基本信息
林正得 研究员(三级) 博导 中国科学院宁波材料技术与工程研究所
国家青年高层次人才计划、中国科学院“****”
电子邮件: linzhengde@nimte.ac.cn
通信地址: 浙江省宁波市镇海区中官西路1219号
邮政编码: 315201
研究领域
本团队目前围绕着石墨烯开展基础与应用研究,并已经实现产业化。课题内容包含了:热管理复合材料、热界面材料、生医传感器件、以及精密流控部件。
招生信息
- 专业要求:材料、化学、物理、电子、高分子、或生物等本科背景。
- 对科研有热情、愿意专注于科研工作、有责任心、能服从管理与团队合作。
招生方向
功能材料与纳米器件碳基热管理复合材料精密流控部件与传感器件
教育背景
2002-09--2008-02 台湾清华大学 博士2000-09--2002-07 台湾清华大学 硕士1995-09--2000-06 台湾交通大学 理学士1995-09--2000-06 台湾交通大学 工学士
工作经历
工作简历
2012-10~2014-05,美国麻省理工学院, 博士后研究员2010-04~2012-09,台湾中央研究院, 博士后2009-08~2010-03,台湾逢甲大学, 博士后2008-03~2008-10,台湾逢甲大学, 博士后2007-03~2007-10,日本东京大学, 访问学者
社会兼职
2020-05-21-今,Sensors (中科院二区期刊 (2020年分区)), 编委
2019-06-30-今,Chinese Chemical Letters (中科院二区期刊 (2020年分区)), 青年编委
2019-05-31-今,Biosensors and Bioelectronics (中科院一区期刊 (2020年分区)), 副主编
2019-04-13-今,中国复合材料学会导热复合材料专业委员会(筹), 委员
2019-06-30-今,Chinese Chemical Letters (中科院二区期刊 (2020年分区)), 青年编委
2019-05-31-今,Biosensors and Bioelectronics (中科院一区期刊 (2020年分区)), 副主编
2019-04-13-今,中国复合材料学会导热复合材料专业委员会(筹), 委员
出版信息
发表论文
[1] Fu, Li, Lin, ChengTe, KarimiMaleh, Hassan, Chen, Fei, Zhao, Shichao. Plasmonic Nanoparticle-Enhanced Optical Techniques for Cancer Biomarker Sensing. BIOSENSORS-BASELnull. 2023, 13(11): http://dx.doi.org/10.3390/bios13110977.[2] 林正得. Synthesis of hierarchical trimetal oxide nanocomposites and their enzyme-free glucose sensing performances. Journal of Materials Science: Materials in Electronics[J]. 2023, 34: 1278-, [3] 林正得. The influence of hydrogen plasma etching on the surface conductivity of the polycrystalline diamond surface and the temperature-dependent properties. AIP Advances[J]. 2023, 13: 065028-, [4] Linhong Li, Maohua Li, Yue Qin, Yapeng Chen, Wen Dai, Zhenbang Zhang, Xiangdong Kong, Ping Gong, Yandong Wang, Rongjie Yang, Bo Wang, Tao Cai, Zhongbin Pan, Kazuhito Nishimura, ChengTe Lin, Nan Jiang, Jinhong Yu. Eicosane-based thermo-conductive phase change composite for efficient capture solar energy and using in real-environment as power source. CHEMICAL ENGINEERING JOURNAL. 2023, 462: http://dx.doi.org/10.1016/j.cej.2023.142273.[5] 林正得. Near‐Theoretical Thermal Conductivity Silver Nanoflakes as Reinforcements in Gap‐Filling Adhesives. Advanced Materials[J]. 2023, [6] Wang, Qiong, Ye, Weiting, Li, Dongling, Zhu, Jiangwei, Liu, Chenghang, Lin, Chengte, Fu, Li, Xu, Zenglai. Analysis of Electrochemically Active Substances in Malvaceae Leaves via Electroanalytical Sensing Technology for Species Identification. MICROMACHINES[J]. 2023, 14(2): http://dx.doi.org/10.3390/mi14020248.[7] Zhang, Zhenbang, Li, Maohua, Wang, Yandong, Dai, Wen, Li, Linhong, Chen, Yapeng, Kong, Xiangdong, Xu, Kang, Yang, Rongjie, Gong, Ping, Zhang, Jianxiang, Cai, Tao, Lin, ChengTe, Nishimura, Kazuhito, Li, Hao Nan, Jiang, Nan, Yu, Jinhong. Ultrahigh thermal conductive polymer composites by the 3D printing induced vertical alignment of carbon fiber. JOURNAL OF MATERIALS CHEMISTRY A[J]. 2023, 11(20): 10971-10983, http://dx.doi.org/10.1039/d3ta01676e.[8] Ye, Chen, Lin, ChengTe. Graphene-based nanocomposites for biosensors. MICROCHIMICA ACTA. 2023, 190(5): http://dx.doi.org/10.1007/s00604-023-05736-9.[9] Dai, Wen, Ren, XingJie, Yan, Qingwei, Wang, Shengding, Yang, Mingyang, Lv, Le, Ying, Junfeng, Chen, Lu, Tao, Peidi, Sun, Liwen, Xue, Chen, Yu, Jinhong, Song, Chengyi, Nishimura, Kazuhito, Jiang, Nan, Lin, ChengTe. Ultralow Interfacial Thermal Resistance of Graphene Thermal Interface Materials with Surface Metal Liquefaction. NANO-MICRO LETTERS[J]. 2023, 15(1): 183-196, [10] Shi, Mingjiao, Shi, Peizheng, Yang, Xinxin, Zhao, Ningbin, Wu, Mengfan, Li, Jing, Ye, Chen, Li, He, Jiang, Nan, Li, Xiufen, Lai, Guosong, Xie, WanFeng, Fu, Li, Wang, Gang, Zhu, Yangguang, Tsai, HsuSheng, Lin, ChengTe. A promising electrochemical sensor based on PVP-induced shape control of a hydrothermally synthesized layered structured vanadium disulfide for the sensitive detection of a sulfamethoxazole antibiotic. ANALYST. 2023, http://dx.doi.org/10.1039/d3an01355c.[11] 林正得. Numerical study of thermal shock on infrared windows and their composites with diamond coatings under harsh conditions. Diamond and Related Materials[J]. 2023, 137: 110117-, [12] Qiu, Mengting, Jia, Zhenglin, Yang, Mingyang, Nishimura, Kazhihito, Lin, ChengTe, Jiang, Nan, Yuan, Qilong. High detectivity solar blind photodetector based on mechanical exfoliated hexagonal boron nitride films. NANOTECHNOLOGY[J]. 2023, 34(28): http://dx.doi.org/10.1088/1361-6528/acccfd.[13] Gong, Ping, Li, Linhong, Li, Maohua, Zhang, Siyi, Yang, Fengxia, Wang, Yandong, Kong, Xiangdong, Chen, Huanyi, Jiao, Chengcheng, Ruan, Xinxin, Cai, Tao, Dai, Wen, Pan, Zhongbin, Li, Yong, Xu, Linli, Lin, ChengTe, Jiang, Nan, Yu, Jinhong. Significantly thermally conductive cellulose composite film with graphene/ boron nitride heterojunction structure achieved by combustion synthesis. COMPOSITES COMMUNICATIONS[J]. 2023, 40: http://dx.doi.org/10.1016/j.coco.2023.101596.[14] Tao, PeiDi, Wang, ShaoGang, Chen, Lu, Ying, JunFeng, Lv, Le, Sun, LiWen, Chu, WuBo, Nishimura, Kazuhito, Fu, Li, Wang, YueZhong, Yu, JinHong, Jiang, Nan, Dai, Wen, Lv, YaoKang, Lin, ChengTe, Yan, QingWei. Enhancement of in-plane thermal conductivity of flexible boron nitride heat spreaders by micro/nanovoid filling using deformable liquid metal nanoparticles. RARE METALS[J]. 2023, 42(11): 3662-3672, http://dx.doi.org/10.1007/s12598-023-02400-2.[15] Lv, Le, Ying, Junfeng, Chen, Lu, Tao, Peidi, Sun, Liwen, Yang, Ke, Fu, Li, Yu, Jinhong, Yan, Qingwei, Dai, Wen, Jiang, Nan, Lin, ChengTe. A Hierarchically Structured Graphene/Ag Nanowires Paper as Thermal Interface Material. NANOMATERIALS[J]. 2023, 13(5): http://dx.doi.org/10.3390/nano13050793.[16] Tian, Qichen, She, Yuanbin, Zhu, Yangguang, Dai, Dan, Shi, Mingjiao, Chu, Wubo, Cai, Tao, Tsai, HsuSheng, Li, He, Jiang, Nan, Fu, Li, Xia, Hongyan, Lin, ChengTe, Ye, Chen. Highly Sensitive and Selective Dopamine Determination in Real Samples Using Au Nanoparticles Decorated Marimo-like Graphene Microbead-Based Electrochemical Sensors. SENSORS[J]. 2023, 23(5): http://dx.doi.org/10.3390/s23052870.[17] 林正得. A novel electrochemical aptasensor based on eco-friendly synthesized titanium dioxide nanosheets and polyethyleneimine grafted reduced graphene oxide for ultrasensitive and selective detection of ciprofloxacin. Analytica Chimica Acta[J]. 2023, 22: 341607-, [18] Gong, Ping, Li, Linhong, Fu, Guangen, Shu, Shengcheng, Li, Maohua, Wang, Yandong, Qin, Yue, Kong, Xiangdong, Chen, Huanyi, Jiao, Chengcheng, Ruan, Xinxin, Cai, Tao, Dai, Wen, Yan, Chao, Nishimura, Kazuhito, Lin, ChengTe, Jiang, Nan, Yu, Jinhong. Highly flexible cellulose nanofiber/single-crystal nanodiamond flake heat spreader films for heat dissipation. JOURNAL OF MATERIALS CHEMISTRY C[J]. 2022, 10(33): 12070-12079, http://dx.doi.org/10.1039/d2tc01830f.[19] Qin, Yue, Wang, Bo, Hou, Xiao, Li, Linhong, Guan, Chunlong, Pan, Zhongbin, Li, Maohua, Du, Yuefeng, Lu, Yunxiang, Wei, Xianzhe, Xiong, Shaoyang, Song, Guichen, Xue, Chen, Dai, Wen, Lin, ChengTe, Yi, Jian, Jiang, Nan, Yu, Jinhong. Constructing Tanghulu-like Diamond@Silicon carbide nanowires for enhanced thermal conductivity of polymer composite. COMPOSITES COMMUNICATIONS[J]. 2022, 29: http://dx.doi.org/10.1016/j.coco.2021.101008.[20] Tan, Xue, Yuan, Qilong, Qiu, Mengting, Yu, Jinhong, Jiang, Nan, Lin, ChengTe, Dai, Wen. Rational design of graphene/polymer composites with excellent electromagnetic interference shielding effectiveness and high thermal conductivity: a mini review. JOURNAL OF MATERIALS SCIENCE & TECHNOLOGYnull. 2022, 117(22): 238-250, http://lib.cqvip.com/Qikan/Article/Detail?id=7107816811.[21] Pan, Ying, Yin, Chengliang, Fernandez, Carlos, Fu, Li, Lin, ChengTe. A Systematic Review and Bibliometric Analysis of Flame-Retardant Rigid Polyurethane Foam from 1963 to 2021. POLYMERSnull. 2022, 14(15): http://dx.doi.org/10.3390/polym14153011.[22] Li, Linhong, Li, Maohua, Zhang, Zihui, Qin, Yue, Shui, Xiaoxue, Xia, Juncheng, Xiong, Shaoyang, Wang, Bo, Zhang, Zhenbang, Wei, Xianzhe, Kong, Xiangdong, Gong, Ping, Cai, Tao, Pan, Zhongbin, Li, Yong, Fan, Jinchen, Lin, ChengTe, Jiang, Nan, Yu, Jinhong. Robust composite film with high thermal conductivity and excellent mechanical properties by constructing a long-range ordered sandwich structure. JOURNAL OF MATERIALS CHEMISTRY A[J]. 2022, 10(18): 9922-9931, http://dx.doi.org/10.1039/d2ta00975g.[23] Jin, Meiqing, Liu, Jinsong, Wu, Weihong, Zhou, Qingwei, Fu, Li, Zare, Najmeh, Karimi, Fatemeh, Yu, Jinhong, Lin, ChengTe. Relationship between graphene and pedosphere: A scientometric analysis. CHEMOSPHERE[J]. 2022, 300: http://dx.doi.org/10.1016/j.chemosphere.2022.134599.[24] 林正得. A single-crystalline diamond X-ray detector based on direct sp3-to-sp2 conversed graphene electrodes. Functional Diamond[J]. 2022, 2(1): 94-, [25] Fu, Li, Mao, Shuduan, Chen, Fei, Zhao, Shichao, Su, Weitao, Lai, Guosong, Yu, Aimin, Lin, ChengTe. Graphene-based electrochemical sensors for antibiotic detection in water, food and soil: A scientometric analysis in CiteSpace (2011-2021). CHEMOSPHERE[J]. 2022, 297: http://dx.doi.org/10.1016/j.chemosphere.2022.134127.[26] Ali, Zulfiqar, Kong, Xiangdong, Li, Maohua, Hou, Xiao, Li, Linhong, Qin, Yue, Song, Guichen, Wei, Xianzhe, Zhao, Su, Cai, Tao, Dai, Wen, Lin, ChengTe, Jiang, Nan, Yu, Jinhong. Ultrahigh Thermal Conductivity of Epoxy Composites with Hybrid Carbon Fiber and Graphene Filler. FIBERS AND POLYMERS[J]. 2022, 23(2): 463-470, http://dx.doi.org/10.1007/s12221-021-3164-2.[27] 林正得. A highly orientational architecture formed by covalently bonded graphene for achieving high through-plane thermal conductivity of polymer composites. Nanoscale[J]. 2022, 14: 11171-, [28] Feng, Xiaoqiang, Liu, Zhiduo, Zhang, Guanglin, Zhang, Shan, Huang, Shuiping, He, Zhengyi, Wei, Genwang, Yang, Siwei, Zhu, Yangguang, Ye, Caichao, Lin, ChengTe, Ding, Guqiao, Wang, Gang. Natural Graphene Plasmonic Nano-Resonators for Highly Active Surface-Enhanced Raman Scattering Platforms. ENERGY & ENVIRONMENTAL MATERIALS. 2022, [29] Huang, Wan, Guo, Peng, Li, Bo, Fu, Li, Lin, ChengTe, Yu, Aimin, Lai, Guosong. Enzyme-catalyzed deposition of polydopamine for amplifying the signal inhibition to a novel Prussian blue-nanocomposite and ultrasensitive electrochemical immunosensing. JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY[J]. 2022, 102(7): 166-173, http://dx.doi.org/10.1016/j.jmst.2021.05.073.[30] Shu, Shengcheng, Zhang, Qiang, Ihde, Joerg, Yuan, Qilong, Dai, Wen, Wu, Mingliang, Dai, Dan, Yang, Ke, Wang, Bo, Xue, Chen, Ma, Hongbing, Zhang, Xu, Han, Jiemin, Chen, Xuyuan, Lin, ChengTe, Ren, Wanbin, Ma, Yifei, Jiang, Nan. Surface modification on copper particles toward graphene reinforced copper matrix composites for electrical engineering application. JOURNAL OF ALLOYS AND COMPOUNDS[J]. 2022, 891: http://dx.doi.org/10.1016/j.jallcom.2021.162058.[31] Yan, Qingwei, Gao, Jingyao, Chen, Ding, Tao, Peidi, Chen, Lu, Ying, Junfeng, Tan, Xue, Lv, Le, Dai, Wen, Alam, Fakhr E, Yu, Jinhong, Wang, Yuezhong, Li, He, Xue, Chen, Nishimura, Kazuhito, Wu, Sudong, Jiang, Nan, Lin, ChengTe. A highly orientational architecture formed by covalently bonded graphene to achieve high through-plane thermal conductivity of polymer composites. NANOSCALE[J]. 2022, 14(31): 11171-11178, [32] 林正得. Enhanced Thermal Transportation of Flexible Composite Films across Electrostatic Self-assembly of Black Phosphorene and Boron Nitride Nanosheets. Nanoscale[J]. 2022, 14: 9743-, [33] Xue Tan, Te-Huan Liu, Wenjiang Zhou, Qilong Yuan, Junfeng Ying, Qingwei Yan, Le Lv, Lu Chen, Xiangze Wang, Shiyu Du, Yan-Jun Wan, Rong Sun, Kazuhito Nishimura, Jinhong Yu, Nan Jiang, Wen Dai, Cheng-Te Lin. Enhanced Electromagnetic Shielding and Thermal Conductive Properties of Polyolefin Composites with a Ti3C2Tx MXene/Graphene Framework Connected by a Hydrogen-Bonded Interface. ACS Nano[J]. 2022, 16(6): 9254-9266, DOI: doi.org/10.1021/acsnano.2c01716.[34] Kong, Xiangdong, Li, Linhong, Li, Maohua, Xia, Juncheng, Wang, Yandong, Wei, Xianzhe, Xiong, Shaoyang, Gong, Ping, Pan, Zhongbin, Wu, Xinfeng, Cai, Tao, Nishimura, Kazuhito, Lin, ChengTe, Jiang, Nan, Yu, Jinhong. Two-Dimensional Hexagonal Boron Nitride Nanosheets as Lateral Heat Spreader With High Thermal Conductivity. FRONTIERS IN MATERIALS[J]. 2022, 8: http://dx.doi.org/10.3389/fmats.2021.817061.[35] Zhang, Zhenbang, Liao, Meizhen, Li, Maohua, Li, Linhong, Wei, Xianzhe, Kong, Xiangdong, Xiong, Shaoyang, Xia, Juncheng, Fu, Liqin, Cai, Tao, Pan, Zhongbin, Li, Haonan, Han, Fei, Lin, ChengTe, Nishimura, Kazuhito, Jiang, Nan, Yu, Jinhong. Enhanced thermal conductivity for polydimethylsiloxane composites with core-shell CFs@SiC filler. COMPOSITES COMMUNICATIONS[J]. 2022, 33: http://dx.doi.org/10.1016/j.coco.2022.101209.[36] Ying, Junfeng, Dai, Wen, Yu, Jinhong, Jiang, Nan, Lin, ChengTe, Yan, Qingwei. Rational design of graphene structures for preparing high-performance thermal interface materials: A mini review. SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMYnull. 2022, 65(11): 46-61, http://dx.doi.org/10.1007/s11433-022-2004-8.[37] Gong, Jinrui, Tan, Xue, Yuan, Qilong, Liu, Zhiduo, Ying, Junfeng, Lv, Le, Yan, Qingwei, Chu, Wubo, Xue, Chen, Yu, Jinhong, Nishimura, Kazuhito, Jiang, Nan, Lin, ChengTe, Dai, Wen. A Spiral Graphene Framework Containing Highly Ordered Graphene Microtubes for Polymer Composites with Superior Through-Plane Thermal Conductivity. CHINESE JOURNAL OF CHEMISTRY[J]. 2022, 40(3): 329-336, http://dx.doi.org/10.1002/cjoc.202100656.[38] Li, Maohua, Li, Linhong, Chen, Yapeng, Qin, Yue, Wei, Xianzhe, Kong, Xiangdong, Zhang, Zhenbang, Xiong, Shaoyang, Do, Hainam, Greer, James C, Pan, Zhongbin, Shui, Xiaoxue, Cai, Tao, Dai, Wen, Nishimura, Kazuhito, Lin, ChengTe, Jiang, Nan, Yu, Jinhong. Epoxy composite with metal-level thermal conductivity achieved by synergistic effect inspired by lamian noodles. COMPOSITES SCIENCE AND TECHNOLOGY[J]. 2022, 228: http://dx.doi.org/10.1016/j.compscitech.2022.109677.[39] Qin, Yue, Li, Linhong, Li, Maohua, Wei, Xianzhe, Xiong, Shaoyang, Xia, Juncheng, Kong, Xiangdong, Wang, Yandong, Cai, Tao, Deng, Lifen, Lin, ChengTe, Nishimura, Kazuhito, Yi, Jian, Jiang, Nan, Yu, Jinhong. Flexible MXene/copper/cellulose nanofiber heat spreader films with enhanced thermal conductivity. NANOTECHNOLOGY REVIEWS[J]. 2022, 11(1): 1583-1591, http://apps.webofknowledge.com/CitedFullRecord.do?product=UA&colName=WOS&SID=5CCFccWmJJRAuMzNPjj&search_mode=CitedFullRecord&isickref=WOS:000780917000001.[40] Xu, Shichen, Cheng, Ting, Yan, Qingwei, Shen, Chao, Yu, Yue, Lin, ChengTe, Ding, Feng, Zhang, Jin. Chloroform-Assisted Rapid Growth of Vertical Graphene Array and Its Application in Thermal Interface Materials. ADVANCED SCIENCE[J]. 2022, 9(15): http://dx.doi.org/10.1002/advs.202200737.[41] Zhu, Yangguang, Li, Xiufen, Xu, Yuting, Wu, Lidong, Yu, Aimin, Lai, Guosong, Wei, Qiuping, Chi, Hai, Jiang, Nan, Fu, Li, Ye, Chen, Lin, ChengTe. Intertwined Carbon Nanotubes and Ag Nanowires Constructed by Simple Solution Blending as Sensitive and Stable Chloramphenicol Sensors. SENSORS[J]. 2021, 21(4): https://doaj.org/article/3ca659399b2a4457b3b4eef34a315bfd.[42] Shi, Haobin, Chen, Fei, Zhao, Shichao, Ye, Chen, Lin, ChengTe, Zhu, Jiangwei, Fu, Li. Preparation of cassava fiber-iron nanoparticles composite for electrochemical determination of tea polyphenol. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION[J]. 2021, 15(5): 4711-4717, http://dx.doi.org/10.1007/s11694-021-01030-5.[43] Fu, Li, Su, Weitao, Chen, Fei, Zhao, Shichao, Zhang, Huaiwei, KarimiMaleh, Hassan, Yu, Aimin, Yu, Jinhong, Lin, ChengTe. Early sex determination of Ginkgo biloba based on the differences in the electrocatalytic performance of extracted peroxidase. BIOELECTROCHEMISTRY[J]. 2021, 140: http://dx.doi.org/10.1016/j.bioelechem.2021.107829.[44] Tan, Xue, Ying, Junfeng, Gao, Jingyao, Yan, Qingwei, Lv, Le, Nishimura, Kazuhito, Wei, Qiuping, Li, He, Du, Shiyu, Wu, Bin, Xiang, Rong, Yu, Jinhong, Jiang, Nan, Lin, ChengTe, Dai, Wen. Rational design of high-performance thermal interface materials based on gold-nanocap-modified vertically aligned graphene architecture. COMPOSITES COMMUNICATIONS[J]. 2021, 24: http://dx.doi.org/10.1016/j.coco.2020.100621.[45] Lv, Le, Dai, Wen, Yu, Jinhong, Jiang, Nan, Lin, ChengTe. A mini review: application of graphene paper in thermal interface materials. NEW CARBON MATERIALSnull. 2021, 36(5): 930-938, http://dx.doi.org/10.1016/S1872-5805(21)60093-8.[46] Gao, Jingyao, Yan, Qingwei, Tan, Xue, Lv, Le, Ying, Jufeng, Zhang, Xiaoxuan, Yang, Minghui, Du, Shiyu, Wei, Qiuping, Xue, Chen, Li, He, Yu, Jinhong, Lin, ChengTe, Dai, Wen, Jiang, Nan. Surface Modification Using Polydopamine-Coated Liquid Metal Nanocapsules for Improving Performance of Graphene Paper-Based Thermal Interface Materials. NANOMATERIALS[J]. 2021, 11(5): http://dx.doi.org/10.3390/nano11051236.[47] Fan, Boyuan, Wang, Qiong, Wu, Weihong, Zhou, Qinwei, Li, Dongling, Xu, Zenglai, Fu, Li, Zhu, Jiangwei, KarimiMaleh, Hassan, Lin, ChengTe. Electrochemical Fingerprint Biosensor for Natural Indigo Dye Yielding Plants Analysis. BIOSENSORSBASEL[J]. 2021, 11(5): http://dx.doi.org/10.3390/bios11050155.[48] Li, Haichao, Zhou, Kechao, Cao, Jun, Wei, Qiuping, Lin, ChengTe, Pei, Sharel E, Ma, Li, Hu, Naixiu, Guo, Yaohua, Deng, Zejun, Yu, Zhiming, Zeng, Sichao, Yang, Wanlin, Meng, Lingcong. A novel modification to boron-doped diamond electrode for enhanced, selective detection of dopamine in human serum. CARBON[J]. 2021, 171: 16-28, http://dx.doi.org/10.1016/j.carbon.2020.08.019.[49] Yan, Qingwei, Alam, Fakhr E, Gao, Jingyao, Dai, Wen, Tan, Xue, Lv, Le, Wang, Junjie, Zhang, Huan, Chen, Ding, Nishimura, Kazuhito, Wang, Liping, Yu, Jinhong, Lu, Jibao, Sun, Rong, Xiang, Rong, Maruyama, Shigeo, Zhang, Hang, Wu, Sudong, Jiang, Nan, Lin, ChengTe. Soft and Self-Adhesive Thermal Interface Materials Based on Vertically Aligned, Covalently Bonded Graphene Nanowalls for Efficient Microelectronic Cooling. ADVANCED FUNCTIONAL MATERIALS[J]. 2021, 31(36): http://dx.doi.org/10.1002/adfm.202104062.[50] Liu, Dingkong, Zhao, Jinxing, Ning, Yueyang, Ma, Hongbing, Wang, Bo, Lu, Yunxiang, Li, Wei, Li, Linghong, Dai, Wen, Lin, ChengTe, Jiang, Nan, Xue, Chen, Yu, Jinhong. Constructing zebra skin structured graphene/copper composites with ultrahigh thermal conductivity. COMPOSITES COMMUNICATIONS[J]. 2021, 25: http://dx.doi.org/10.1016/j.coco.2021.100704.[51] TianYu Sun, Yu Hao, ChengTe Lin, Liping Wang, 黄良锋. Unraveling the strong coupling between graphene/nickel interface and atmospheric adsorbates for versatile realistic applications. CARBONTRENDS[J]. 2021, 2: http://dx.doi.org/10.1016/j.cartre.2020.100013.[52] Wang, Hao, Li, Linhong, Wei, Xianzhe, Hou, Xiao, Li, Maohua, Wu, Xinfeng, Li, Yong, Lin, ChengTe, Jiang, Nan, Yu, Jinhong. Combining Alumina Particles with Three-Dimensional Alumina Foam for High Thermally Conductive Epoxy Composites. ACS APPLIED POLYMER MATERIALS[J]. 2021, 3(1): 216-225, https://www.webofscience.com/wos/woscc/full-record/WOS:000609249200024.[53] Li, Xu, Wu, Bin, Li, Ya, Alam, Md Mofasserul, Chen, Peng, Xia, Ru, Lin, ChengTe, Qian, Jiasheng. Construction of Oriented Interconnected BNNS Skeleton by Self-Growing CNTs Leading High Thermal Conductivity. ADVANCED MATERIALS INTERFACES[J]. 2021, 8(6): http://dx.doi.org/10.1002/admi.202001910.[54] Dai, Wen, Lv, Le, Ma, Tengfei, Wang, Xiangze, Ying, Junfeng, Yan, Qingwei, Tan, Xue, Gao, Jingyao, Xue, Chen, Yu, Jinhong, Yao, Yagang, Wei, Qiuping, Sun, Rong, Wang, Yan, Liu, TeHuan, Chen, Tao, Xiang, Rong, Jiang, Nan, Xue, Qunji, Wong, ChingPing, Maruyama, Shigeo, Lin, ChengTe. Multiscale Structural Modulation of Anisotropic Graphene Framework for Polymer Composites Achieving Highly Efficient Thermal Energy Management. ADVANCED SCIENCE[J]. 2021, 8(7): https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8025029/.[55] Wei, Xianzhe, Song, Guichen, Wang, Bo, Li, Maohua, Qin, Yue, Li, Linhong, Cui, Junfeng, Cai, Tao, Dai, Wen, Lin, ChengTe, Jiang, Nan, Pan, Zhongbin, Zhou, Xiangyang, Wang, Zhongwei, Yu, Jinhong. Black phosphorene-cellulose nanofiber hybrid paper as flexible heat spreader. 2D MATERIALS[J]. 2021, 8(4): [56] Liu, Zhiduo, Wang, Gang, Ye, Chen, Sun, Hongyan, Pei, Weihua, Wei, Chunrong, Dai, Wen, Dou, Zhiqiang, Sun, Qingyu, Lin, ChengTe, Wang, Yijun, Chen, Hongda, Shen, Guozhen. An Ultrasensitive Contact Lens Sensor Based On Self-Assembly Graphene For Continuous Intraocular Pressure Monitoring. ADVANCED FUNCTIONAL MATERIALS[J]. 2021, 31(29): http://dx.doi.org/10.1002/adfm.202010991.[57] Boyuan Fan, Qiong Wang, Weihong Wu, Qinwei Zhou, Dongling Li, Zenglai Xu, Li Fu, Jiangwei Zhu, Hassan KarimiMaleh, ChengTe Lin. Electrochemical Fingerprint Biosensor for Natural Indigo Dye Yielding Plants Analysis. BIOSENSORS[J]. 2021, 11(155): https://doaj.org/article/876f1acb9d9349c2a659f7391346ebf3.[58] Wei, Xianzhe, Yin, Guoqiang, Zhou, Xiangyang, Li, Linhong, Li, Maohua, Qin, Yue, Hou, Xiao, Song, Guichen, Ali, Zulfiqar, Dai, Wen, Zhao, Su, Fang, Xingzhong, Lin, ChengTe, Jiang, Nan, Yu, Jinhong. Carbon nano-onions as a nanofiller for enhancing thermal conductivity of epoxy composites. APPLIED NANOSCIENCE[J]. 2021, https://www.webofscience.com/wos/woscc/full-record/WOS:000631479200002.[59] Hou, Xiao, Zhang, Zhenbang, Wei, Xianzhe, Qin, Yue, Song, Guichen, Li, Linhong, Li, Maohua, Dai, Wen, Zhao, Su, Lin, ChengTe, Jiang, Nan, Yu, Jinhong. Aluminum Borate/Boron Nitride Nanosheet Fibers for Enhancing the Thermal Conductivity of Polymer Composites. ACS APPLIED NANO MATERIALS[J]. 2021, 4(2): 2136-2142, http://dx.doi.org/10.1021/acsanm.0c03429.[60] Yangguang Zhu, Qichen Tian, Xiufen Li, Lidong Wu, Aimin Yu, Guosong Lai, Li Fu, Qiuping Wei, Dan Dai, Nan Jiang, He Li, Chen Ye, ChengTe Lin. A Double-Deck Structure of Reduced Graphene Oxide Modified Porous Ti 3 C 2 T x Electrode towards Ultrasensitive and Simultaneous Detection of Dopamine and Uric Acid. BIOSENSORS. 2021, 11(11): [61] Shu, Shengcheng, Yuan, Qilong, Dai, Wen, Wu, Mingliang, Dai, Dan, Yang, Ke, Wang, Bo, Lin, ChengTe, Wuebben, Thomas, Degenhardt, Jost, Regula, Christoph, Wilken, Ralph, Jiang, Nan, Ihde, Joerg. In-situ synthesis of graphene-like carbon encapsulated copper particles for reinforcing copper matrix composites. MATERIALS & DESIGN[J]. 2021, 203: http://dx.doi.org/10.1016/j.matdes.2021.109586.[62] Bao, Shengyou, Wei, Qiuping, Cao, Jun, Li, Haichao, Ma, Li, An, Junjie, Lin, ChengTe, Luo, Jingting, Zhou, Kechao. Hydrophilic modification of carbon nanotube to prepare a novel porous copper network-carbon nanotube/erythritol composite phase change material. COMPOSITE INTERFACES[J]. 2021, 28(2): 175-189, https://www.webofscience.com/wos/woscc/full-record/WOS:000520357000001.[63] Dong, Mengmeng, Zhao, Shichao, Lv, Yanfei, Chen, Fei, Wang, Aiwu, Fu, Li, Lin, ChengTe. Electroanalytical determination of vanillin using PdZn particles decorated ZnS fibers. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION[J]. 2021, 15(5): 4718-4725, http://dx.doi.org/10.1007/s11694-021-01025-2.[64] Ye, Chen, Zhu, Yangguang, Sun, Hongyan, Chen, Feiyue, Sun, Huifang, Dai, Wen, Wei, Qiuping, Fu, Li, Yu, Aimin, Du, Shiyu, Yang, Minghui, Huang, LiangFeng, Yu, Jinhong, Jiang, Nan, Lin, ChengTe. Layer-by-layer stacked graphene nanocoatings by Marangoni self-assembly for corrosion protection of stainless steel. CHINESE CHEMICAL LETTERS[J]. 2021, 32(1): 501-505, http://dx.doi.org/10.1016/j.cclet.2020.03.013.[65] Zhang, Yang, Ren, Qiancheng, Zhang, Xuewei, Chen, Zhengyang, Zheng, Haoran, Liu, Jinglan, Jin, Yanhan, Lin, ChengTe, Zhao, Yi, Zhao, Pei. Facile Graphene Transfer Using Commercially Available Liquid Bandage. ACS APPLIED NANO MATERIALS[J]. 2021, 4(7): 7272-7279, http://dx.doi.org/10.1021/acsanm.1c01249.[66] Yan, Qingwei, Dai, Wen, Gao, Jingyao, Tan, Xue, Lv, Le, Ying, Junfeng, Lu, Xiaoxin, Lu, Jibao, Yao, Yagang, Wei, Qiuping, Sun, Rong, Yu, Jinhong, Jiang, Nan, Chen, Ding, Wong, ChingPing, Xiang, Rong, Maruyama, Shigeo, Lin, ChengTe. Ultrahigh-Aspect-Ratio Boron Nitride Nanosheets Leading to Superhigh In-Plane Thermal Conductivity of Foldable Heat Spreader. ACS NANO[J]. 2021, 15(4): 6489-6498, http://dx.doi.org/10.1021/acsnano.0c09229.[67] Ying, Junfeng, Tan, Xue, Lv, Le, Wang, Xiangze, Gao, Jingyao, Yan, Qingwei, Ma, Hongbing, Nishimura, K, Li, He, Yu, Jinhong, Liu, TeHuan, Xiang, Rong, Sun, Rong, Jiang, Nan, Wong, Chingping, Maruyama, Shigeo, Lin, ChengTe, Dai, Wen. Tailoring Highly Ordered Graphene Framework in Epoxy for High-Performance Polymer-Based Heat Dissipation Plates. ACS NANO[J]. 2021, 15(8): 12922-12934, http://apps.webofknowledge.com/CitedFullRecord.do?product=UA&colName=WOS&SID=5CCFccWmJJRAuMzNPjj&search_mode=CitedFullRecord&isickref=WOS:000693105500029.[68] Li, Maohua, Li, Linhong, Hou, Xiao, Qin, Yue, Song, Guichen, Wei, Xianzhe, Kong, Xiangdong, Zhang, Zhenbang, Do, Hainam, Greer, James C, Han, Fei, Cai, Tao, Dai, Wen, Lin, ChengTe, Jiang, Nan, Yu, Jinhong. Synergistic effect of carbon fiber and graphite on reducing thermal resistance of thermal interface materials. COMPOSITES SCIENCE AND TECHNOLOGY[J]. 2021, 212: http://dx.doi.org/10.1016/j.compscitech.2021.108883.[69] Shu, Shengcheng, Dai, Dan, Chung, ChihYeh, Yuan, Qilong, Wang, Bo, Hung, TienTsai, Dai, Wen, Wei, Qiuping, Fu, Li, Yu, Jinhong, Jiang, Nan, Li, He, Lin, ChengTe, Chen, ShiKun, Chin, TsungShune. Significant enhancement of corrosion resistance of stainless steel with nanostructured carbon coatings by substrate-catalytic CVD. APPLIED NANOSCIENCE[J]. 2021, 11(2): 725-733, https://www.webofscience.com/wos/woscc/full-record/WOS:000590231800003.[70] Gao, Jingyao, Yan, Qingwei, Lv, Le, Tan, Xue, Ying, Junfeng, Yang, Ke, Yu, Jinhong, Du, Shiyu, Wei, Qiuping, Xiang, Rong, Yao, Yagang, Zeng, Xiaoliang, Sun, Rong, Wong, ChingPing, Jiang, Nan, Lin, ChengTe, Dai, Wen. Lightweight thermal interface materials based on hierarchically structured graphene paper with superior through-plane thermal conductivity. CHEMICAL ENGINEERING JOURNAL[J]. 2021, 419: http://dx.doi.org/10.1016/j.cej.2021.129609.[71] Fu, Li, Chen, Fei, Zhao, Shichao, Yu, Jinhong, KarimiMaleh, Hassan, Lin, ChengTe. Analysis of coumarin in food and plant tissue without extraction based on voltammetry of microparticles. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION[J]. 2021, 15(6): 5439-5444, http://dx.doi.org/10.1007/s11694-021-01098-z.[72] 林正得. Constructing Three-dimensional Nano-crystalline Diamond Network within Polymer Composites for Enhanced Thermal Conductivity. Nanoscale[J]. 2021, 13: 18657-, [73] Li, Haichao, Cao, Jun, Wei, Qiuping, Ma, Li, Zhou, Kechao, Yu, Zhiming, Zeng, Sichao, Zhu, Ruitong, Yang, Wanlin, Lin, ChengTe, Meng, Lingcong. Antifouling nanoporous diamond membrane for enhanced detection of dopamine in human serum. JOURNAL OF MATERIALS SCIENCE[J]. 2021, 56(1): 746-761, http://dx.doi.org/10.1007/s10853-020-05344-5.[74] Juncheng Xia, Yue Qin, Xianzhe Wei, Linhong Li, Maohua Li, Xiangdong Kong, Shaoyang Xiong, Tao Cai, Wen Dai, ChengTe Lin, Nan Jiang, Shuangquan Fang, Jian Yi, Jinhong Yu, Oren Regev. Enhanced Thermal Conductivity of Polymer Composite by Adding Fishbone-like Silicon Carbide. NANOMATERIALS[J]. 2021, 11(11): https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8620080/.[75] Li, Maohua, Ali, Zulfiqar, Wei, Xianzhe, Li, Linhong, Song, Guichen, Hou, Xiao, Do, Hainam, Greer, James C, Pan, Zhongbin, Lin, ChengTe, Jiang, Nan, Yu, Jinhong. Stress induced carbon fiber orientation for enhanced thermal conductivity of epoxy composites. COMPOSITES PART B-ENGINEERING[J]. 2021, 208: http://dx.doi.org/10.1016/j.compositesb.2020.108599.[76] Li, Linhong, Qin, Yue, Wang, Hao, Li, Maohua, Song, Guichen, Wu, Yuming, Wei, Xianzhe, Ali, Zulfiqar, Yi, Jian, Song, Shulin, Lin, ChengTe, Jiang, Nan, Yu, Jinhong. Improving thermal conductivity of poly(vinyl alcohol) composites by using functionalized nanodiamond. COMPOSITES COMMUNICATIONS[J]. 2021, 23: http://dx.doi.org/10.1016/j.coco.2020.100596.[77] Bai, Xiaojing, Zha, XianHu, Qiao, Yingjie, Qiu, Nianxiang, Zhang, Yiming, Luo, Kan, He, Jian, Li, Qiuwu, Huang, Qing, Francisco, Joseph S, Lin, ChengTe, Du, Shiyu. Two-dimensional semiconducting Lu2CT2 (T = F, OH) MXene with low work function and high carrier mobility. NANOSCALE[J]. 2020, 12(6): 3795-3802, http://dx.doi.org/10.1039/c9nr10806h.[78] Deng, Liling, Lai, Guosong, Fu, Li, Lin, ChengTe, Yu, Aimin. Enzymatic deposition of gold nanoparticles at vertically aligned carbon nanotubes for electrochemical stripping analysis and ultrasensitive immunosensing of carcinoembryonic antigen. ANALYST[J]. 2020, 145(8): 3073-3080, https://www.webofscience.com/wos/woscc/full-record/WOS:000526827100023.[79] Hao Wang, Linhong Li, Yapeng Chen, Meng Li, Hui Fu, Xiao Hou, Xinfeng Wu, ChengTe Lin, Nan Jiang, Jinhong Yu. Efficient Thermal Transport Highway Construction Within Epoxy Matrix via Hybrid Carbon Fibers and Alumina Particles. ACS OMEGA[J]. 2020, 5(2): 1170-1177, [80] Zhenyu Zhang, Yuefeng Du, Siling Huang, Fanning Meng, Leilei Chen, Wenxiang Xie, Keke Chang, Chenhui Zhang, Yao Lu, ChengTe Lin, Suzhi Li, Ivan P Parkin, Dongming Guo. Macroscale Superlubricity Enabled by Graphene‐Coated Surfaces. ADVANCED SCIENCE[J]. 2020, 7(4): n/a-n/a, https://doaj.org/article/a53ba0e4e62741ebb737f15c35e002df.[81] Sun, Hongyan, Ye, Chen, Zhao, Gang, Zhang, Huan, Liu, Zhiduo, Dai, Wen, Wang, Junjie, Alam, Fakhr E, Yan, Qingwei, Li, Xinming, Xu, Jian, Chen, ChinYin, Zhao, Pei, Ye, Jichun, Jiang, Nan, Chen, Ding, Wu, Sudong, Kong, Jing, Lin, ChengTe. Ultrasensitive micro/nanocrack-based graphene nanowall strain sensors derived from the substrate's Poisson's ratio effect. JOURNAL OF MATERIALS CHEMISTRY A[J]. 2020, 8(20): 10310-10317, https://www.webofscience.com/wos/woscc/full-record/WOS:000539350100020.[82] Song, Guichen, Deng, Qihuang, Wang, Bo, Liu, Zhiduo, Ye, Chen, Wei, Xianzhe, Dai, Dan, Pan, Zhongbin, Li, Wei, Song, Shulin, Fu, Li, Lin, ChengTe, Jiang, Nan, Yu, Jinhong. Thermal and corrosion behavior of Ti3C2/Copper composites. COMPOSITES COMMUNICATIONS[J]. 2020, 22: http://dx.doi.org/10.1016/j.coco.2020.100498.[83] Cai, Xiaolei, Lv, Fuhui, Lai, Guosong, Fu, Li, Lin, ChengTe, Yu, Aimin. Dually enhanced homogenous synthesis of molybdophosphate by hybridization chain reaction and enzyme nanotags for the electrochemical bioassay of carcinoembryonic antigen. MICROCHIMICA ACTA[J]. 2020, 187(6): https://www.webofscience.com/wos/woscc/full-record/WOS:000538026900003.[84] Sun, Hongyan, Pan, Ning, Jin, Xin, Deng, Ka, Liu, Zhiduo, Lin, ChengTe, Pan, Tingrui, Chang, Yu. Active-powering pressure-sensing fabric devices. JOURNAL OF MATERIALS CHEMISTRY A[J]. 2020, 8(1): 358-368, https://www.webofscience.com/wos/woscc/full-record/WOS:000503772400033.[85] Zhang, Fan, Ye, Chen, Dai, Wen, Lv, Le, Yuan, Qilong, Chee, Kuan W A, Yang, Ke, Jiang, Nan, Lin, ChengTe, Zhan, Zhaolin, Dai, Dan, Li, He. Surfactant-assisted fabrication of graphene frameworks endowing epoxy composites with superior thermal conductivity. CHINESE CHEMICAL LETTERS[J]. 2020, 31(1): 244-248, http://lib.cqvip.com/Qikan/Article/Detail?id=7101029680.[86] Jia Yufei, Chen Wenjun, Ye Chen, Yang Rongliang, Yang Leilei, Zhang Zian, Hu Qingmei, Liang Binghao, Yang BoRu, Tang Zikang, Lin ChengTe, Gui Xuchun. Controllable formation of periodic wrinkles in Marangoni-driven self-assembled graphene film for sensitive strain detection. SCIENCE CHINA-MATERIALS[J]. 2020, 63(10): 1983-1992, https://www.webofscience.com/wos/woscc/full-record/WOS:000533184300001.[87] Chen, Yapeng, Hou, Xiao, Liao, Meizhen, Dai, Wen, Wang, Zhongwei, Yan, Chao, Li, He, Lin, ChengTe, Jiang, Nan, Yu, Jinhong. Constructing a "pea-pod-like" alumina-graphene binary architecture for enhancing thermal conductivity of epoxy composite. CHEMICAL ENGINEERING JOURNAL[J]. 2020, 381: http://dx.doi.org/10.1016/j.cej.2019.122690.[88] Song, Guichen, Kang, Ruiyang, Guo, Liangchao, Ali, Zulfiqar, Chen, Xiaoyong, Zhang, Zhenyu, Yan, Chao, Lin, ChengTe, Jiang, Nan, Yu, Jinhong. Highly flexible few-layer Ti3C2 MXene/cellulose nanofiber heat-spreader films with enhanced thermal conductivity. NEW JOURNAL OF CHEMISTRY[J]. 2020, 44(17): 7186-7193, http://dx.doi.org/10.1039/d0nj00672f.[89] Wang, Lei, Song, Ping, Lin, ChengTe, Kong, Jie, Gu, Junwei. 3D Shapeable, Superior Electrically Conductive Cellulose Nanofibers/Ti3C2Tx MXene Aerogels/Epoxy Nanocomposites for Promising EMI Shielding. RESEARCH[J]. 2020, 2020(1): 690-701, http://dx.doi.org/10.34133/2020/4093732.[90] Xu, Yuting, Lu, Yijun, Zhang, Pengchong, Wang, Yangyang, Zheng, Yuhong, Fu, Li, Zhang, Huaiwei, Lin, ChengTe, Yu, Aimin. Infrageneric phylogenetics investigation of Chimonanthus based on electroactive compound profiles. BIOELECTROCHEMISTRY[J]. 2020, 133: http://dx.doi.org/10.1016/j.bioelechem.2020.107455.[91] Zeng, Fankun, Xue, Chen, Ma, Hongbing, Lin, ChengTe, Yu, Jinhong, Jiang, Nan. High Thermal Conductivity and Anisotropy Values of Aligned Graphite Flakes/Copper Foil Composites. MATERIALS[J]. 2020, 13(1): http://apps.webofknowledge.com/CitedFullRecord.do?product=UA&colName=WOS&SID=5CCFccWmJJRAuMzNPjj&search_mode=CitedFullRecord&isickref=WOS:000515499300046.[92] Fu, Li, Zheng, Yuhong, Zhang, Pengcong, Zhang, Haoyang, Xu, Yuting, Zhou, Jingtao, Zhang, Huaiwei, KarimiMaleh, Hassan, Lai, Guosong, Zhao, Shichao, Su, Weitao, Yu, Jinhong, Lin, ChengTe. Development of an electrochemical biosensor for phylogenetic analysis of Amaryllidaceae based on the enhanced electrochemical fingerprint recorded from plant tissue. BIOSENSORS & BIOELECTRONICS[J]. 2020, 159: http://dx.doi.org/10.1016/j.bios.2020.112212.[93] Zhang, Xuewei, Xu, Chen, Zou, Zhenxing, Wu, Zehao, Yin, Shaoqian, Zhang, Zilong, Liu, Jinglan, Xia, Yang, Lin, ChengTe, Zhao, Pei, Wang, Hongtao. A scalable polymer-free method for transferring graphene onto arbitrary surfaces. CARBON[J]. 2020, 161: 479-485, http://dx.doi.org/10.1016/j.carbon.2020.01.111.[94] Sun, Huifang, Zeng, Qi, Ye, Chen, Zhu, Yangguang, Chen, Feiyue, Yang, Mingyang, Fu, Li, Du, Shiyu, Yu, Jinhong, Jiang, Nan, Liu, Jianxiong, Wu, Tianzhun, Lin, ChengTe. Pt nanodendrites with (111) crystalline facet as an efficient, stable and pH-universal catalyst for electrochemical hydrogen production. CHINESE CHEMICAL LETTERS[J]. 2020, 31(9): 2478-2482, http://lib.cqvip.com/Qikan/Article/Detail?id=7103279946.[95] Guo, Liangchao, Zhang, Zhenyu, Li, Maohua, Kang, Ruiyang, Chen, Yapeng, Song, Guichen, Han, SuTing, Lin, ChengTe, Jiang, Nan, Yu, Jinhong. Extremely high thermal conductivity of carbon fiber/epoxy with synergistic effect of MXenes by freeze-drying. COMPOSITES COMMUNICATIONS[J]. 2020, 19: 134-141, http://dx.doi.org/10.1016/j.coco.2020.03.009.[96] Zeng, Sichao, Wei, Qiuping, Long, Hangyu, Meng, Lingcong, Ma, Li, Cao, Jun, Li, Haichao, Yu, Zhiming, Lin, ChengTe, Zhou, Kechao, Pei, E Sharel. Annealing temperature regulating the dispersity and composition of nickel-carbon nanoparticles for enhanced glucose sensing. JOURNAL OF ELECTROANALYTICAL CHEMISTRY[J]. 2020, 859: http://dx.doi.org/10.1016/j.jelechem.2020.113827.[97] Cao, Qiang, Xiao, Yushi, Huang, Rong, Liu, Na, Chi, Hai, Lin, ChengTe, Huang, ChiHsien, Han, Gang, Wu, Lidong. Thiolated poly(aspartic acid)-functionalized two-dimensional MoS2, chitosan and bismuth film as a sensor platform for cadmium ion detection. RSC ADVANCES[J]. 2020, 10(62): 37989-37994, https://www.webofscience.com/wos/woscc/full-record/WOS:000583523300048.[98] Zhang, Yaqing, Zha, XianHu, Luo, Kan, Qin, Yanqing, Bai, Xiaojing, Xu, Jian, Lin, ChengTe, Huang, Qing, Du, Shiyu. Theoretical study on the electrical and mechanical properties of MXene multilayer structures through strain regulation. CHEMICAL PHYSICS LETTERS[J]. 2020, 760: http://dx.doi.org/10.1016/j.cplett.2020.137997.[99] Fu, Li, Wang, Qiao, Zhang, Mingjun, Zheng, Yuhong, Wu, Mengyao, Lan, Ziyi, Pu, Jiansong, Zhang, Huaiwei, Chen, Fei, Su, Weitao, Yu, Jinhong, Lin, ChengTe. Electrochemical Sex Determination of Dioecious Plants Using Polydopamine-Functionalized Graphene Sheets. FRONTIERS IN CHEMISTRY[J]. 2020, 8: https://doaj.org/article/382910c4285d40f1bc99e8d10b8413ce.[100] Pan, Ying, Fu, Li, Zhou, Qingwei, Wen, Zhenan, Lin, ChengTe, Yu, Jinhong, Wang, Weiming, Zhao, Hongting. Flammability, thermal stability and mechanical properties of polyvinyl alcohol nanocomposites reinforced with delaminated Ti3C2Tx (MXene). POLYMER COMPOSITES[J]. 2020, 41(1): 210-218, https://www.webofscience.com/wos/woscc/full-record/WOS:000480222300001.[101] 林正得. Highly thermal conductive polymer composites with barnacle-like nanocrystalline diamond@silicon carbide hybrid architecture. Composites Part B: Engineering. 2020, [102] Dai, Dan, Wu, Mingliang, Shu, Shengcheng, Yang, Ke, Lin, ChengTe, Han, Yu, Zhu, Zhixiang, Ding, Yi, Song, Yingze, Jiang, Nan. Thermal CVD growth of graphene on copper particles targeting tungsten-copper composites with superior wear and arc ablation resistance properties. DIAMOND AND RELATED MATERIALS[J]. 2020, 104: http://dx.doi.org/10.1016/j.diamond.2020.107765.[103] Feiyue Chen, Zhiqin Fan, Yangguang Zhu, Huifang Sun, Jinhong Yu, Nan Jiang, Shichao Zhao, Guosong Lai, Aimin Yu, ChengTe Lin, Chen Ye, Li Fu. β-Cyclodextrin-Immobilized Ni/Graphene Electrode for Electrochemical Enantiorecognition of Phenylalanine. MATERIALS[J]. 2020, 13(3): https://doaj.org/article/c6d73e27fa0d47d09b8e8eefba493924.[104] Zhang, Shendan, Wang, Chenhao, Qu, Fengdong, Liu, Siqi, Lin, ChengTe, Du, Shiyu, Chen, Yousi, Meng, Fanli, Yang, Minghui. ZnO nanoflowers modified with RuO2 for enhancing acetone sensing performance. NANOTECHNOLOGY[J]. 2020, 31(11): https://www.webofscience.com/wos/woscc/full-record/WOS:000515114600002.[105] Ye, Chen, Zhang, Fan, Tan, Xue, Sun, Huifang, Dai, Wen, Yang, Ke, Yang, Minghui, Du, Shiyu, Dai, Dan, Yu, Jinhong, Jiang, Nan, Su, Weitao, Fu, Li, Li, He, Kong, Jing, Lin, ChengTe. A dense graphene monolith with poloxamer prefunctionalization enabling aqueous redispersion to obtain solubilized graphene sheets. CHINESE CHEMICAL LETTERS[J]. 2020, 31(9): 2507-2511, http://lib.cqvip.com/Qikan/Article/Detail?id=7103279953.[106] Hu, Naixiu, Li, Haichao, Wei, Qiuping, Zhou, Kechao, Zhu, Wei, Zhang, Long, Li, Songbo, Ye, Wentao, Jiao, Zengkai, Luo, Jingting, Ma, Li, Yan, Qingwei, Lin, ChengTe. Continuous diamond-carbon nanotube foams as rapid heat conduction channels in composite phase change materials based on the stable hierarchical structure. COMPOSITES PART B-ENGINEERING[J]. 2020, 200: http://dx.doi.org/10.1016/j.compositesb.2020.108293.[107] Yang, Rutong, Fan, Boyuan, Wang, Shuan, Li, Linfang, Li, Ya, Li, Sumei, Zheng, Yuhong, Fu, Li, Lin, ChengTe. Electrochemical Voltammogram Recording for Identifying Varieties of Ornamental Plants. MICROMACHINES[J]. 2020, 11(11): https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7693950/.[108] Ma, Tengfei, Lin, ChengTe, Wang, Yan. The dimensionality effect on phonon localization in graphene/hexagonal boron nitride superlattices. 2D MATERIALS[J]. 2020, 7(3): https://www.webofscience.com/wos/woscc/full-record/WOS:000546787500001.[109] 林正得. The dimensionality effect on phonon localization in two-dimensional materials. 2D Materials. 2020, [110] Li, Meng, Wang, Mengjie, Hou, Xiao, Zhan, Zhaolin, Wang, Hao, Fu, Hui, Lin, ChengTe, Fu, Li, Jiang, Nan, Yu, Jinhong. Highly thermal conductive and electrical insulating polymer composites with boron nitride. COMPOSITES PART B-ENGINEERING[J]. 2020, 184: http://dx.doi.org/10.1016/j.compositesb.2020.107746.[111] Zhang, Long, Wei, Qiuping, An, Junjie, Ma, Li, Zhou, Kechao, Ye, Wentao, Yu, Zhiming, Gan, Xueping, Lin, ChengTe, Luo, Jingting. Construction of 3D interconnected diamond networks in Al-matrix composite for high-efficiency thermal management. CHEMICAL ENGINEERING JOURNAL[J]. 2020, 380: http://dx.doi.org/10.1016/j.cej.2019.122551.[112] Luo, Kan, Zha, XianHu, Huang, Qing, Lin, ChengTe, Yang, Minghui, Zhou, Shenghu, Du, Shiyu. First-principles study of magnetism in some novel MXene materials. RSC ADVANCES[J]. 2020, 10(72): 44430-44436, http://dx.doi.org/10.1039/d0ra03643a.[113] Zhang, Xuewei, Wu, Zehao, Zheng, Haoran, Ren, Qiancheng, Zou, Zhenxing, Mei, Le, Zhang, Zilong, Xia, Yang, Lin, ChengTe, Zhao, Pei, Wang, Hongtao. High-quality graphene transfer via directional etching of metal substrates. NANOSCALE[J]. 2019, 11(34): 16001-16006, https://www.webofscience.com/wos/woscc/full-record/WOS:000483691300023.[114] Fu, Li, Zheng, Yuhong, Zhang, Pengchong, Zhang, Haoyang, Wu, Mengyao, Zhang, Huaiwei, Wang, Aiwu, Su, Weitao, Chen, Fei, Yu, Jinhong, Cai, Wen, Lin, ChengTe. An electrochemical method for plant species determination and classification based on fingerprinting petal tissue. BIOELECTROCHEMISTRY[J]. 2019, 129: 199-205, http://dx.doi.org/10.1016/j.bioelechem.2019.06.001.[115] Zhang, Luxi, Su, Weitao, Shu, Haibo, Lu, Ting, Fu, Li, Song, Kaixin, Huang, Xiwei, Yu, Jinhong, Lin, ChengTe, Tang, Yiping. Tuning the photoluminescence of large Ti3C2Tx MXene flakes. CERAMICS INTERNATIONAL[J]. 2019, 45(9): 11468-11474, http://dx.doi.org/10.1016/j.ceramint.2019.03.014.[116] Zhu, Zezhou, Li, Chaowei, Songfeng, E, Xie, Liyan, Geng, Renjie, Lin, ChengTe, Li, Liqiang, Yao, Yagang. Enhanced thermal conductivity of polyurethane composites via engineering small/large sizes interconnected boron nitride nanosheets. COMPOSITES SCIENCE AND TECHNOLOGY[J]. 2019, 170: 93-100, http://dx.doi.org/10.1016/j.compscitech.2018.11.035.[117] Guo, Peng, Wang, Yun, Chen, Zhichao, Jin, Tianqi, Fu, Li, Lin, ChengTe, Lai, Guosong. Voltammetric immunoassay of human IgG based on the release of cadmium(II) from CdS nanocrystals deposited on mesoporous silica nanospheres. MICROCHIMICA ACTA[J]. 2019, 186(1): [118] Li Fu, Mengyao Wu, Yuhong Zheng, Pengchong Zhang, Chen Ye, Huaiwei Zhang, Keqin Wang, Weitao Su, Fei Chen, Jinhong Yu, Aimin Yu, Wen Cai, ChengTe Lin. Lycoris species identification and infrageneric relationship investigation via graphene enhanced electrochemical fingerprinting of pollen. SENSORS & ACTUATORS: B. CHEMICAL. 2019, 298: 126836-, http://dx.doi.org/10.1016/j.snb.2019.126836.[119] Li, Can, Zhao, Ting, Wei, Qiuping, Den, Zejun, Long, Hangyu, Zheng, Kuangzhi, Li, Haichao, Guo, Yaohua, Yu, Zhiming, Ma, Li, Zhou, Kechao, Huang, Nan, Lin, ChengTe. The effect of heat treatment time on the carbon-coated nickel nanoparticles modified boron-doped diamond composite electrode for non-enzymatic glucose sensing. JOURNAL OF ELECTROANALYTICAL CHEMISTRY[J]. 2019, 841: 148-157, http://dx.doi.org/10.1016/j.jelechem.2019.04.023.[120] Liu, Zhiduo, Chen, Yapeng, Li, Yifan, Dai, Wen, Yan, Qingwei, Alam, Fakhr E, Du, Shiyu, Wang, Zhongwei, Nishimura, Kazuhito, Jiang, Nan, Lin, ChengTe, Yu, Jinhong. Graphene foam-embedded epoxy composites with significant thermal conductivity enhancement. NANOSCALE[J]. 2019, 11(38): 17600-17606, http://dx.doi.org/10.1039/c9nr03968f.[121] 林正得. A novel porous Mo3N2/MoO3 hybrid nanobelts as supercapacitor electrode material. Nano Futures. 2019, [122] Fu, Hui, Yan, Guoping, Li, Meng, Wang, Hao, Chen, Yapeng, Yan, Chao, Lin, ChengTe, Jiang, Nan, Yu, Jinhong. Graphene as a nanofiller for enhancing the tribological properties and thermal conductivity of base grease. RSC ADVANCES[J]. 2019, 9(72): 42481-42488, http://apps.webofknowledge.com/CitedFullRecord.do?product=UA&colName=WOS&SID=5CCFccWmJJRAuMzNPjj&search_mode=CitedFullRecord&isickref=WOS:000516545700056.[123] Naiyuan Cui, Pei Guo, Qilong Yuan, Chen Ye, Mingyang Yang, Minghui Yang, Kuan W A Chee, Fei Wang, Li Fu, Qiuping Wei, ChengTe Lin, Jingyao Gao. Single-Step Formation of Ni Nanoparticle-Modified Graphene–Diamond Hybrid Electrodes for Electrochemical Glucose Detection. SENSORS[J]. 2019, 19(13): https://doaj.org/article/f6337e9c7da34c78817578e352e0eda0.[124] Qilong Yuan, Sudong Wu, Chen Ye, Xiangqi Liu, Jingyao Gao, Naiyuan Cui, Pei Guo, Guosong Lai, Qiuping Wei, Minghui Yang, Weitao Su, He Li, Nan Jiang, Li Fu, Dan Dai, ChengTe Lin, Kuan WA Chee. Sensitivity enhancement of potassium ion (K+) detection based on graphene field-effect transistors with surface plasma pretreatment. SENSORS & ACTUATORS: B. CHEMICAL. 2019, 285: 333-340, http://dx.doi.org/10.1016/j.snb.2019.01.058.[125] Zheng, Kuangzhi, Longn, Hangyu, Wei, Qiuping, Ma, Li, Qiao, Leilei, Li, Can, Meng, Lingcong, Lin, ChengTe, Jiang, Yunlu, Zhao, Ting, Zhou, Kechao. Non-Enzymatic Glucose Sensor Based on Hierarchical Au/Ni/Boron-Doped Diamond Heterostructure Electrode for Improving Performances. JOURNAL OF THE ELECTROCHEMICAL SOCIETY[J]. 2019, 166(6): E373-E380, [126] Hou, Xiao, Chen, Yapeng, Dai, Wen, Wang, Zhongwei, Li, He, Lin, ChengTe, Nishimura, Kazuhito, Jiang, Nan, Yu, Jinhong. Highly thermal conductive polymer composites via constructing micro-phragmites communis structured carbon fibers. CHEMICAL ENGINEERING JOURNAL[J]. 2019, 375: http://dx.doi.org/10.1016/j.cej.2019.121921.[127] Dai, Wen, Ma, Tengfei, Yan, Qingwei, Gao, Jingyao, Tan, Xue, Lv, Le, Hou, Hao, Wei, Qiuping, Yu, Jinhong, Wu, Jianbo, Yao, Yagang, Du, Shiyu, Sun, Rong, Jiang, Nan, Wang, Yan, Kong, Jing, Wong, Chingping, Maruyama, Shigeo, Lin, ChengTe. Metal-Level Thermally Conductive yet Soft Graphene Thermal Interface Materials. ACS NANO[J]. 2019, 13(10): 11561-11571, http://dx.doi.org/10.1021/acsnano.9b05163.[128] Qu, Fengdong, Zhang, Shendan, Zhang, Bingxue, Zhou, Xinxin, Du, Shiyu, Lin, ChengTe, Ruan, Shengping, Yang, Minghui. Hierarchical Co3O4@NiMoO4 core-shell nanowires for chemiresistive sensing of xylene vapor. MICROCHIMICA ACTA[J]. 2019, 186(4): https://www.webofscience.com/wos/woscc/full-record/WOS:000460662600005.[129] Yuan, Qilong, Lin, ChengTe, Chee, Kuan W A. All-carbon devices based on sp(2)-on-sp(3) configuration. APL MATERIALS[J]. 2019, 7(3): https://doaj.org/article/e87f3fb518eb4da9996e953cebe8485f.[130] Pham, Tien Song Hiep, Mahon, Peter J, Lai, Guosong, Fu, Li, Lin, ChengTe, Yu, Aimin. Cauliflower-like Platinum Particles Decorated Reduced Graphene Oxide for Sensitive Determination of Acetaminophen. ELECTROANALYSIS[J]. 2019, 31(9): 1758-1768, https://www.doi.org/10.1002/elan.201900138.[131] Dai, Wen, Lv, Le, Lu, Jibao, Hou, Hao, Yan, Qingwei, Alam, Fakhr E, Li, Yifan, Zeng, Xiaoliang, Yu, Jinhong, Wei, Qiuping, Xu, Xiangfan, Wu, Jianbo, Jiang, Nan, Du, Shiyu, Sun, Rong, Xu, Jianbin, Wong, ChingPing, Lin, ChengTe. A Paper-Like Inorganic Thermal Interface Material Composed of Hierarchically Structured Graphene/Silicon Carbide Nanorods. ACS NANO[J]. 2019, 13(2): 1547-1554, https://www.webofscience.com/wos/woscc/full-record/WOS:000460199400055.[132] Wu, Mingliang, Hou, Baosen, Shu, Shengcheng, Li, Ao, Geng, Qi, Li, He, Shi, Yumeng, Yang, Minghui, Du, Shiyu, Wang, JunQiang, Liao, Shuzhi, Jiang, Nan, Dai, Dan, Lin, ChengTe. High Oxidation Resistance of CVD Graphene-Reinforced Copper Matrix Composites. NANOMATERIALS[J]. 2019, 9(4): https://doaj.org/article/d9317ce579204bd9a90ed489ffbc9061.[133] Kang, Ruiyang, Zhang, Zhenyu, Guo, Liangchao, Cui, Junfeng, Chen, Yapeng, Hou, Xiao, Wang, Bo, Lin, ChengTe, Jiang, Nan, Yu, Jinhong. Enhanced Thermal Conductivity of Epoxy Composites Filled with 2D Transition Metal Carbides (MXenes) with Ultralow Loading. SCIENTIFIC REPORTS[J]. 2019, 9(1): http://dx.doi.org/10.1038/s41598-019-45664-4.[134] Gong, Zhenzhi, Hu, Naixiu, Ye, Wentao, Zheng, Kuangzhi, Li, Can, Ma, Li, Wei, Qiuping, Yu, Zhiming, Zhou, Kechao, Huang, Nan, Lin, ChengTe, Luo, Jingting. High-performance non-enzymatic glucose sensor based on Ni/Cu/boron-doped diamond electrode. JOURNAL OF ELECTROANALYTICAL CHEMISTRY[J]. 2019, 841: 135-141, http://dx.doi.org/10.1016/j.jelechem.2019.03.043.[135] Zhang, Long, Zhou, Kechao, Wei, Quiping, Ma, Li, Ye, Wentao, Li, Haichao, Zhou, Bo, Yu, Zhiming, Lin, ChengTe, Luo, Jingting, Gan, Xueping. Thermal conductivity enhancement of phase change materials with 3D porous diamond foam for thermal energy storage. APPLIED ENERGY[J]. 2019, 233: 208-219, http://dx.doi.org/10.1016/j.apenergy.2018.10.036.[136] Hou, Xiao, Chen, Yapeng, Lv, Le, Dai, Wen, Zhao, Su, Wang, Zhongwei, Fu, Li, Lin, ChengTe, Jiang, Nan, Yu, Jinhong. High-Thermal-Transport-Channel Construction within Flexible Composites via the Welding of Boron Nitride Nanosheets. ACS APPLIED NANO MATERIALS[J]. 2019, 2(1): 360-368, [137] 林正得. Two-dimensional semiconducting Lu2CT2(T= F, OH) MXene with ultralow work function and ultrahigh carrier mobility. Nanoscale. 2019, [138] Liang, Tao, Habib, Mohammad Rezwan, Kong, Yuhan, Cai, Yu, Chen, Hongzheng, Fujita, Daisuke, Lin, ChengTe, Liu, Yingchun, Yu, Cui, Su, Huanxing, Feng, Zhihong, Xu, Mingsheng. Elucidation of heterogeneous graphene nucleation and growth through Cu surface engineering. CARBON[J]. 2019, 147: 120-125, http://dx.doi.org/10.1016/j.carbon.2019.02.075.[139] Zhu, Wei, Hu, Naixiu, Wei, Quiping, Zhang, Long, Li, Haichao, Luo, Jingting, Lin, ChengTe, Ma, Li, Zhou, Kechao, Yu, Zhiming. Carbon nanotube-Cu foam hybrid reinforcements in composite phase change materials with enhanced thermal conductivity. MATERIALS & DESIGN[J]. 2019, 172: 107709-, http://dx.doi.org/10.1016/j.matdes.2019.107709.[140] Wu, Dihua, Wu, Mengyao, Yang, Jiehui, Zhang, Huaiwei, Xie, Kefeng, Lin, ChengTe, Yu, Aimin, Yu, Jinhong, Fu, Li. Delaminated Ti3C2Tx (MXene) for electrochemical carbendazim sensing. MATERIALS LETTERS[J]. 2019, 236: 412-415, http://dx.doi.org/10.1016/j.matlet.2018.10.150.[141] Wu, Yuming, Ye, Kai, Liu, Zhiduo, Wang, Bo, Yan, Chao, Wang, Zhongwei, Lin, ChengTe, Jiang, Nan, Yu, Jinhong. Cotton Candy-Templated Fabrication of Three-Dimensional Ceramic Pathway within Polymer Composite for Enhanced Thermal Conductivity. ACS APPLIED MATERIALS & INTERFACES[J]. 2019, 11(47): 44700-44707, http://dx.doi.org/10.1021/acsami.9b15758.[142] Yang, Mingyang, Yuan, Qilong, Gao, Jingyao, Shu, Shengcheng, Chen, Feiyue, Sun, Huifang, Nishimura, Kazuhito, Wang, Shaolong, Yi, Jian, Lin, ChengTe, Jiang, Nan. A Diamond Temperature Sensor Based on the Energy Level Shift of Nitrogen-Vacancy Color Centers. NANOMATERIALS[J]. 2019, 9(11): https://doaj.org/article/b01f5977ffaf484a8d0133cf9c18ce94.[143] Li Fu, Yuhong Zheng, Pengchong Zhang, Haoyang Zhang, Weibing Zhuang, Huaiwei Zhang, Aiwu Wang, Weitao Su, Jinhong Yu, ChengTe Lin. Enhanced electrochemical voltammetric fingerprints for plant taxonomic sensing. BIOSENSORS AND BIOELECTRONICS. 2018, 120: 102-107, http://dx.doi.org/10.1016/j.bios.2018.08.052.[144] Ye, Wentao, Wei, Qiuping, Zhang, Long, Li, Haichao, Luo, Jingting, Ma, Li, Deng, Zejun, Lin, ChengTe, Zhou, Kechao. Macroporous diamond foam: A novel design of 3D interconnected heat conduction network for thermal management. MATERIALS & DESIGN[J]. 2018, 156: 32-41, http://dx.doi.org/10.1016/j.matdes.2018.06.017.[145] Jiang, Yunlu, Deng, Zejun, Zhou, Bo, Wei, Qiuping, Long, Hangyu, Wang, Yijia, Li, Jiaxin, Hu, Naixiu, Ma, Li, Lin, ChengTe, Yu, Zhiming, Zhou, Kechao. Nickel-induced transformation of diamond into graphite and carbon nanotubes and the electron field emission properties of resulting composite films. APPLIED SURFACE SCIENCE[J]. 2018, 428: 264-271, http://dx.doi.org/10.1016/j.apsusc.2017.09.129.[146] Dai, Xin, Bai, Jin, Huang, Qing, Liu, Zhen, Bai, Xiaojing, Lin, ChengTe, Li, Wen, Guo, Wenping, Wen, Xiaodong, Du, Shiyu. Coal ash fusion properties from molecular dynamics simulation: the role of calcium oxide. FUEL[J]. 2018, 216: 760-767, http://dx.doi.org/10.1016/j.fuel.2017.12.048.[147] Fu, Li, Liu, Zhong, Huang, Yong, Lai, Guosong, Zhang, Huaiwei, Su, Weitao, Yu, Jinhong, Wang, Aiwu, Lin, ChengTe, Yu, Aimin. Square wave voltammetric quantitative determination of flavonoid luteolin in peanut hulls and Perilla based on Au NPs loaded boron nitride nanosheets. JOURNAL OF ELECTROANALYTICAL CHEMISTRY[J]. 2018, 817: 128-133, http://dx.doi.org/10.1016/j.jelechem.2018.04.009.[148] Guo, Yaolin, Liu, Zhen, Huang, Qing, Lin, ChengTe, Du, Shiyu. Abnormal grain growth of UO2 with pores in the final stage of sintering: A phase field study. COMPUTATIONAL MATERIALS SCIENCE[J]. 2018, 145: 24-34, http://dx.doi.org/10.1016/j.commatsci.2017.12.057.[149] Wu, Yuming, Ye, Kai, Liu, Zhiduo, Wang, Mengjie, Chee, Kuan W A, Lin, ChengTe, Jiang, Nan, Yu, Jinhong. Effective thermal transport highway construction within dielectric polymer composites via a vacuum- assisted infiltration method. JOURNAL OF MATERIALS CHEMISTRY C[J]. 2018, 6(24): 6494-6501, http://www.corc.org.cn/handle/1471x/2173751.[150] Lv, Le, Dai, Wen, Li, Aijun, Lin, ChengTe. Graphene-Based Thermal Interface Materials: An Application-Oriented Perspective on Architecture Design. POLYMERS[J]. 2018, 10(11): http://www.corc.org.cn/handle/1471x/2167432.[151] Guo, Liangchao, Zhang, Zhenyu, Sun, Hongyan, Dai, Dan, Cui, Junfeng, Li, Mingzheng, Xu, Yang, Xu, Mingsheng, Du, Yuefeng, Jiang, Nan, Huang, Feng, Lin, ChengTe. Direct formation of wafer-scale single-layer graphene films on the rough surface substrate by PECVD. CARBON[J]. 2018, 129: 456-461, http://dx.doi.org/10.1016/j.carbon.2017.12.023.[152] Zhang, Zhenyu, Cui, Junfeng, Wang, Bo, Jiang, Haiyue, Chen, Guoxin, Yu, Jinhong, Lin, Chengte, Tang, Chun, Hartmaier, Alexander, Zhang, Junjie, Luo, Jun, Rosenkranz, Andreas, Jiang, Nan, Guo, Dongming. In situ TEM observation of rebonding on fractured silicon carbide. NANOSCALE[J]. 2018, 10(14): 6261-6269, https://www.webofscience.com/wos/woscc/full-record/WOS:000429530400002.[153] Fu, Li, Wang, Aiwu, Lai, Guosong, Su, Weitao, Malherbe, Francois, Yu, Jinhong, Lin, ChengTe, Yu, Aimin. Defects regulating of graphene ink for electrochemical determination of ascorbic acid, dopamine and uric acid. TALANTA[J]. 2018, 180: 248-253, http://dx.doi.org/10.1016/j.talanta.2017.12.058.[154] Wang, Yijia, Li, Jiaxin, Hu, Naixiu, Jiang, Yunlu, Wei, Qiuping, Yu, Zhiming, Long, Hangyu, Zhu, Hekang, Xie, Youneng, Ma, Li, Lin, ChengTe, Su, Weitao. Effect of magnetic and electric coupling fields on micro- and nano-structure of carbon films in the CVD diamond process and their electron field emission property. MATERIALS RESEARCH EXPRESS[J]. 2018, 5(3): http://ir.nimte.ac.cn/handle/174433/16780.[155] Yuan, Yao, Li, XingRu, Zhang, Xuyang, Wang, Jiacheng, Zhou, Yao, Lin, ChengTe, Lin, TsungWu, Yang, Minghui. A novel porous Mo3N2/MoO3 hybrid nanobelt as supercapacitor electrode material. NANO FUTURES[J]. 2018, 2(4): http://dx.doi.org/10.1088/2399-1984/aad9b8.[156] Fu, Li, Wang, Aiwu, Lyv, Fucong, Lai, Guosong, Zhang, Huaiwei, Yu, Jinhong, Lin, ChengTe, Yu, Aimin, Su, Weitao. Electrochemical antioxidant screening based on a chitosan hydrogel. BIOELECTROCHEMISTRY[J]. 2018, 121: 7-10, http://dx.doi.org/10.1016/j.bioelechem.2017.12.013.[157] Fu, Li, Wang, Aiwu, Lai, Guosong, Lin, ChengTe, Yu, Jinhong, Yu, Aimin, Liu, Zhong, Xie, Kefeng, Su, Weitao. A glassy carbon electrode modified with N-doped carbon dots for improved detection of hydrogen peroxide and paracetamol. MICROCHIMICA ACTA[J]. 2018, 185(2): http://ir.nimte.ac.cn/handle/174433/16836.[158] Sun, Hongyan, Chen, Ding, Ye, Chen, Li, Xinming, Dai, Dan, Yuan, Qilong, Chee, Kuan W A, Zhao, Pei, Jiang, Nan, Lin, ChengTe. Large-area self-assembled reduced graphene oxide/electrochemically exfoliated graphene hybrid films for transparent electrothermal heaters. APPLIED SURFACE SCIENCE[J]. 2018, 435: 809-814, http://dx.doi.org/10.1016/j.apsusc.2017.11.182.[159] Li, Shuangyi, Hou, Baosen, Dai, Dan, Shu, Shengcheng, Wu, Mingliang, Li, Ao, Han, Yu, Zhu, Zhixiang, Chen, Baoan, Ding, Yi, Zhang, Qiang, Wang, Qiang, Jiang, Nan, Lin, ChengTe. CVD Synthesis of Monodisperse Graphene/Cu Microparticles with High Corrosion Resistance in Cu Etchant. MATERIALS[J]. 2018, 11(8): http://www.corc.org.cn/handle/1471x/2171690.[160] Luo, Kan, Zha, XianHu, Zhou, Yuhong, Guo, Zhansheng, Lin, ChengTe, Huang, Qing, Zhou, Shenghu, Zhang, Ruifeng, Du, Shiyu. First-principles study on the electrical and thermal properties of the semiconducting Sc-3(CN)F-2 MXene. RSC ADVANCES[J]. 2018, 8(40): 22452-22459, http://ir.nimte.ac.cn/handle/174433/16893.[161] Hou, Xiao, Wang, Mengjie, Fu, Li, Chen, Yapeng, Jiang, Nan, Lin, ChengTe, Wang, Zhongwei, Yu, Jinhong. Boron nitride nanosheet nanofluids for enhanced thermal conductivity. NANOSCALE[J]. 2018, 10(27): 13004-13010, http://ir.nimte.ac.cn/handle/174433/17301.[162] H Bai, C Xue, JL Lyu, J Li, GX Chen, JH Yu, CT Lin, DJ Lv, LM Xiong. Thermal conductivity and mechanical properties of flake graphite/copper composite with a boron carbide-boron nano-layer on graphite surface. COMPOSITES PART A. 2018, 106: 42-51, http://dx.doi.org/10.1016/j.compositesa.2017.11.019.[163] Yin, Shaoqian, Zhang, Xuewei, Xu, Chen, Wang, Yang, Wang, Yunlu, Li, Peifeng, Sun, Hongyan, Wang, Miao, Xia, Yang, Lin, ChengTe, Zhao, Pei, Wang, Hongtao. Chemical vapor deposition growth of scalable monolayer polycrystalline graphene films with millimeter-sized domains. MATERIALS LETTERS[J]. 2018, 215: 259-262, http://dx.doi.org/10.1016/j.matlet.2017.12.121.[164] Yapeng Chen, Jingyao Gao, Qingwei Yan, Xiao Hou, Shengcheng Shu, Mingliang Wu, Nan Jiang, Xinming Li, JianBin Xu, ChengTe Lin, Jinhong Yu. Advances in graphene-based polymer composites with high thermal conductivity. VERUSCRIPT FUNCTIONAL NANOMATERIALS[J]. 2018, 2(1): https://doaj.org/article/9c825646d5384a1984dd4c2f0dc243d7.[165] Gao, Jingyao, Yuan, Qilong, Ye, Chen, Guo, Pei, Du, Shiyu, Lai, Guosong, Yu, Aimin, Jiang, Nan, Fu, Li, Lin, ChengTe, Chee, Kuan W A. Label-Free Electrochemical Detection of Vanillin through Low-Defect Graphene Electrodes Modified with Au Nanoparticles. MATERIALS[J]. 2018, 11(4): https://doaj.org/article/175c328b2f854557af48b4872541aaec.[166] 林正得. Graphene Size-dependent Modulation of Graphene Framework Contributing to Superior Thermal Conductivity of Epoxy Composite. Journal of Materials Chemistry A. 2018, [167] Wang, Bo, Zhang, Zhenyu, Chang, Keke, Cui, Junfeng, Rosenkranz, Andreas, Yu, Jinhong, Lin, ChengTe, Chen, Guoxin, Zang, Ketao, Luo, Jun, Jiang, Nan, Guo, Dongming. New Deformation-Induced Nanostructure in Silicon. NANO LETTERS[J]. 2018, 18(7): 4611-4617, http://ir.nimte.ac.cn/handle/174433/17339.[168] Mei, Xueru, Wei, Qiuping, Long, Hangyu, Yu, Zhiming, Deng, Zejun, Meng, Lingcong, Wang, Jian, Luo, Jingting, Lin, ChengTe, Ma, Li, Zheng, Kuangzhi, Hu, Naixiu. Long-term stability of Au nanoparticle-anchored porous boron-doped diamond hybrid electrode for enhanced dopamine detection. ELECTROCHIMICA ACTA[J]. 2018, 271: 84-91, http://dx.doi.org/10.1016/j.electacta.2018.03.133.[169] Liu, Xiangqi, Ye, Chen, Li, Xiaoqing, Cui, Naiyuan, Wu, Tianzhun, Du, Shiyu, Wei, Qiuping, Fu, Li, Yin, Jiancheng, Lin, ChengTe. Highly Sensitive and Selective Potassium Ion Detection Based on Graphene Hall Effect Biosensors. MATERIALS[J]. 2018, 11(3): http://ir.nimte.ac.cn/handle/174433/16768.[170] Chen, Yapeng, Hou, Xiao, Kang, Ruiyang, Liang, Yun, Guo, Liangchao, Dai, Wen, Nishimura, Kazuhito, Lin, ChengTe, Jiang, Nan, Yu, Jinhong. Highly flexible biodegradable cellulose nanofiber/graphene heat-spreader films with improved mechanical properties and enhanced thermal conductivity. JOURNAL OF MATERIALS CHEMISTRY C[J]. 2018, 6(46): 12739-12745, https://www.webofscience.com/wos/woscc/full-record/WOS:000451761600036.[171] Zhang, Luxi, Su, Weitao, Huang, Yanwei, Li, He, Fu, Li, Song, Kaixin, Huang, Xiwei, Yu, Jinhong, Lin, ChengTe. In Situ High-Pressure X-ray Diffraction and Raman Spectroscopy Study of Ti3C2Tx MXene. NANOSCALE RESEARCH LETTERS[J]. 2018, 13(1): http://ir.nimte.ac.cn/handle/174433/17104.[172] Yuan, Qilong, Liu, Ying, Ye, Chen, Sun, Hongyan, Dai, Dan, Wei, Qiuping, Lai, Guosong, Wu, Tianzhun, Yu, Aimin, Fu, Li, Chee, Kuan W A, Lin, ChengTe. Highly stable and regenerative graphene-diamond hybrid electrochemical biosensor for fouling target dopamine detection. BIOSENSORS & BIOELECTRONICS[J]. 2018, 111: 117-123, http://dx.doi.org/10.1016/j.bios.2018.04.006.[173] Guo, Liangchao, Zhang, Zhenyu, Kang, Ruiyang, Chen, Yapeng, Hou, Xiao, Wu, Yuming, Wang, Mengjie, Wang, Bo, Cui, Junfeng, Jiang, Nan, Lin, ChengTe, Yu, Jinhong. Enhanced thermal conductivity of epoxy composites filled with tetrapod-shaped ZnO. RSC ADVANCES[J]. 2018, 8(22): 12337-12343, http://ir.nimte.ac.cn/handle/174433/16908.[174] Phan Thi Kim Loan, Dongqin Wu, Chen Ye, Xiaoqing Li, Vu Thanh Tra, Qiuping Wei, Li Fu, Aimin Yu, LainJong Li, ChengTe Lin. Hall effect biosensors with ultraclean graphene film for improved sensitivity of label-free DNA detection. BIOSENSORSANDBIOELECTRONICS. 2018, 99: 85-91, http://dx.doi.org/10.1016/j.bios.2017.07.045.[175] Liu, Zhiduo, Chen, Yapeng, Dai, Wen, Wu, Yuming, Wang, Mengjie, Hou, Xiao, Li, He, Jiang, Nan, Lin, ChengTe, Yu, Jinhong. Anisotropic thermal conductive properties of cigarette filter-templated graphene/epoxy composites. RSC ADVANCES[J]. 2018, 8(2): 1065-1070, http://ir.nimte.ac.cn/handle/174433/16937.[176] Gao, Jingyao, Zhang, Haoyang, Ye, Chen, Yuan, Qilong, Chee, Kuan W A, Su, Weitao, Yu, Aimin, Yu, Jinhong, Lin, ChengTe, Dai, Dan, Fu, Li. Electrochemical Enantiomer Recognition Based on sp(3)-to-sp(2) Converted Regenerative Graphene/Diamond Electrode. NANOMATERIALS[J]. 2018, 8(12): https://www.webofscience.com/wos/woscc/full-record/WOS:000455323100088.[177] Li Fu, Aiwu Wang, Fucong Lyu, Guosong Lai, Jinhong Yu, ChengTe Lin, Zhong Liu, Aimin Yu, Weitao Su. A solid-state electrochemical sensing platform based on a supramolecular hydrogel. SENSORS & ACTUATORS: B. CHEMICAL. 2018, 262: 326-333, http://dx.doi.org/10.1016/j.snb.2018.02.029.[178] 杨明辉. In-situ formation of cellular graphene framework in thermoplastic composites leading to superior thermal conductivity. Journal of Materials Chemistry A, 2017, 5, 6164-6169.. 2017, [179] Sun, Hongyan, Li, Xinming, Li, Yuanchang, Chen, Guoxin, Liu, Zhiduo, Alam, Fakhr E, Dai, Dan, Li, Li, Tao, Li, Xu, JianBin, Fang, Ying, Li, Xuesong, Zhao, Pei, Jiang, Nan, Chen, Ding, Lin, ChengTe. High-Quality Monolithic Graphene Films via Laterally Stitched Growth and Structural Repair of Isolated Flakes for Transparent Electronics. CHEMISTRY OF MATERIALS[J]. 2017, 29(18): 7808-7815, http://dx.doi.org/10.1021/acs.chemmater.7b02348.[180] Wang, Yijia, Wei, Qiuping, Yu, Zhiming, Long, Hangyu, Deng, Zejun, Xie, Youneng, Li, Jiaxin, Lin, ChengTe, Ma, Li, Zhou, Kechao. Field emission properties of the caterpillar-like structural carbon film grown by magnetic and electric fields coupling HFCVD. APPLIED SURFACE SCIENCE[J]. 2017, 423: 788-792, http://dx.doi.org/10.1016/j.apsusc.2017.06.240.[181] Fu, Li, Wang, Ting, Yu, Jinhong, Dai, Wen, Sun, Hongyan, Liu, Zhiduo, Sun, Rong, Jiang, Nan, Yu, Aimin, Lin, ChengTe. An ultrathin high-performance heat spreader fabricated with hydroxylated boron nitride nanosheets. 2D MATERIALS[J]. 2017, 4(2): http://ir.nimte.ac.cn/handle/174433/13817.[182] Du, Sichao, Lu, Wei, Ali, Ayaz, Zhao, Pei, Shehzad, Khurram, Guo, Hongwei, Ma, Lingling, Liu, Xuemei, Pi, Xiaodong, Wang, Peng, Fang, Hehai, Xu, Zhen, Gao, Chao, Dan, Yaping, Tan, Pingheng, Wang, Hongtao, Lin, ChengTe, Yang, Jianyi, Dong, Shurong, Cheng, Zhiyuan, Li, Erping, Yin, Wenyan, Luo, Jikui, Yu, Bin, Hasan, Tawfique, Xu, Yang, Hu, Weida, Duan, Xiangfeng. A Broadband Fluorographene Photodetector. ADVANCED MATERIALS[J]. 2017, 29(22): http://dx.doi.org/10.1002/adma.201700463.[183] Dianyu Shen, Zhaolin Zhan, Zhiduo Liu, Yong Cao, Li Zhou, Yuanli Liu, Wen Dai, Kazuhito Nishimura, Chaoyang Li, ChengTe Lin, Nan Jiang, Jinhong Yu. Enhanced thermal conductivity of epoxy composites filled with silicon carbide nanowires. SCIENTIFIC REPORTS[J]. 2017, 7(1): http://ir.nimte.ac.cn/handle/174433/13804.[184] Zhou, Yuhong, Zhai, Guangmei, Yan, Tao, Huang, Qing, Guo, Zhansheng, Lin, ChengTe, Du, Shiyu. Current rectification induced by V-doped and Sc-doped in Ti2CO2 devices. COMPUTATIONAL MATERIALS SCIENCE[J]. 2017, 138: 175-182, http://dx.doi.org/10.1016/j.commatsci.2017.06.017.[185] Wu, Pu, Li, Xinming, Zhang, Chenhui, Chen, Xinchun, Lin, Shuyuan, Sun, Hongyan, Lin, ChengTe, Zhu, Hongwei, Luo, Jianbin. Self-Assembled Graphene Film as Low Friction Solid Lubricant in Macroscale Contact. ACS APPLIED MATERIALS & INTERFACES[J]. 2017, 9(25): 21554-21562, http://ir.nimte.ac.cn/handle/174433/13764.[186] Alam, Fakhr E, Yu, Jinhong, Shen, Dianyu, Dai, Wen, Li, He, Zeng, Xiaoliang, Yao, Yagang, Du, Shiyu, Jiang, Nan, Lin, ChengTe. Highly Conductive 3D Segregated Graphene Architecture in Polypropylene Composite with Efficient EMI Shielding. POLYMERS[J]. 2017, 9(12): http://ir.sinano.ac.cn/handle/332007/5438.[187] Sun, Hongyan, Chen, Ding, Wu, Yuming, Yuan, Qilong, Guo, Liangchao, Dai, Dan, Xu, Yang, Zhao, Pei, Jiang, Nan, Lin, ChengTe. High quality graphene films with a clean surface prepared by an UV/ozone assisted transfer process. JOURNAL OF MATERIALS CHEMISTRY C[J]. 2017, 5(8): 1880-1884, https://www.webofscience.com/wos/woscc/full-record/WOS:000396048600002.[188] Wang, Ting, Yu, Jinhong, Wang, Mengjie, Cao, Yong, Dai, Wen, Shen, Dianyu, Guo, Liangchao, Wu, Yuming, Bai, Hua, Dai, Dan, Lyu, Jilei, Jiang, Nan, Pan, Chengling, Lin, ChengTe. Effect of different sizes of graphene on thermal transport performance of graphene paper. COMPOSITES COMMUNICATIONS[J]. 2017, 5: 46-53, http://dx.doi.org/10.1016/j.coco.2017.07.001.[189] Shen, Dianyu, Wang, Mengjie, Wu, Yuming, Liu, Zhiduo, Cao, Yong, Wang, Ting, Wu, Xinfeng, Shi, Qingtang, Chee, Kuan W A, Dai, Wen, Bai, Hua, Dai, Dan, Lyu, Jilei, Jiang, Nan, Lin, ChengTe, Yu, Jinhong. Enhanced thermal conductivity of epoxy composites with core-shell SiC@SiO2 nanowires. HIGH VOLTAGE[J]. 2017, 2(3): 154-160, https://doaj.org/article/deea5327cd12471a8ac1a117ce90efea.[190] Wu, Yuming, Cao, Yong, Xiao, Xueshan, Liu, Zhiduo, Wang, Mengjie, Jiang, Nan, Wu, Xinfeng, Lin, ChengTe, Yu, Jinhong. Enhanced thermal transport performance for poly(vinylidene fluoride) composites with superfullerene. FIBERS AND POLYMERS[J]. 2017, 18(6): 1180-1186, http://ir.nimte.ac.cn/handle/174433/13786.[191] Luo, Kan, Zha, XianHu, Huang, Qing, Lin, ChengTe, Zhang, Ruifeng, Du, Shiyu. Theoretical investigations on helium trapping in the Zr/Ti2AlC interface. SURFACE & COATINGS TECHNOLOGY[J]. 2017, 322: 19-24, http://dx.doi.org/10.1016/j.surfcoat.2017.05.031.[192] Xia Wan, Yang Xu, Hongwei Guo, Khurram Shehzad, Ayaz Ali, Yuan Liu, Jianyi Yang, Daoxin Dai, ChengTe Lin, Liwei Liu, HungChieh Cheng, Fengqiu Wang, Xiaomu Wang, Hai Lu, Weida Hu, Xiaodong Pi, Yaping Dan, Jikui Luo, Tawfique Hasan, Xiangfeng Duan, Xinming Li, Jianbin Xu, Deren Yang, Tianling Ren, Bin Yu. A self-powered high-performance graphene/silicon ultraviolet photodetector with ultra-shallow junction: breaking the limit of silicon?. NPJ 2D MATERIALS AND APPLICATIONS[J]. 2017, 1(1): https://doaj.org/article/5ffb3f7e230c4261937f4ebc80feeb75.[193] Dai, Wen, Chung, ChihYeh, Alam, Fakhr E, Hung, TienTsai, Sun, Hongyan, Wei, Qiuping, Lin, ChengTe, Chen, ShiKun, Chin, TsungShune. Superior field emission performance of graphene/carbon nanofilament hybrids synthesized by electrochemical self-exfoliation. MATERIALS LETTERS[J]. 2017, 205: 223-225, http://dx.doi.org/10.1016/j.matlet.2017.06.022.[194] Cao, Yong, Deng, Qihuang, Liu, Zhiduo, Shen, Dianyu, Wang, Ting, Huang, Qing, Du, Shiyu, Jiang, Nan, Lin, ChengTe, Yu, Jinhong. Enhanced thermal properties of poly(vinylidene fluoride) composites with ultrathin nanosheets of MXene. RSC ADVANCES[J]. 2017, 7(33): 20494-20501, http://ir.nimte.ac.cn/handle/174433/14094.[195] Wang, Bo, Zhang, Zhenyu, Cui, Junfeng, Jiang, Nan, Lyu, Jilei, Chen, Guoxin, Wang, Jia, Liu, Zhiduo, Yu, Jinhong, Lin, Chengte, Ye, Fei, Guo, Dongming. In Situ TEM Study of Interaction between Dislocations and a Single Nanotwin under Nanoindentation. ACS APPLIED MATERIALS & INTERFACES[J]. 2017, 9(35): 29451-29456, http://ir.nimte.ac.cn/handle/174433/13632.[196] 林正得. Structrual, electronic and mechanical properties of (NbxTi1-x)2SC and (NbxZr1-x)2SC (0≤x≤1) from first-principles investigations. COMPUTATIONAL AND THEORETICAL CHEMISTRY. 2016, [197] Wu, Tao, Liu, Zhiduo, Chen, Guoxin, Dai, Dan, Sun, Hongyan, Dai, Wen, Jiang, Nan, Jiang, Ye Hua, Lin, ChengTe. A study of the growth-time effect on graphene layer number based on a Cu-Ni bilayer catalyst system. RSC ADVANCES[J]. 2016, 6(28): 23956-23960, http://ir.nimte.ac.cn/handle/174433/13244.[198] Gong, Jinrui, Liu, Zhiduo, Yu, Jinhong, Dai, Dan, Dai, Wen, Du, Shiyu, Li, Chaoyang, Jiang, Nan, Zhan, Zhaolin, Lin, ChengTe. Graphene woven fabric-reinforced polyimide films with enhanced and anisotropic thermal conductivity. COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING[J]. 2016, 87: 290-296, https://www.webofscience.com/wos/woscc/full-record/WOS:000377738600032.[199] Zhang, Zhenyu, Wang, Bo, Huang, Siling, Wen, Bin, Yang, Song, Zhang, Bi, Lin, ChengTe, Jiang, Nan, Jin, Zhongmin, Guo, Dongming. A novel approach to fabricating a nanotwinned surface on a ternary nickel alloy. MATERIALS & DESIGN[J]. 2016, 106: 313-320, http://dx.doi.org/10.1016/j.matdes.2016.06.004.[200] Luo, Kan, Qiao, Yingjie, He, Shihong, Zha, XianHu, Huang, Qing, He, Jian, Lin, ChengTe, Du, Shiyu. Crystal structures and mechanical properties of M (Mg, Sr, Ba, La)(x)Ca1-xB6 solid solution: A first principles study. CERAMICS INTERNATIONAL[J]. 2016, 42(6): 6632-6639, http://dx.doi.org/10.1016/j.ceramint.2016.01.002.[201] Zhou, Yuhong, Luo, Kan, Zha, Xianhu, Liu, Zhen, Bai, Xiaojing, Huang, Qing, Guo, Zhansheng, Lin, ChengTe, Du, Shiyu. Electronic and Transport Properties of Ti2CO2 MXene Nanoribbons. JOURNAL OF PHYSICAL CHEMISTRY C[J]. 2016, 120(30): 17143-17152, http://www.corc.org.cn/handle/1471x/2236245.[202] Li, Xinming, Yang, Tingting, Yang, Yao, Zhu, Jia, Li, Li, Alam, Fakhr E, Li, Xiao, Wang, Kunlin, Cheng, Huanyu, Lin, ChengTe, Fang, Ying, Zhu, Hongwei. Large-Area Ultrathin Graphene Films by Single-Step Marangoni Self-Assembly for Highly Sensitive Strain Sensing Application. ADVANCED FUNCTIONAL MATERIALS[J]. 2016, 26(9): 1322-1329, https://www.webofscience.com/wos/woscc/full-record/WOS:000372179100002.[203] Fu, Li, Lai, Guosong, Chen, Guoxin, Lin, ChengTe, Yu, Aimin. Microwave Irradiation-Assisted Exfoliation of Boron Nitride Nanosheets: A Platform for Loading High Density of Nanoparticles. CHEMISTRYSELECT[J]. 2016, 1(8): 1799-1803, https://www.webofscience.com/wos/woscc/full-record/WOS:000395407100046.[204] Li, Li, Li, Xinming, Du, Mingde, Guo, Yichuan, Li, Yuanchang, Li, Hongbian, Yang, Yao, Alam, Fakhr E, Lin, ChengTe, Fang, Ying. Solid-Phase Coalescence of Electrochemically Exfoliated Graphene Flakes into a Continuous Film on Copper. CHEMISTRY OF MATERIALS[J]. 2016, 28(10): 3360-3366, http://ir.nimte.ac.cn/handle/174433/12977.[205] Cao, Yong, Liang, Minjie, Liu, Zhiduo, Wu, Yuming, Xiong, Xiaoli, Li, Chaoyang, Wang, Xingming, Jiang, Nan, Yu, Jinhong, Lin, ChengTe. Enhanced thermal conductivity for poly(vinylidene fluoride) composites with nano-carbon fillers. RSC ADVANCES[J]. 2016, 6(72): 68357-68362, http://ir.nimte.ac.cn/handle/174433/13147.[206] Fu, Li, Chen, Guoxin, Jiang, Nan, Yu, Jinhong, Lin, ChengTe, Yu, Aimin. In situ growth of metal nanoparticles on boron nitride nanosheets as highly efficient catalysts. JOURNAL OF MATERIALS CHEMISTRY A[J]. 2016, 4(48): 19107-19115, https://www.webofscience.com/wos/woscc/full-record/WOS:000390433700051.[207] Liu, Zhiduo, Shen, Dianyu, Yu, Jinhong, Dai, Wen, Li, Chaoyang, Du, Shiyu, Jiang, Nan, Li, Hairong, Lin, ChengTe. Exceptionally high thermal and electrical conductivity of three-dimensional graphene-foam-based polymer composites. RSC ADVANCES[J]. 2016, 6(27): 22364-22369, http://ir.nimte.ac.cn/handle/174433/13246.[208] Chen, C Y, Dai, D, Chen, G X, Yu, J H, Nishimura, K, Lin, C T, Jiang, N, Zhan, Z L. Rapid growth of single-layer graphene on the insulating substrates by thermal CVD. APPLIED SURFACE SCIENCE[J]. 2015, 346: 41-45, http://dx.doi.org/10.1016/j.apsusc.2015.03.204.[209] Jung, Sung Mi, Mafra, Daniela Lopes, Lin, ChengTe, Jung, Hyun Young, Kong, Jing. Controlled porous structures of graphene aerogels and their effect on supercapacitor performance. NANOSCALE[J]. 2015, 7(10): 4386-4393, https://www.webofscience.com/wos/woscc/full-record/WOS:000350669900011.[210] Dai, Wen, Yu, Jinhong, Wang, Yi, Song, Yingze, Alam, Fakhr E, Nishimura, Kazuhito, Lin, ChengTe, Jiang, Nan. Enhanced thermal conductivity for polyimide composites with a three-dimensional silicon carbide nanowire@graphene sheets filler. JOURNAL OF MATERIALS CHEMISTRY A[J]. 2015, 3(9): 4884-4891, http://ir.nimte.ac.cn/handle/174433/12825.[211] Ni, George, Miljkovic, Nenad, Ghasemi, Hadi, Huang, Xiaopeng, Boriskina, Svetlana V, Lin, ChengTe, Wang, Jianjian, Xu, Yanfei, Rahman, Md Mahfuzur, Zhang, TieJun, Chen, Gang. Volumetric solar heating of nanofluids for direct vapor generation. NANO ENERGY[J]. 2015, 17: 290-301, http://dx.doi.org/10.1016/j.nanoen.2015.08.021.[212] Wang, Yi, Yu, Jinhong, Dai, Wen, Wang, Dong, Song, Yingze, Bai, Hua, Zhou, Xufeng, Li, Chaoyang, Lin, ChengTe, Jiang, Nan. Epoxy composites filled with one-dimensional SiC nanowires-two-dimensional graphene nanoplatelets hybrid nanofillers. RSC ADVANCES[J]. 2014, 4(103): 59409-59417, https://www.webofscience.com/wos/woscc/full-record/WOS:000345652300063.[213] Chang, YungHuang, Nikam, Revannath D, Lin, ChengTe, Huang, JingKai, Tseng, ChienChih, Hsu, ChangLung, Cheng, ChiaChin, Su, ChingYuan, Li, LainJong, Chua, Daniel H C. Enhanced Electrocatalytic Activity of MoSx on TCNQ-Treated Electrode for Hydrogen Evolution Reaction. ACS APPLIED MATERIALS & INTERFACES[J]. 2014, 6(20): 17679-17685, http://dx.doi.org/10.1021/am5039592.[214] 林正得. Continous fabrication platform for highly aligned polymer films. Technology. 2014, [215] Shen, C C, Tseng, C C, Lin, C T, Li, L J, Liu, H L. Optical properties of nitrogen-doped graphene thin films probed by spectroscopic ellipsometry. THIN SOLID FILMS[J]. 2014, 571: 675-679, http://dx.doi.org/10.1016/j.tsf.2014.05.020.[216] Phan Thi Kim Loan, Zhang, Wenjing, Lin, ChengTe, Wei, KungHwa, Li, LainJong, Chen, ChangHsiao. Graphene/MoS2 Heterostructures for Ultrasensitive Detection of DNA Hybridisation. ADVANCED MATERIALS[J]. 2014, 26(28): 4838-+, http://dx.doi.org/10.1002/adma.201401084.[217] Gee, ChuenMing, Tseng, ChienChih, Wu, FengYu, Chang, HsinPing, Li, LainJong, Hsieh, YaPing, Lin, ChengTe, Chen, JyhChen. Flexible transparent electrodes made of electrochemically exfoliated graphene sheets from low-cost graphite pieces. DISPLAYS[J]. 2013, 34(4): 315-319, http://dx.doi.org/10.1016/j.displa.2012.11.002.[218] Hu, LungHao, Wu, FengYu, Lin, ChengTe, Khlobystov, Andrei N, Li, LainJong. Graphene-modified LiFePO4 cathode for lithium ion battery beyond theoretical capacity. NATURE COMMUNICATIONS[J]. 2013, 4: http://dx.doi.org/10.1038/ncomms2705.[219] 林正得. Few-layer graphene modified LiFePO4 cathode for lithium ion battery beyond theoretical capacity. Nature Communications. 2013, [220] Chen, ChangHsiao, Lin, ChengTe, Hsu, WeiLun, Chang, YenChung, Yeh, ShihRung, Li, LainJong, Yao, DaJeng. A flexible hydrophilic-modified graphene microprobe for neural and cardiac recording. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE[J]. 2013, 9(5): 600-604, http://dx.doi.org/10.1016/j.nano.2012.12.004.[221] Lin, ChengTe, Phan Thi Kim Loan, Chen, TzuYin, Liu, KengKu, Chen, ChangHsiao, Wei, KungHwa, Li, LainJong. Label-Free Electrical Detection of DNA Hybridization on Graphene using Hall Effect Measurements: Revisiting the Sensing Mechanism. ADVANCED FUNCTIONAL MATERIALS[J]. 2013, 23(18): 2301-2307, http://dx.doi.org/10.1002/adfm.201202672.[222] Shih, MinHsiung, Li, LainJong, Yang, YiChun, Chou, HsiangYu, Lin, ChengTe, Su, ChingYuan. Efficient Heat Dissipation of Photonic Crystal Microcavity by Mono layer Graphene. ACS NANO[J]. 2013, 7(12): 10818-10824, http://dx.doi.org/10.1021/nn404097s.[223] Chen, TzuYin, Phan Thi Kim Loan, Hsu, ChangLung, Lee, YiHsien, Wang, Jacob TseWei, Wei, KungHwa, Lin, ChengTe, Li, LainJong. Label-free detection of DNA hybridization using transistors based on CVD grown graphene. BIOSENSORS & BIOELECTRONICS[J]. 2013, 41: 103-109, http://dx.doi.org/10.1016/j.bios.2012.07.059.[224] 林正得. Label-free electrical detection of DNA hybridization on graphene by Hall effect measurements: Revisit to the sensing mechanism. Advanced Functional Materials. 2013, [225] Dalagan, Juliet Q, Enriquez, Erwin P, Li, LainJong, Lin, ChengTe. Growth of copper on diatom silica by electroless deposition technique. MATERIALS SCIENCE-POLAND[J]. 2013, 31(2): 226-231, https://www.webofscience.com/wos/woscc/full-record/WOS:000317956100010.[226] Baker, A M R, AlexanderWebber, J A, Altebaeumer, T, McMullan, S D, Janssen, T J B M, Tzalenchuk, A, LaraAvila, S, Kubatkin, S, Yakimova, R, Lin, C T, Li, L J, Nicholas, R J. Energy loss rates of hot Dirac fermions in epitaxial, exfoliated, and CVD graphene. PHYSICAL REVIEW B[J]. 2013, 87(4): http://dx.doi.org/10.1103/PhysRevB.87.045414.[227] Lee, YiHsien, Yu, Lili, Wang, Han, Fang, Wenjing, Ling, Xi, Shi, Yumeng, Lin, ChengTe, Huang, JingKai, Chang, MuTung, Chang, ChiaSeng, Dresselhaus, Mildred, Palacios, Tomas, Li, LainJong, Kong, Jing. Synthesis and Transfer of Single-Layer Transition Metal Disulfides on Diverse Surfaces. NANO LETTERS[J]. 2013, 13(4): 1852-1857, https://www.webofscience.com/wos/woscc/full-record/WOS:000317549300079.[228] Chang, YungHuang, Lin, ChengTe, Chen, TzuYin, Hsu, ChangLung, Lee, YiHsien, Zhang, Wenjing, Wei, KungHwa, Li, LainJong. Highly Efficient Electrocatalytic Hydrogen Production by MoSx Grown on Graphene-Protected 3D Ni Foams. ADVANCED MATERIALS[J]. 2013, 25(5): 756-760, http://dx.doi.org/10.1002/adma.201202920.[229] Lee, YiHsien, Liu, KengKu, Lu, AngYu, Wu, ChihYu, Lin, ChengTe, Zhang, Wenjing, Su, ChingYuan, Hsu, ChangLung, Lin, TsungWu, Wei, KungHwu, Shi, Yumeng, Li, LainJong. Growth selectivity of hexagonal-boron nitride layers on Ni with various crystal orientations. RSC ADVANCES[J]. 2012, 2(1): 111-115, http://dx.doi.org/10.1039/c1ra00703c.[230] Chen, ChangHsiao, Lin, ChengTe, Lee, YiHsien, Liu, KengKu, Su, ChingYuan, Zhang, Wenjing, Li, LainJong. Electrical Probing of Submicroliter Liquid Using Graphene Strip Transistors Built on a Nanopipette. SMALL[J]. 2012, 8(1): 43-46, http://dx.doi.org/10.1002/smll.201101859.[231] Hsu, ChangLung, Lin, ChengTe, Huang, JenHsien, Chu, ChihWei, Wei, KungHwa, Li, LainJong. Layer-by-Layer Graphene/TCNQ Stacked Films as Conducting Anodes for Organic Solar Cells. ACS NANO[J]. 2012, 6(6): 5031-5039, http://dx.doi.org/10.1021/nn301721q.[232] Baker, A M R, AlexanderWebber, J A, Altebaeumer, T, Janssen, T J B M, Tzalenchuk, A, LaraAvila, S, Kubatkin, S, Yakimova, R, Lin, C T, Li, L J, Nicholas, R J. Weak localization scattering lengths in epitaxial, and CVD graphene. PHYSICAL REVIEW B[J]. 2012, 86(23): http://dx.doi.org/10.1103/PhysRevB.86.235441.[233] Shen, C C, Lin, C T, Li, L J, Liu, H L. Charge dynamics and electronic structures of monolayer graphene with molecular doping. APPLIED PHYSICS LETTERS[J]. 2012, 101(11): http://dx.doi.org/10.1063/1.4752131.[234] Lee, YiHsien, Zhang, XinQuan, Zhang, Wenjing, Chang, MuTung, Lin, ChengTe, Chang, KaiDi, Yu, YaChu, Wang, Jacob TseWei, Chang, ChiaSeng, Li, LainJong, Lin, TsungWu. Synthesis of Large-Area MoS2 Atomic Layers with Chemical Vapor Deposition. ADVANCED MATERIALS[J]. 2012, 24(17): 2320-2325, http://dx.doi.org/10.1002/adma.201104798.[235] 林正得. Electrical probing of submicroliter liquid using graphene stripe transistors built on a nanopipette. Small. 2012, [236] Docherty, Callum J, Lin, ChengTe, Joyce, Hannah J, Nicholas, Robin J, Herz, Laura M, Li, LainJong, Johnston, Michael B. Extreme sensitivity of graphene photoconductivity to environmental gases. NATURE COMMUNICATIONS[J]. 2012, 3: 1228-, http://dx.doi.org/10.1038/ncomms2235.[237] Chang, ChihChung, Lin, ChengTe, Chang, PoChin, Chao, ChienTu, Wu, JongChing, Yew, TriRung, Chin, TsungShune. Phase stability, bonding and electrical conduction of amorphous carbon-added Sb films. SCRIPTA MATERIALIA[J]. 2011, 65(11): 950-953, http://dx.doi.org/10.1016/j.scriptamat.2011.08.017.[238] Zhao, Jianwen, Lin, ChengTe, Zhang, Wenjing, Xu, Yanping, Lee, Chun Wei, ChanPark, M B, Chen, Peng, Li, LainJong. Mobility Enhancement in Carbon Nanotube Transistors by Screening Charge Impurity with Silica Nanoparticles. JOURNAL OF PHYSICAL CHEMISTRY C[J]. 2011, 115(14): 6975-6979, http://dx.doi.org/10.1021/jp2010056.[239] Zhang, Wenjing, Lin, ChengTe, Liu, KengKu, Tite, Teddy, Su, ChingYuan, Chang, ChungHuai, Lee, YiHsien, Chu, ChihWei, Wei, KungHwa, Kuo, JerLai, Li, LainJong. Opening an Electrical Band Gap of Bilayer Graphene with Molecular Doping. ACS NANO[J]. 2011, 5(9): 7517-7524, http://dx.doi.org/10.1021/nn202463g.[240] Lin, ChengTe, Lee, ChiYoung, Chin, TsungShune, Xiang, Rong, Ishikawa, Kei, Shiomi, Junichiro, Maruyama, Shigeo. Anisotropic electrical conduction of vertically-aligned single-walled carbon nanotube films. CARBON[J]. 2011, 49(4): 1446-1452, http://dx.doi.org/10.1016/j.carbon.2010.12.014.[241] Lin, ChengTe, Tsai, MinChiao, Lee, ChiYoung, Chiu, HsinTien, Chin, TsungShune. Quantitative appraisal of the interfacial anchoring state of polyaromatic hydrocarbons during the formation of C/C composites. CARBON[J]. 2010, 48(4): 1049-1055, http://dx.doi.org/10.1016/j.carbon.2009.11.024.[242] Tsai, Min Chiao, Tsai, Tsung Lin, Lin, Cheng Te, Chung, Rei Jei, Sheu, Hwo Shuenn, Chiu, Hsin Tien, Lee, Chi Young. Tailor made Mie scattering color filters made by size-tunable titanium dioxide particles. JOURNAL OF PHYSICAL CHEMISTRY C[J]. 2008, 112(7): 2697-2702, http://dx.doi.org/10.1021/jp076677r.[243] Lin, ChengTe, Chen, TsungHan, Chin, TsungShune, Lee, ChiYoung, Chiu, HsinTien. Quasi two-dimensional carbon nanobelts synthesized using a template method. CARBON[J]. 2008, 46(5): 741-746, http://dx.doi.org/10.1016/j.carbon.2008.01.034.[244] Lin, ChengTe, Chen, WenChao, Yen, MingYu, Wang, LungShen, Lee, ChiYoung, Chin, TsungShune, Chlu, HsinTien. Cone-stacked carbon nanofibers with cone angle increasing along the longitudinal axis. CARBON[J]. 2007, 45(2): 411-415, http://dx.doi.org/10.1016/j.carbon.2006.09.002.[245] Lin, ChengTe, Lee, ChiYoung, Chiu, HsinTien, Chin, TsungShune. Graphene structure in carbon nanocones and nanodiscs. LANGMUIR[J]. 2007, 23(26): 12806-12810, https://www.webofscience.com/wos/woscc/full-record/WOS:000251583000007.[246] Kong Xiangdong, Song Guichen, Chen Yapeng, Chen Xuemei, Li Maohua, Li Linhong, Wang Yandong, Gong Ping, Zhang Zhenbang, Zhang Jianxiang, Yang Rongjie, Xu Kang, Cai Tao, Chang Keke, Pan Zhongbin, Wang Bo, Wu Xinfeng, Lin ChengTe, Nishimura Kazuhito, Jiang Nan, Jinhong Yu. Mannitol enhanced thermal conductivity and environmental stability of highly aligned MXene composite film. COMPOSITES SCIENCE AND TECHNOLOGY. http://dx.doi.org/10.1016/j.compscitech.2023.110141.
发表著作
(1) Carbon Based Nanomaterials for Advanced Thermal and Electrochemical Energy Storage and Conversion, Elsevier, 2019-07, 第 4 作者(2) Properties of Diamonds and Their Application in Photodetectors, Springer Nature, 2020-01, 第 2 作者
科研活动
指导学生
已指导学生
舒圣程 博士研究生 080501-材料物理与化学
代文 博士研究生 080501-材料物理与化学
谭雪 博士研究生 080501-材料物理与化学
叶辰 博士研究生 080501-材料物理与化学
现指导学生
邱梦婷 博士研究生 080501-材料物理与化学
吕乐 博士研究生 080501-材料物理与化学
陈露 硕士研究生 085600-材料与化工
贾郑林 硕士研究生 085600-材料与化工
孙立文 硕士研究生 085600-材料与化工
研究成果网页
https://www.researchgate.net/profile/Cheng_Te_Lin