kaspar, Liu, Hongbin. iCLAP: shape recognition by combining proprioception and touch sensing. AUTONOMOUS ROBOTS[J]. 2019, 43(4): 993-1004, http://dx.doi.org/10.1007/s10514-018-9777-7.
[20] Shuangyi Wang, Richard James Housden, Yohan Noh, Anisha Singh, Lukas Lindenroth, Hongbin Liu, Kaspar Althoefer, Joseph Hajnal, Davinder Singh, Kawal Rhode. Analysis of a Customized Clutch Joint Designed for the Safety Management of an Ultrasound Robot. APPLIED SCIENCES[J]. 2019, 9(9): https://doaj.org/article/5e6d070ee71540f689d90d7c4e78ce08.
[21] Zhang, Zhongkai, Dequidt, Jeremie, Back, Junghwan, Liu, Hongbin, Duriez, Christian. Motion Control of Cable-Driven Continuum Catheter Robot Through Contacts. IEEE ROBOTICS AND AUTOMATION LETTERS[J]. 2019, 4(2): 1852-1859, https://www.webofscience.com/wos/woscc/full-record/WOS:000460678700002.
[22] Junghwan Back, Lukas Lindenroth, Kawal Rhode, Hongbin Liu. Three dimensional force estimation for steerable catheters through bi-point tracking. SENSORS & ACTUATORS: A. PHYSICAL. 2018, 279: 404-415, http://dx.doi.org/10.1016/j.sna.2018.06.009.
[23] Sun, Teng, Back, Junghwan, Liu, Hongbin. Combining Contact Forces and Geometry to Recognize Objects During Surface Haptic Exploration. IEEE ROBOTICS AND AUTOMATION LETTERS[J]. 2018, 3(3): 2509-2514, http://dx.doi.org/10.1109/LRA.2018.2814083.
[24] Bernth, Julius E, Van Anh Ho, Liu, Hongbin. Morphological computation in haptic sensation and interaction: from nature to robotics. ADVANCED ROBOTICS[J]. 2018, 32(7): 340-362, http://dx.doi.org/10.1080/01691864.2018.1447393.
[25] Li, Jichun, Liu, Hongbin, Brown, Matthew, Kumar, Pardeep, Challacombe, Benjamin J, Chandra, Ashish, Rottenberg, Giles, Seneviratne, Lakmal D, Althoefer, Kaspar, Dasgupta, Prokar. Ex vivo study of prostate cancer localization using rolling mechanical imaging towards minimally invasive surgery. MEDICAL ENGINEERING & PHYSICS[J]. 2017, 43: 112-117, http://dx.doi.org/10.1016/j.medengphy.2017.01.021.
[26] Gao, Yuanqian, Wang, Shuxin, Li, Jianmin, Li, Aimin, Liu, Hongbin, Xing, Yuan. Modeling and evaluation of hand-eye coordination of surgical robotic system on task performance. INTERNATIONAL JOURNAL OF MEDICAL ROBOTICS AND COMPUTER ASSISTED SURGERY[J]. 2017, 13(4): https://www.webofscience.com/wos/woscc/full-record/WOS:000416955800026.
[27] Bernth, Julius E, Arezzo, Alberto, Liu, Hongbin. A Novel Robotic Meshworm With Segment-Bending Anchoring for Colonoscopy. IEEE ROBOTICS AND AUTOMATION LETTERS[J]. 2017, 2(3): 1718-1724, http://dx.doi.org/10.1109/LRA.2017.2678540.
[28] Gao, Yuanqian, Wang, Shuxin, Li, Jianmin, Li, Aimin, Liu, Hongbin, Xing, Yuan. Modeling and evaluation of hand-eye coordination of surgical robotic system on task performance. INTERNATIONAL JOURNAL OF MEDICAL ROBOTICS AND COMPUTER ASSISTED SURGERY[J]. 2017, 13(4): https://www.webofscience.com/wos/woscc/full-record/WOS:000416955800026.
[29] Noh, Yohan, Liu, Hongbin, Sareh, Sina, Chathuranga, Damith Suresh, Wurdemann, Helge, Rhode, Kawal, Althoefer, Kaspar. Image-Based Optical Miniaturized Three-Axis Force Sensor for Cardiac Catheterization. IEEE SENSORS JOURNAL[J]. 2016, 16(22): 7924-7932, https://www.webofscience.com/wos/woscc/full-record/WOS:000386230000016.
[30] Noh, Yohan, Bimbo, Joao, Sareh, Sina, Wurdemann, Helge, Fras, Jan, Chathuranga, Damith Suresh, Liu, Hongbin, Housden, James, Althoefer, Kaspar, Rhode, Kawal. Multi-Axis Force/Torque Sensor Based on Simply-Supported Beam and Optoelectronics. SENSORS[J]. 2016, 16(11): https://doaj.org/article/7b6c521e4e1b4228b56f0ff4b14acf03.
[31] Nanayakkara, Thrishantha, Jiang, Allen, Fernandez, Maria del Rocio Armas, Liu, Hongbin, Althoefer, Kaspar, Bimbo, Joao. Stable Grip Control on Soft Objects With Time-Varying Stiffness. IEEE TRANSACTIONS ON ROBOTICS[J]. 2016, 32(3): 626-637, http://dx.doi.org/10.1109/TRO.2016.2549545.
[32] Ekong, Udeme, Lam, H K, Xiao, Bo, Ouyang, Gaoxiang, Liu, Hongbin, Chan, Kit Yan, Ling, Sai Ho. Classification of epilepsy seizure phase using interval type-2 fuzzy support vector machines. NEUROCOMPUTING[J]. 2016, 199: 66-76, http://dx.doi.org/10.1016/j.neucom.2016.03.033.
[33] Noh, Yohan, Sareh, Sina, Wuerdemann, Helge, Liu, Hongbin, Back, Junghwan, Housden, James, Rhode, Kawal, Althoefer, Kaspar. Three-Axis Fiber-Optic Body Force Sensor for Flexible Manipulators. IEEE SENSORS JOURNAL[J]. 2016, 16(6): 1641-1651, https://www.webofscience.com/wos/woscc/full-record/WOS:000370932500019.
[34] Qi, Peng, Qiu, Chen, Liu, Hongbin, Dai, Jian S, Seneviratne, Lakmal D, Althoefer, Kaspar. A Novel Continuum Manipulator Design Using Serially Connected Double-Layer Planar Springs. IEEE-ASME TRANSACTIONS ON MECHATRONICS[J]. 2016, 21(3): 1281-1292, https://www.webofscience.com/wos/woscc/full-record/WOS:000375609900009.
[35] Liu Hongbin. Analysis and Validation of Six-Dimensional Compliance of Ortho-Planar Springs. ASME Journal of Mechanical Design. 2016, [36] Liu Hongbin. In-hand Object Pose Estimation using Covariance-Based Tactile to Geometry Matching. IEEEROBOTICSANDAUTOMATIONLETTERSRAL. 2016, [37] Liu Hongbin. Fiber-Optics based Body Contact Sensor for a Flexible Manipulator. IEEE Sensors Journal. 2015, [38] Lam, H K, Ekong, Udeme, Xiao, Bo, Ouyang, Gaoxiang, Liu, Hongbin, Chan, K Y, Ling, Sai Ho. Variable weight neural networks and their applications on material surface and epilepsy seizure phase classifications. NEUROCOMPUTING[J]. 2015, 149: 1177-1187, http://dx.doi.org/10.1016/j.neucom.2014.09.011.
[39] Song, Jinxue, Jiang, Qi, Huang, Yuanyang, Li, Yibin, Jia, Yuxi, Rong, Xuewen, Song, Rui, Liu, Hongbin. Research on Pressure Tactile Sensing Technology Based on Fiber Bragg Grating Array. PHOTONIC SENSORS[J]. 2015, 5(3): 263-272, http://lib.cqvip.com/Qikan/Article/Detail?id=665183458.
[40] Liu, Hongbin, Kien Cuong Nguyen, Perdereau, Veronique, Bimbo, Joao, Back, Junghwan, Godden, Matthew, Seneviratne, Lakmal D, Althoefer, Kaspar. Finger contact sensing and the application in dexterous hand manipulation. AUTONOMOUS ROBOTS[J]. 2015, 39(1): 25-41, https://www.webofscience.com/wos/woscc/full-record/WOS:000354267000002.
[41] Li, Min, Konstantinova, Jelizaveta, Secco, Emanuele L, Jiang, Allen, Liu, Hongbin, Nanayakkara, Thrishantha, Seneviratne, Lakmal D, Dasgupta, Prokar, Althoefer, Kaspar, Wurdemann, Helge A. Using visual cues to enhance haptic feedback for palpation on virtual model of soft tissue. MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING[J]. 2015, 53(11): 1177-1186, http://dx.doi.org/10.1007/s11517-015-1309-4.
[42] Bimbo, Joao, Kormushev, Petar, Althoefer, Kaspar, Liu, Hongbin. Global estimation of an object's pose using tactile sensing. ADVANCED ROBOTICS[J]. 2015, 29(5): 363-374, http://dx.doi.org/10.1080/01691864.2014.1002531.
[43] Russo, Stefania, Ranzani, Tommaso, Liu, Hongbin, NeftiMeziani, Samia, Althoefer, Kaspar, Menciassi, Arianna. Soft and Stretchable Sensor Using Biocompatible Electrodes and Liquid for Medical Applications. SOFT ROBOTICS[J]. 2015, 2(4): 146-154, https://www.webofscience.com/wos/woscc/full-record/WOS:000367236300004.
[44] Sareh, Sina, Noh, Yohan, Li, Min, Ranzani, Tommaso, Liu, Hongbin, Althoefer, Kaspar. Macrobend optical sensing for pose measurement in soft robot arms. SMART MATERIALS AND STRUCTURES[J]. 2015, 24(12): https://www.webofscience.com/wos/woscc/full-record/WOS:000366111500025.
[45] Luo, Shan, Mou, Wenxuan, Althoefer, Kaspar, Liu, Hongbin. Novel Tactile-SIFT Descriptor for Object Shape Recognition. IEEE SENSORS JOURNAL[J]. 2015, 15(9): 5001-5009, https://www.webofscience.com/wos/woscc/full-record/WOS:000358648200034.
[46] Luo, Shan, Bimbo, Joao, Dahiya, Ravinder, Liu, Hongbin. Robotic Tactile Perception of Object Properties: A Review. http://arxiv.org/abs/1711.03810.

科研活动

   
参与会议
(1)Full Day workshop on Soft Haptic Interaction: Modeling, Design, and Application   2019-05-20
(2)Full Day Workshop on Active touch for perception and interaction: How nature inspires robotics   2018-05-21
(3)Full Day Workshop on Soft Morphological Design for Haptic Sensation, Interaction and Display   2017-09-24
(4) “Robotic catheter with force sensing and haptic feedback”, for workshop on “Frontiers of Endoluminal Robotic Surgery”   2016-10-14
(5)invited speaker for the Special session in surgical robotics   2016-06-26
(6)Full Day Workshop on Safety for Human-Robot Interaction in Industrial Settings   2015-10-03
(7)Full-Day Workshop: Soft and stiffness-controllable robots for MIS   2014-09-14