基本信息

李明  男  硕导  中国科学院信息工程研究所
电子邮件: liming@iie.ac.cn
通信地址: 北京市海淀区树村路19号

邮政编码: 100085

研究领域

研究领域包括,非线性序列的设计与分析、密码组件的安全性分析、对称密码算法的安全性分析等。主持国家自然科学基金和信工所攀登计划项目,参与多项国家自然科学基金项目。研究成果发表于信息领域顶级期刊 IEEE Transactions on Information Theory,密码编码国际期刊 Designs, Codes and Cryptography,信息论国际研讨会 IEEE International Symposium on Information Theory 等。

招生信息


招生专业
083900-网络空间安全
070104-应用数学
0812Z1-信息安全
招生方向
密码学

出版信息


发表论文
[1] Jiang, Yupeng, Li, Ming, Lin, Dongdai. Proofs of Conjectures on Extremal Weight De Bruijn Sequences. IEEE TRANSACTIONS ON INFORMATION THEORY[J]. 2023, 69(8): 5357-5363, http://dx.doi.org/10.1109/TIT.2023.3263532.
[2] Li, Ming, Jiang, Yupeng, Lin, Dongdai. Properties of the cycles that contain all vectors of weight <= k. DESIGNS CODES AND CRYPTOGRAPHY[J]. 2023, 91(1): 221-239, [3] Li, Ming, Lin, Dongdai. Partial Cycle Structure of FSRs and Its Applications in Searching De Bruijn Sequences. IEEE TRANSACTIONS ON INFORMATION THEORY[J]. 2023, 69(1): 598-609, http://dx.doi.org/10.1109/TIT.2022.3201519.
[4] 李明, 林东岱. The Adjacency Graphs of FSRs with Affine Characteristic Functions. IEEE TRANSACTIONS ON INFORMATION THEORY[J]. 2022, 68(1): 649-658, https://ieeexplore.ieee.org/document/9576698.
[5] 李明, 林东岱. Construction of De Bruijn Sequences from l-sequences. 2021 IEEE International Symposium on Information Theorynull. 2021, [6] Li, Ming, Lin, Dongdai. Efficient Construction of Cross-Join Pairs in a Product of Primitive Polynomials of Pairwise-Coprime Degrees. IEEE TRANSACTIONS ON INFORMATION THEORY[J]. 2021, 67(10): 6940-6951, [7] 李明, 林东岱. The Numbers of De Bruijn Sequences in Extremal Weight Classes. 2020 IEEE International Symposium on Information Theorynull. 2020, [8] 李明, 林东岱. On the k-Error Linear Complexities of De Bruijn Sequences. INSCRYPT 2020: International Conference on Information Security and Cryptologynull. 2020, https://link.springer.com/chapter/10.1007/978-3-030-71852-7_23.
[9] Li, Ming, Lin, Dongdai. De Bruijn Sequences, Adjacency Graphs, and Cyclotomy. IEEE TRANSACTIONS ON INFORMATION THEORY[J]. 2018, 64(4): 2941-2952, https://www.webofscience.com/wos/woscc/full-record/WOS:000427858200013.
[10] Li, Ming, Jiang, Yupeng, Lin, Dongdai, Wang, Qiuyan. Transition Mappings between De Bruijn Sequences. IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES[J]. 2017, E100A(5): 1254-1256, https://www.webofscience.com/wos/woscc/full-record/WOS:000400680400020.
[11] Li, Ming, Jiang, Yupeng, Lin, Dongdai. The adjacency graphs of some feedback shift registers. DESIGNS CODES AND CRYPTOGRAPHY[J]. 2017, 82(3): 695-713, https://www.webofscience.com/wos/woscc/full-record/WOS:000393757300012.
[12] Li, Ming, Lin, Dongdai. The Adjacency Graphs of LFSRs With Primitive-Like Characteristic Polynomials. IEEE TRANSACTIONS ON INFORMATION THEORY[J]. 2017, 63(2): 1325-1335, https://www.webofscience.com/wos/woscc/full-record/WOS:000394667700032.
[13] Li, Chaoyun, Zeng, Xiangyong, Li, Chunlei, Helleseth, Tor, Li, Ming. Construction of de Bruijn Sequences From LFSRs With Reducible Characteristic Polynomials. IEEE TRANSACTIONS ON INFORMATION THEORY[J]. 2016, 62(1): 610-624, https://www.webofscience.com/wos/woscc/full-record/WOS:000369309500039.

科研活动

科研项目
( 1 ) De Bruijn序列的构造方法与密码学性质研究, 负责人, 国家任务, 2020-01--2022-12
( 2 ) De Bruijn序列的快速生成算法研究, 负责人, 研究所自选, 2020-02--2023-01