基本信息

孔维杰  男  博导  中国科学院光电技术研究所
电子邮件: kongwj06@126.com
通信地址: 四川成都双流西航港光电大道1号
邮政编码: 610209

研究领域

微纳光学和亚波长电磁学

超分辨光学成像

超分辨微纳加工与光刻

表面等离激元光电器件


招生信息

研究团队依托于微细加工光学技术国家重点实验室,拥有国内外一流的微纳加工、检测设备平台,先后承担国家财政部重大仪器装备研制项目、国家973项目、863课题、国家自然科学基金项目等。近十年来,一直致力于研究微纳尺度、亚波长尺度下电磁行为特性规律,发展具有特定功能的人工结构材料和器件原理方法,研究相关设计、加工和表征分析方法和技术,并构建了以此为核心的光机电功能模块和系统,以及开展了在轻量化和超分辨成像、纳米光刻精细加工、生化传感、电磁隐身材料、智能天线和电子对抗等领域应用。 

      近年来,发表SCI论文200余篇,包括Science AdvancesNature CommunicationsLaser Photonics & ReviewsLight & Science ApplicationAdvanced MaterialsNanoscaleAdvanced Optical MaterialsApplied Physics LetterOptics letterOptics Express等期刊文章。 
十年来,培养硕博士研究生六十余名,获得包括中科院院长特别奖、朱李月华奖学金、刘永龄奖学金、中国科学院优秀百篇博士论文各类奖学金四十余人次。团队老师也多次获得朱李月华优秀导师、中科院优秀导师等荣誉称号。研究团队与美国、欧洲、日本、新加坡等国家的本领域科研团队建立了良好合作关系,多名学生以联合培养和深造方式,前往美国密歇根大学、美国宾州州立大学、澳大利亚昆士兰大学、新加坡国立大学等单位从事科研工作。 

研究生招生专业:测试计量技术及仪器、精密仪器与机械 、光学工程
主要研究方向: 
表面等离子体光学及应用研究:1)表面等离子体功能结构和人工材料;2)生化传感;3)纳米光学光刻技术。 
轻量化、超分辨成像光学:1)超分辨显微;2)超分辨望远成像;3)薄膜光学成像。 
超表面、超材料和功能光电子器件:1)超构表面和超材料;2)电磁隐身材料;3)微波人工电磁材料和功能器件;4)平面光子器件。 

课题组面向全国招收推荐免试研究生,同时也欢迎各位同学积极报考本团队硕士/博士研究生。招收本科专业包括但不限于,光学工程、电子科学与技术、物理、光学、微波与电磁场技术、化学、材料和通信等专业。请有意向同学与团队联系。
招生专业
080300-光学工程
招生方向
微纳光学
亚波长电磁学

教育背景

2010-09--2015-06   兰州大学   博士
2006-09--2010-06   兰州大学   学士
学历

博士研究生

学位
博士

工作经历

   
工作简历
2018-01~现在, 中国科学院光电技术研究所, 副研究员
2015-08~2017-12,中国科学院光电技术研究所, 助理研究员

专利与奖励

   
专利成果
[1] 罗先刚, 王彦钦, 孔维杰, 王长涛, 尹格, 唐燕, 何渝, 赵承伟, 赵泽宇. 照明补偿方法. CN: CN115963705A, 2023-04-14.
[2] 罗先刚, 杨东旭, 王彦钦, 孔维杰, 赵承伟, 吴斯翰, 赵泽宇, 王长涛. 一种双模式高分辨干涉光刻装置及方法. CN: CN115309009A, 2022-11-08.
[3] 罗先刚, 王长涛, 刘相志, 孔维杰, 赵泽宇. 基于双曲超材料的超衍射结构照明显微成像系统及方法. CN: CN115128789A, 2022-09-30.
[4] 罗先刚, 王长涛, 李镇言, 孔维杰, 赵泽宇. 基于布洛赫表面波结构光照明的超分辨成像系统及方法. CN: CN115047609A, 2022-09-13.
[5] 罗先刚, 孔维杰, 董莲红, 袁荻, 王长涛. 应用于超分辨光刻的像素化光学邻近效应修正方法及系统. CN: CN114815496B, 2023-07-21.
[6] 罗先刚, 孔维杰, 董莲红, 袁荻, 王长涛. 应用于超分辨光刻的像素化光学邻近效应修正方法及系统. CN: CN114815496A, 2022-07-29.
[7] 罗先刚, 孔维杰, 刘相志, 尹格, 王长涛. 基于水平集算法的超分辨光刻逆向光学邻近效应修正方法. CN: CN114200768A, 2022-03-18.
[8] 罗先刚, 袁理, 孔维杰, 刘玲, 刘凯鹏, 高平. 透镜系统. CN: CN114217451A, 2022-03-22.
[9] 罗先刚, 王长涛, 王彦钦, 孔维杰, 高平, 赵泽宇. 二次成像光学光刻方法和设备. CN: CN109901362A, 2019-06-18.
[10] 罗先刚, 王彦钦, 王长涛, 刘玲, 孔维杰, 高平. 负折射成像光刻方法和设备. CN: CN109901363A, 2019-06-18.
[11] 罗先刚, 赵泽宇, 王长涛, 孔维杰, 王彦钦, 刘凯鹏, 刘玲, 蒲明博, 高平, 王炯. 一种照明深度可调的宽波段光源超分辨表层显微成像方法. CN: CN105954866A, 2016-09-21.
[12] 罗先刚, 王长涛, 王彦钦, 蒲明博, 赵泽宇, 孔维杰, 王炯, 李雄, 马晓亮, 高平. 一种宽带远场超分辨成像装置. CN: CN105929560A, 2016-09-07.

出版信息

发表论文
[1] Dong, Lianhong, Kong, Weijie, Wang, Changtao, Luo, Guoyu, Pu, Mingbo, Ma, Xiaoliang, Li, Xiong, Luo, Xiangang. Inverse design of sub-diffraction focusing metalens by adjoint-based topology optimization. NEW JOURNAL OF PHYSICS[J]. 2023, 25(10): http://dx.doi.org/10.1088/1367-2630/acfcd6.
[2] Luo, Guoyu, Lv, Xinyu, Kong, Weijie, Wang, Changtao, Pu, Mingbo, Wang, Yanqin, Ma, Xiaoliang, Li, Zhiqiang, Luo, Xiangang. High-efficiency in situ amplitude and phase control of infrared light using topological polaritons. NANOSCALE[J]. 2023, 15(26): 11155-11162, http://dx.doi.org/10.1039/d3nr01497e.
[3] Gong, Tiancheng, 刘凯鹏, Luo, Yunfei, 孔维杰, Yue, Weisheng, 王长涛, 罗先刚. Ultrasensitive enhanced Raman spectroscopy by hybrid surface-enhanced and interference-enhanced Raman scattering with metal-insulator-metal structures. Optics Express[J]. 2023, 31(10): 15848-15863, https://doi.org/10.1364/OE.488410.
[4] Li, Zhenyan, Kong, Weijie, Wang, Changtao, Pu, Mingbo, Liu, Xiangzhi, Yin, Ge, Ma, Xiaoliang, Li, Xiong, Luo, Xiangang. Multi-Wavelength Super-Resolution Imaging by Structured Illumination of Bloch Surface Waves. IEEE PHOTONICS JOURNAL[J]. 2022, 14(4): 
[5] Wang, Junjie, Pu, Mingbo, Jin, Jinjin, Zhang, Fei, Liu, Ling, Kong, Weijie, Li, Xiong, Guo, Yinghui, Luo, Xiangang. Generation of A Space-Variant Vector Beam with Catenary-Shaped Polarization States. MATERIALS[J]. 2022, 15(8): http://dx.doi.org/10.3390/ma15082940.
[6] Zhao, Jiadong, Kong, Weijie, Wang, Changtao, Pu, Mingbo, Jin, Jinjin, Ma, Xiaoliang, Li, Xiong, Luo, Xiangang. Planar Hyperspectral Imager With Small Smile and Keystone Based on Two Metasurfaces. IEEE PHOTONICS JOURNAL[J]. 2022, 14(1): http://dx.doi.org/10.1109/JPHOT.2021.3132421.
[7] Jin, Qijian, Liang, Gaofeng, Kong, Weijie, Liu, Ling, Wen, Zhongquan, Zhou, Yi, Wang, Changtao, Chen, Gang, Luo, Xiangang. Negative index metamaterial at ultraviolet range for subwavelength photolithography. NANOPHOTONICS[J]. 2022, 11(8): 1643-1651, http://apps.webofknowledge.com/CitedFullRecord.do?product=UA&colName=WOS&SID=5CCFccWmJJRAuMzNPjj&search_mode=CitedFullRecord&isickref=WOS:000789610800014.
[8] Liu, Xiangzhi, Kong, Weijie, Wang, Changtao, Pu, Mingbo, Li, Zhenyan, Yuan, Di, Li, Xiong, Ma, Xiaoliang, Luo, Xiangang. Hyperbolic metamaterial-assisted structured illumination microscopy using periodic sub- diffraction speckles. OPTICAL MATERIALS EXPRESS[J]. 2022, 12(8): 3108-3117, 
[9] Kong, Weijie, Wang, Changtao, Pu, Mingbo, Ma, Xiaoliang, Li, Xiong, Luo, Xiangang. Bloch Surface Wave Assisted Structured Illumination Microscopy for Sub-100 nm Resolution. IEEE PHOTONICS JOURNAL[J]. 2021, 13(1): http://dx.doi.org/10.1109/JPHOT.2020.3044920.
[10] Liu, Xiangzhi, Kong, Weijie, Wang, Changtao, Pu, Mingbo, Li, Zhenyan, Li, Xiong, Ma, Xiaoliang, Luo, Xiangang. Bulk plasmon polariton based structured illumination microscopy by utilizing hyperbolic metamaterials. JOURNAL OF PHYSICS D-APPLIED PHYSICS[J]. 2021, 54(28): http://dx.doi.org/10.1088/1361-6463/abf78b.
[11] Li, Zhenyan, Kong, Weijie, Wang, Changtao, Pu, Mingbo, Luo, Yunfei, Liu, Xiangzhi, Du, Wenjuan, Ma, Xiaoliang, Li, Xiong, Luo, Xiangang. Waveguide evanescent waves based structured illumination microscopy with compact structure and flexible design. JOURNAL OF PHYSICS D-APPLIED PHYSICS[J]. 2021, 54(21): https://www.webofscience.com/wos/woscc/full-record/WOS:000625106900001.
[12] Gong, Tiancheng, Luo, Yunfei, Zhang, Haibin, Zhao, Chengwei, Yue, Weisheng, Pu, Mingbo, Kong, Weijie, Wang, Changtao, Luo, Xiangang. Hybrid octahedral Au nanocrystals and Ag nanohole arrays as substrates for highly sensitive and reproducible surface-enhanced Raman scattering. JOURNAL OF MATERIALS CHEMISTRY C[J]. 2020, 8(3): 1135-1142, https://www.webofscience.com/wos/woscc/full-record/WOS:000509343800035.
[13] Liu, Hongchao, Kong, Weijie, Zhu, Qionggan, Zheng, Yun, Shen, Kesheng, Zhang, Jun, Lu, Hai. Plasmonic interference lithography by coupling the bulk plasmon polariton mode and the waveguide mode. JOURNAL OF PHYSICS D-APPLIED PHYSICS[J]. 2020, 53(13): https://www.webofscience.com/wos/woscc/full-record/WOS:000520074000001.
[14] Weijie Kong, Changtao Wang, Mingbo Pu, Xiaoliang Ma, Xiong Li, Xiangang Luo. Bloch Surface Wave Assisted Structured Illumination Microscopy for Sub-100 nm Resolution. IEEE PHOTONICS JOURNAL[J]. 2020, 13(1): 4500109, 
[15] Luo, Yunfei, Kong, Weijie, Zhao, Chengwei, Liu, Kaipeng, Pu, Mingbo, Wang, Changtao, Luo, Xiangang. Subdiffraction nanofocusing of circularly polarized light with a plasmonic cavity lens. JOURNAL OF MATERIALS CHEMISTRY C[J]. 2019, 7(19): 5615-5623, http://dx.doi.org/10.1039/c9tc00499h.
[16] Kong, Weijie, Luo, Yunfei, Zhao, Chengwei, Liu, Ling, Gao, Ping, Pu, Mingbo, Wang, Changtao, Luo, Xiangang. Plasmonic Interference Lithography for Low-Cost Fabrication of Dense Lines with Sub-50 nm Half-Pitch. ACS APPLIED NANO MATERIALS[J]. 2019, 2(1): 489-496, 
[17] Wang, Qian, Zhang, Changlei, Gong, Tiancheng, Kong, Weijie, Yue, Weisheng, Chen, Weidong, Xie, Zhengwei, Su, Yarong, Li, Ling. Large-scale diamond silver nanoparticle arrays as uniform and sensitive SERS substrates fabricated by surface plasmon lithography technology. OPTICS COMMUNICATIONS[J]. 2019, 444: 56-62, http://dx.doi.org/10.1016/j.optcom.2019.03.071.
[18] Du, Wenjuan, Kong, Weijie, Liu, Hongchao, Liu, Kaipeng, Wang, Changtao, Luo, Xiangang. Design of a Structured Bulk Plasmon Illumination Source for Enhancing Plasmonic Cavity Superlens Imaging. PLASMONICS[J]. 2018, 13(4): 1387-1392, https://www.webofscience.com/wos/woscc/full-record/WOS:000438831400032.
[19] Kong, Weijie, Du, Wenjuan, Liu, Kaipeng, Liu, Hongchao, Zhao, Zeyu, Pu, Mingbo, Wang, Changtao, Luo, Xiangang. Surface imaging microscopy with tunable penetration depth as short as 20 nm by employing hyperbolic metamaterials. JOURNAL OF MATERIALS CHEMISTRY C[J]. 2018, 6(7): 1797-1805, https://www.webofscience.com/wos/woscc/full-record/WOS:000425309300022.
[20] Liu, Hongchao, Luo, Yunfei, Kong, Weijie, Liu, Kaipeng, Du, Wenjuan, Zhao, Chengwei, Gao, Ping, Zhao, Zeyu, Wang, Changtao, Pu, Mingbo, Luo, Xiangang. Large area deep subwavelength interference lithography with a 35 nm half-period based on bulk plasmon polaritons. OPTICAL MATERIALS EXPRESS[J]. 2018, 8(2): 199-209, https://www.webofscience.com/wos/woscc/full-record/WOS:000425921600001.
[21] Li, Zhu, Zhang, Tao, Wang, Yanqin, Kong, Weijie, Zhang, Jian, Huang, Yijia, Wang, Changtao, Li, Xiong, Pu, Mingbo, Luo, Xiangang. Achromatic Broadband Super-Resolution Imaging by Super-Oscillatory Metasurface. LASER & PHOTONICS REVIEWS[J]. 2018, 12(10): https://www.webofscience.com/wos/woscc/full-record/WOS:000446992400002.
[22] Luo, Yunfei, Liu, Ling, Zhang, Wei, Kong, Weijie, Zhao, Chengwei, Gao, Ping, Zhao, Zeyu, Pu, Mingbo, Wang, Changtao, Luo, Xiangang. Proximity correction and resolution enhancement of plasmonic lens lithography far beyond the near field diffraction limit. RSC ADVANCES[J]. 2017, 7(20): 12366-12373, http://ir.ioe.ac.cn/handle/181551/8884.
[23] Liu, Ling, Gao, Ping, Liu, Kaipeng, Kong, Weijie, Zhao, Zeyu, Pu, Mingbo, Wang, Changtao, Luo, Xiangang. Nanofocusing of circularly polarized Bessel-type plasmon polaritons with hyperbolic metamaterials. MATERIALS HORIZONS[J]. 2017, 4(2): 290-296, http://ir.ioe.ac.cn/handle/181551/8835.
[24] Liu, Hongchao, Kong, Weijie, Liu, Kaipeng, Zhao, Chengwei, Du, Wenjuan, Wang, Changtao, Liu, Ling, Gao, Ping, Pu, Mingbo, Luo, Xiangang. Deep subwavelength interference lithography with tunable pattern period based on bulk plasmon polaritons. OPTICS EXPRESS[J]. 2017, 25(17): 20511-20521, http://ir.ioe.ac.cn/handle/181551/8871.
[25] 孔维杰. Large area deep subwavelength interference lithography with 35 nm half-pitch based on bulk plasmon polaritons. Optics Materials Express. 2017, 
[26] Kong, Weijie, Du, Wenjuan, Liu, Kaipeng, Wang, Changtao, Liu, Ling, Zhao, Zeyu, Luo, Xiangang. Launching deep subwavelength bulk plasmon polaritons through hyperbolic metamaterials for surface imaging with a tuneable ultra-short illumination depth. NANOSCALE[J]. 2016, 8(38): 17030-17038, http://ir.ioe.ac.cn/handle/181551/8474.
[27] Kong, Weijie, Cheng, Lin, He, Xiaodong, Xu, Zhihua, Ma, Xiangyuan, He, Yude, Lu, Liujin, Zhang, Xiaoping, Deng, Youquan. Electret-based microfluidic power generator for harvesting vibrational energy by using ionic liquids. MICROFLUIDICS AND NANOFLUIDICS[J]. 2015, 18(5-6): 1299-1307, http://www.irgrid.ac.cn/handle/1471x/1003328.
[28] Kong, Weijie, Cao, Pengfei, He, Xiaodong, Yu, Long, Ma, Xiangyuan, He, Yude, Lu, Liujin, Zhang, Xiaoping, Deng, Youquan. Ionic liquid based vibrational energy harvester by periodically squeezing the liquid bridge. RSC ADVANCES[J]. 2014, 4(37): 19356-19361, http://www.irgrid.ac.cn/handle/1471x/1030147.
[29] Kong, Weijie, Cao, Pengfei, Zhang, Xiaoping, Cheng, Lin, Wang, Tao, Yang, Lili, Meng, Qingqing. Near-Infrared Super Resolution Imaging with Metallic Nanoshell Particle Chain Array. PLASMONICS[J]. 2013, 8(2): 835-842, https://www.webofscience.com/wos/woscc/full-record/WOS:000320445700089.
[30] Kong, Weijie, Zhang, Xiaoping, Cao, Pengfei, Cheng, Lin, Shao, Qunfeng, Zhao, Xining, Gong, Li, Jin, Xin. Subwavelength imaging of a multilayered superlens with layers of nonequal thickness. APPLIED OPTICS[J]. 2011, 50(31): G131-G136, https://www.webofscience.com/wos/woscc/full-record/WOS:000297162700024.

科研活动

   
科研项目
( 1 ) 超分辨光刻装备研制, 参与, 国家级, 2012-01--2017-12

指导学生

现指导学生

赵佳栋  硕士研究生  080300-光学工程