General

Lei Kang   Ph.D.  Professor

Technical Institute of Physics and Chemistry, Chinese Academy of Sciences

Email: kanglei@mail.ipc.ac.cn

Address: Zhongguancun East Road, Haidian District, Beijing

Post: 100190


Research Areas

Nonlinear optical crystal physics and materials chemistry

Education

2010-09~2016-06    Technical Institute of Physics and Chemistry, Chinese Academy of Sciences    Master/PhD

2005-09~2009-06    Shandong University, Department of Physics    Bachelor

Experience

Work Experience

2016-08~2019-12    Beijing Computational Science Research Center    Postdoc/Visiting Scholar

2020-01~present     Technical Institute of Physics and Chemistry, Chinese Academy of Sciences    Associate Professor/Professor


Publications

   
Papers

I   非线性光学晶体方法及工具发展

1.        Wu QC, Kang L*, Lin ZS*. A machine learning study on high thermal conductivity assisted to discover chalcogenides with balanced infrared nonlinear optical performance. Advanced Materials 2024, 36: 2309675. (数据驱动高热导硫族非线性材料性能预测工具发展)

2.        Jiang X, Ye LT, Wu XQ, Kang L*, Huang B*. Role of large Rashba spin-orbit coupling in second-order nonlinear optical effects of polar BiB3O6. Physical Review B 2022, 106: 195126. (自旋轨道耦合效应相关非线性光学性质计算模拟工具发展)

3.        Wang C, Liu XY, Kang L, Gu BL, Xu Y*, Duan WH*. First-principles calculation of nonlinear optical responses by Wannier interpolation. Physical Review B 2017, 96: 115147. (基于Wannier差值的非线性光学性质计算方法发展)

4.        Lin ZS*, Kang L, Zheng T, He R, Huang H, Chen CT. Strategy for the optical property studies in ultraviolet nonlinear optical crystals from density functional theory. Computational Materials Science 2012, 60: 99-104. (非线性晶体性能第一性原理计算策略)

II  非线性光学晶体理论与机制研究

1.        Huo H#, Yao AG#, Lin ZS*, Kang L*. Nonlinear optical effects modulated by distinctive monovalent cations with lone electron pairs in AGaI4 (A = Ga+, In+). Small 2025, 21: 2500365. (理论研究:含孤对电子单价阳离子的可调非线性光学性质)

2.        Wu QC, Dong LF, Kang L*, Lin ZS*. Prediction and evaluation of Li2ZnS2 crystals as mid-infrared nonlinear optical material with high thermal conductivity. Advanced Optical Materials 2025, 13: 2402922. (理论研究:设计高热导率Li2ZnS2红外非线性晶体)

3.        Chen HG, Gong PF*, Lin ZS, Kang L*. Can low structural anisotropy produce high optical anisotropy? Anomalous giant optical birefringent effect in PI4AlI4 in focus. Journal of the American Chemical Society 2025, 147: 3438-3449. (理论研究:反常双折射效应起源及调控机制)

4.        Jiang X, Kang L*, Ye LT, Chen XJ, Huang B*. Ultra-sensitive bulk piezophotovoltaic effect in NaBa(P,Bi) alloy under topological phase transition. Advanced Functional Materials 2024, 34: 2403473. (理论研究:拓扑相变诱导压电体光伏效应)

5.        Liu X, Wu LM, Kang L*, Lin ZS, Chen L*. Theoretical prediction of monolayer BeP2O4H4 with excellent nonlinear-optical properties in deep-ultraviolet range. Small 2024, 20: 2404155. (理论研究:范德华单层BeP2O4H4深紫外非线性光学性质)

6.        Yao AG#, Liu F#, Xu BH, Huo H, Lin ZS*, Kang L*. Homoatomic polychalcogenide nonlinear-optical anionic groups with ultra-large optical anisotropy. Journal of the American Chemical Society 2024, 146: 16148-16160. (理论研究:聚阴离子非线性及双折射基元构效关系)

7.        Huo H, Jiang X*, Kang L*. Polar and layered wide-bandgap semiconductors WO2Cl2 and MoO2Br2 with giant birefringence, large second harmonic and ferroelectric photovoltaic effects. Physical Review B 2024, 109: 155421. (理论研究:MO2X2层状结构非线性及体光伏效应)

8.        Li SH, Yan XL*, Lin ZS, Kang L*. Wide-bandgap binary semiconductor P3N5 with highly anisotropic optical linearity and nonlinearity. Inorganic Chemistry 2024, 63: 5220-5226. (理论研究:宽带隙半导体P3N5非线性光学及缺陷性质)

9.        Liu F, Li SH, Lin ZS*, Kang L*. Hierarchical van der Waals assemblies to boost deep-ultraviolet nonlinear-optical capabilities in boron phosphate. Laser & Photonics Reviews 2024, 18: 2301135. (理论研究:四面体深紫外非线性晶体范德华工程设计策略)

10.     Pan XL, Liu F, Lin ZS*, Kang L*. Birefringent dispersion optimization to achieve superior nonlinear optical phase matching in deeper solar-blind UV band from KH2PO4 to BeH3PO5. Small 2024, 20: 2308811. (理论研究:A位阳离子折射率色散效应模型及调控策略)

11.     Wu QC, Kang L*, Wu J, Lin ZS*. Large sliding regulation in van der Waals layered nonlinear optical ternary chalcogenides. npj Computational Materials 2023, 9: 171. (理论研究:Cu2MoS4型结构滑移调控非线性光学效应机制)

12.     Jiang X, Kang L, Wang JF, Huang B*. Giant bulk electro-photovoltaic effect in hetero-nodal-line systems. Physical Review Letters 2023, 130: 256902. (理论研究:设计节点环型极性异质结实现电控体光伏效应)

13.     Huo H, Lin ZS*, Kang L*. Mid-infrared nonlinear optical heptachlorodigallate AGa2Cl7 (A = Ga+, In+) with a unique second harmonic generation mechanism induced by monovalent cations. Materials Today Physics 2022, 28: 100894. (理论研究:含孤对电子单价阳离子非线性光学效应起源)

14.     Wu QC#, Liang F#, Kang L*, Wu J, Lin ZS*. Sliding-modulation on nonlinear optical effect in two-dimensional van der Waals Cu2MoS4. ACS Applied Materials & Interfaces 2022, 14: 9535-9543. (理论研究:Cu2MoS4双层滑移非线性光学效应调控机理)

15.     Kang L, Gong PF, Lin ZS*, Huang B*. Deep-ultraviolet nonlinear optical van der Waals beryllium borates. Angewandte Chemie-International Edition 2021, 60: 16680-16686. (理论研究:水硼铍石范德华深紫外非线性晶体)

16.     Kang L*, Lin ZS*. Second harmonic generation of MoSi2N4-type layers. Physical Review B 2021, 103: 195404. (理论研究:MoSi2N4单层非线性光学效应)

17.     Kang L, He G, Zhang XY, Li JT, Lin ZS*, Huang B*. Alloy engineering of a polar (Si,Ge)2N2O system for controllable second harmonic performance. Inorganic Chemistry 2021, 60: 7381-7388. (理论研究:发现Si2N2O体系非线性光学性质)

18.     Liu XM, Kang L*, Lin ZS*. Regulating guanidinium-based hybrid materials for UV nonlinear optical applications by hybrid strength and hybrid pattern. Inorganic Chemistry 2021, 60: 3834-3842. (理论研究:胍基非线性晶体构效关系)

19.     Kang L, Liu XM, Lin ZS*, Huang B*. Layered oxide B2S2O9 with a deep-ultraviolet band gap and a strong and robust second-harmonic generation. Physical Review B 2020, 102: 205424. (理论研究:预测首例二维范德华深紫外非线性晶体)

20.     Zhang SZ, Kang L*, Lin ZS*. Nonlinear optical ASnX (A = Na, H; X = N, P) nanosheets with divalent tin lone electron pair effect by first-principles design. Nanoscale 2020, 12: 14895-14902. (理论研究:孤对电子ASnX层状非线性材料)

21.     Kang L, Liang F, Lin ZS*, Huang B*. Deep-ultraviolet nonlinear optical crystals by design: a computer-aided modeling blueprint from first principles. Science China-Materials 2020, 63: 1597-1612. (理论研究:深紫外非线性晶体构效关系及设计策略)

22.     Kang L, Zhang XY, Liang F, Lin ZS*, Huang B*. Poly(difluorophosphazene) as the first deep-ultraviolet nonlinear optical polymer: a first-principles prediction. Angewandte Chemie-International Edition 2019, 58: 10250-10254. (理论研究:预测聚合物深紫外非线性结构)

23.     Kang L, Liang F, Lin ZS*, Huang B*. Prediction of MCO [M=S, (Cl2B)3B] systems with giant optical birefringence and nonlinearity in the deep-ultraviolet region. Inorganic Chemistry 2019, 58: 77-80. (理论研究:CO基链状非线性及双折射晶体)

24.     Kang L, Liang F, Lin ZS*, Liu F, Huang B*. Cyano-based materials with giant optical anisotropy and second harmonic-generation effect. Inorganic Chemistry 2018, 57: 15001-15008. (理论研究:CN基链状非线性及双折射晶体)

25.     Kang L, Lin ZS*, Liu F*, Huang B*. Removal of A-site alkali and alkaline earth metal cations in KBe2BO3F2-type layered structures to enhance the deep-UV nonlinear optical capability. Inorganic Chemistry 2018, 57: 11146-11156. (理论研究:深紫外非线性晶体A位阳离子效应)

26.     Kang L, Liang F, Gong PF, Lin ZS*, Liu F*, Huang B*. Two novel deep-ultraviolet nonlinear optical crystals with shorter phase-matching second harmonic generation than KBe2BO3F2: a first-principles prediction. Physica Status Solidi-Rapid Research Letters 2018, 12: 1800276. (理论研究:设计磷酸盐深紫外非线性晶体)

27.     Kang L, Luo SY, Peng G, Ye N*, Wu YC, Chen CT, Lin ZS*. First-principles design of a deep-ultraviolet nonlinear-optical crystal from KBe2BO3F2 to NH4Be2BO3F2. Inorganic Chemistry 2015, 54: 10533-10535. (理论研究:设计预测ABBFBBF深紫外非线性晶体)

28.     Kang L, Ramo DM, Lin ZS*, Bristowe PD*, Qin JG*, Chen CT. First principles selection and design of mid-IR nonlinear optical halide crystals. Journal of Materials Chemistry C 2013, 1: 7363. (理论研究:卤化物中红外非线性晶体构效关系)

29.     Kang L, Luo SY, Huang HW, Ye N, Lin ZS*, Qin JG, Chen CT. Prospects for fluoride carbonate nonlinear optical crystals in the UV and deep-UV regions. Journal of Physical Chemistry C 2013, 117: 25684-25692. (理论研究:氟碳酸盐非线性晶体构效关系)

30.     Kang L, Luo SY, Huang HW, Zheng T, Lin ZS*, Chen CT. Ab initio studies on the optical effects in the deep ultraviolet nonlinear optical crystals of the KBe2BO3F2 family. Journal of Physics-Condensed Matter 2012, 24: 335503. (理论研究:发现KBBF族阳离子尺寸效应)

III非线性光学晶体理论和实验研究

1.        Gong PF#, Liang F#, Kang L*, Lin ZS*. Mid-infrared nonlinear optical halides with diamond-like structures: a theoretical and experimental study. Chemistry of Materials 2022, 34: 5301-5310. (理论指导实验:发现类金刚石卤化物中红外非线性材料体系)

2.        Zhang XY, Kang L*, Gong PF, Lin ZS*, Wu YC. Nonlinear optical oxythiophosphate approaching the good balance with wide ultraviolet transparency, strong second harmonic effect and large birefringence. Angewandte Chemie-International Edition 2021, 60: 6386-6390. (理论指导实验:发现硫代磷酸盐紫外非线性晶体)

3.        Gong PF, Kang L*, Lin ZS*. Realizing deep-ultraviolet second harmonic generation by first principles-guided materials exploration in hydroxyborates. Journal of the American Chemical Society 2020, 142: 15157-15163. (理论指导实验:发现羟基硼酸盐深紫外非线性晶体)

4.        Zhou ML#, Kang L#, Yao JY*, Lin ZS*, Wu YC, Chen CT. Midinfrared nonlinear optical thiophosphates from LiZnPS4 to AgZnPS4: a combined experimental and theoretical study. Inorganic Chemistry 2016, 55: 3724-3726. (理论指导实验:发现AnZnPS4中红外非线性晶体)

5.        Kang L, Zhou ML, Yao JY, Lin ZS*, Wu YC, Chen CT. Metal thiophosphates with good mid-infrared nonlinear optical performances: a first-principles prediction and analysis. Journal of the American Chemical Society 2015, 137: 13049-13059. (理论指导实验:发现硫磷化物中红外非线性材料体系)

6.        Xia MJ*, Kang L. Tourmaline with ultraviolet optical nonlinearity: emergent material discovery from mineral. Journal of Alloys and Compounds 2021, 892: 162235. (理论指导实验:发现碧玺中的非线性光学效应)

7.        Peng G, Ye N*, Lin ZS, Kang L, Pan SL, Zhang M, Lin CS, Long XF, Luo M, Chen Y, Tang YH, Xu F, Yan T. NH4Be2BO3F2 and γ-Be2BO3F: overcoming the layering habit in KBe2BO3F2 for the next-generation deep-ultraviolet nonlinear optical materials. Angewandte Chemie-International Edition 2018, 130: 9106-9110. (实验验证理论:合成表征ABBFBBF深紫外非线性晶体)

8.        Zhao JJ#, Huo H#, Zhao YJ*, Guo YW, Dong MQ, Fu Y, Zhang JY*, Kang L*. Chiral hybrid perovskites (R-/S-CLPEA)4Bi2I10 with enhanced chirality and spin-orbit coupling splitting for strong nonlinear optical circular dichroism and spin selectivity effects. Chemistry of Materials 2023, 35: 4347-4354. (理论辅助实验:研究手性钙钛矿中的自旋选择性效应)

9.        Li CX, Kang L*, Lin ZS, Yao JY*. Second-harmonic-generation effect and giant optical birefringence in the Weyl material CaAgAs. Inorganic Chemistry 2022, 61: 13276-13280. (理论辅助实验:研究CaAgAs拓扑半金属材料中的非线性光学效应)

10.     Liu XM, Kang L, Gong PF*, Lin ZS*. LiZn(OH)CO3: a deep-ultraviolet nonlinear optical hydroxycarbonate designed from a diamond-like structure. Angewandte Chemie-International Edition 2021, 60: 13574-13578. (理论辅助实验:研究羟基碳酸盐紫外非线性晶体)

IV非线性光学晶体构效关系研究综述

1.        Liu F, Gong PF, Lin ZS*, Kang L*. Functional assembly and modification of nonlinear optical fundamental motifs in phosphates. Coordination Chemistry Reviews 2025, 526: 216349. (磷酸盐深紫外非线性晶体构效关系综述)

2.        Dong LF, Zhang SZ, Gong PF*, Kang L*, Lin ZS*. Evaluation and prospect of mid-infrared nonlinear optical materials in f0 rare earth (RE = Sc, Y, La) chalcogenides. Coordination Chemistry Reviews 2024, 509: 215805. (稀土硫族中红外非线性晶体构效关系综述)

3.        Li SH, Kang L*. Nitride wide-bandgap semiconductors for UV nonlinear optics. Crystals 2023, 13: 1536. (氮化物深紫外非线性晶体构效关系综述)

4.        Huo H, Kang L*. A promising van der Waals two-dimensional nonlinear optical crystal NbOCl2 for ultrathin quantum light source. Chinese Journal of Structural Chemistry 2023, 42: 100043. (NbOCl2非线性晶体亮点介绍)

5.        Kang L, Lin ZS*. Deep-ultraviolet nonlinear optical crystals: concept development and materials discovery. Light-Science & Applications 2022, 11: 201. (深紫外非线性晶体构效关系综述)

6.        Kang L, Lin ZS*. Novel van der Waals deep-UV nonlinear optical materials. Chemistry-A European Journal 2021, 27: 17269-17272. (范德华深紫外非线性晶体构效关系综述)

7.        Kang L#, Liang F#, Jiang XX#, Lin ZS*, Chen CT. First-principles design and simulations promote the development of nonlinear optical crystals. Accounts of Chemical Research 2020, 53: 209-217. (非线性晶体第一性原理计算模拟综述)

8.        Liang F, Kang L, Lin ZS*, Wu YC, Chen CT. Analysis and prediction of mid-IR nonlinear optical metal sulfides with diamond-like structures. Coordination Chemistry Reviews 2017, 333: 57-70. (类金刚石硫族非线性晶体构效关系综述)


Research Interests

Nonlinear optical materials chemistry and theoretical modeling