Date of birth: 8.11.1971; Citizenship: Slovenia 



Research Areas

Colloids, Self-assembly, polymers, many-body interactions, magnetic colloids, computer simulations, modeling biological processes, multivalent binding



10.1996 B.Sc. degree in Physics at University of Ljubljana, Slovenia 

03.2001 PhD degree in Physics at University of Ljubljana, Slovenia 

11.2002 Assistant Professor, University of Maribor, Slovenia

09.2010 Associate Professor, University of Maribor, Slovenia 

04.2014 Professor of Soft Matter, Beijing University of Chemical Technology, China

04.2016 Professor of Physics, Chinese Academy of Sciences


1996-2000 PhD student: CAMTP Maribor & Jozef Stefan Institute, Ljubljana, Slovenia

 2001-2004 Post doctoral fellow: Faculty of Physics, University Konstanz, Germany 

2004-2006 Marie-Curie Intra European fellowship at University of Graz, Austria 

2006-2007 Marie Curie Reintegration Grant at JSI, Ljubljana, Slovenia 

2006-2015 Senior Researcher: Department of Theoretical Physics, IJS Slovenia 

2008-2015 Senior Research Associate: Department of Chemistry, University of Cambridge, UK 

2014-2016 Assistant Director, PI & Manager of International Cooperation: International Center for Soft Matter         Research, BUCT, Beijing, China 

2016-2020 (part time): Network coordinator (manager), Department of Chemistry, University of Cambridge, UK 2016-20xx Associate Professor, Institute of Physics, Chinese Academy of Sciences, Beijing, China

Teaching Experience

2017-20xx Lecturing (Computational Physics, Statistical Mechanics, Molecular Simulations): UCAS & IoP, CAS,                           Beijing 

2015-2016 Lecturing (Soft Matter, Molecular Simulations): BUCT, Beijing 4.2011 Visiting Professor at University of                      Barcelona, Spain (Soft Matter course) 

2006-2016 Lecturing (Mathematical Physics, Numerical Methods, Modern Physics, Colloidal Interactions, Physics I):                   University of Ljubljana/Maribor, Slovenia 

2008-2014 Supervisions (Stat. Mechanics, Soft Matter): University of Cambridge, UK 

1997-2013 Assistant: University of Ljubljana, University of Konstanz 


65 T. Curk, C. A. Brackley, J. D. Farrell, Z. Xing, D. Joshi, S. Direito, U. Bren, S. Angioletti-Uberti, J. Dobnikar*, E. Eiser*, D. Frenkel*, R. J. Allen*, Computational design of probes to detect  bacterial genomes  by multivalent binding, Proc. Nat. Ac. Sci. USA 117 (16) 8719-8726 (2020)

64 Jiachen Wei, Simòn Ramírez-Hinestrosa, Jure Dobnikar*, Daan Frenkel*, Effect of the interaction strength and anisotropy on the diffusio-phoresis of spherical colloids, Soft Matter, 16, 3621-3627 (2020); COVER IMAGE

63 Xipeng Wang, Simòn Ramirez-Hinestrosa, Jure Dobnikar*, Daan Frenkel*, The Lennard-Jones potential: when (not) to use it, in press PCCP, DOI: 10.1039/C9CP05445F (2020);  arXiv:1910.05746;

62 T. Curk, J.D. Farrell, Jure Dobnikar*, R. Podgornik*, Spontaneous Domain Formation in Spherically-Confined Elastic Filaments, Phys. Rev. Lett. 123 047801 (2019)

61 Yow-Ren Chang, Erick R. Weeks, Daniel Barton, Jure Dobnikar*, William A. Ducker*, Effect of Topographical Steps on the Surface Motility of the Bacterium Pseudomonas aeruginosa, ACS Biomater. Sci. Eng. 5(12) 6436-6445 (2019)

60 J. Dobnikar*, Dynamic Assembly of Magnetic Nanocolloids; in D. Chakrabarti and S. Sacanna (Editors): SELF-ASSEMBLY OF NANO- AND MICRO-STRUCTURED MATERIALS USING COLLOIDAL ENGINEERING; Elsevier Nanoscience Series, in press (2019);

60a J. Dobnikar*, Dynamic Assembly of Magnetic Nanocolloids, Frontiers of Nanoscience 13 23 (2019)

59 Hanqing Wang, Jure Dobnikar*, Jürgen Horbach*, Active microrheology in two-dimensional magnetic networks, Soft Matter 15 4437-4444 (2019); COVER IMAGE

58 Tao Li, J. Klebes, Jure Dobnikar*, Paul S. Clegg*, Morphology Evolution of a Particle-Stabilized Binary-Component System, Chem. Commun. 55 5575 (2019)

57  T. Li, A. Schofield, K. Chen, J. Thijssen, J. Dobnikar*, P. Clegg*, Particle-Stabilized Janus Emulsions that Exhibit pH-Tunable Stability, Chem. Commun. 55 5773 (2019); COVER IMAGE

56  Xinli Gao, Song Hong, Zhiping Liu, Tongtao Yue, Jure Dobnikar*, Xianren Zhang*, Membrane potential drives direct translocation of cell-penetrating peptides, Nanoscale 11, 1949-1958 (2019)

55  T. Curk, P. Wirnsberger, J. Dobnikar*, D. Frenkel, A. Saric, Controlling cargo trafficking in multicomponent membranes, Nano Letters 18 (9) 5350-5356 (2018) ; COVER IMAGE

54 T. Curk, U. Bren, J. Dobnikar*, Bonding interactions between ligand-decorated colloidal particles, Mol. Phys. 116 (21-22) 3392-3400 (2018)

53 T. Curk, J. Dobnikar*, D. Frenkel*, Design principles for superselectivity using multivalent interactions; in R. Haag, J. Huskens, L. Prins, B.J. Ravoo (Editors), Multivalency: Concepts, Research & Applications, John Wiley & Sons Ltd (2018)

52 Q. Xiao, Y. Liu, Z. Guo, Z. Liu, D. Frenkel*, J. Dobnikar*, X. Zhang*, What experiments on pinned nanobubbles can tell about the critical nucleus for bubble nucleation, Eur. Phys. J. E 40 114 (2017)

51 E.Y. Lee, T. Takahashi, T. Curk, J. Dobnikar*, R.L. Gallo*, G.C.L. Wong*, Crystallinity of Double-Stranded RNA-Antimicrobial Peptide Complexes Modulates Toll-Like Receptor 3-Mediated Inflammation, ACS Nano 11 (12) 12145–12155 (2017)

50 T. Curk, J. Dobnikar*, D. Frenkel*, Optimal multivalent targeting of membranes with many distinct receptors, Proc. Nat. Ac. Sci. USA 114 (28) 7210-7215 (2017)

49 Y. Brill-Karniely*, F. Jin, G.C.L. Wong*, D. Frenkel, J. Dobnikar*, Emergence of complex behavior in coordination of type IV pili, Scientific Reports; in press (2017) 

48 K. Ioannidou, M. Kanduc, L. Li, D. Frenkel, J. Dobnikar*, E. Del Gado*, Crucial effect of earlystage gelation on mechanical properties of cement, Nature Communications 7 12106 (2016) 

47 B. Zhang, X. Chen, J. Dobnikar*, Z. Wang, X. Zhang, Spontaneous Wenzel to Cassie dewetting transition on structured surfaces, Phys. Rev. Fluids 1 073904 (2016) 

46 J. Wei, F. Song, J. Dobnikar*, Assembly of superparamagnetic filaments in external field, Langmuir 32 9321 (2016) 

45 T. Mohoric, G. Kokot, N. Osterman, A. Snezhko, A. Vilfan, D. Babic, J. Dobnikar*, Dynamic Assembly of Magnetic Colloidal Vortices, Langmuir 32 5094 (2016) 

44 E.Y. Lee, C.K. Lee, N.W. Schmidt, F. Jin, R. Lande, T. Curk, A. Kaplan, D. Frenkel, J. Dobnikar, M. Gilliet, and G.C.L. Wong, A review of immune amplification via ligand clustering by self-assembled liquid-crystalline DNA complexes, Adv. Col. Int. Sci. 232 17 (2016) 

43 T. Mohoric, J. Dobnikar*, J. Horbach, Two-dimensional magnetic colloids under shear, Soft Matter 12 3142 (2016); FRONT COVER 

42 J. Wei, J. Dobnikar, T. Curk, F. Song, The effect of attractive interactions and macromolecular crowding on crystallins association, PLoS One 11 e0151159 (2016) 

41 T. Curk, J. Dobnikar*, D. Frenkel, Rational design of molecularly imprinted polymers, Soft Matter 12 35 (2016); FRONT COVER 

40 N.W. Schmidt, F. Jin, R. Lande, T. Curk, W. Xian, L. Frasca, D. Frenkel, J. Dobnikar*, M. Gilliet*, G.C.L. Wong*, Antimicrobial-peptide-DNA complexes amplify TLR9 activation via liquidcrystalline ordering, Nature Materials 14 696 (2015) 

39 D. Dean, J. Dobnikar, A. Naji, R. Podgornik (Editors): Electrostatics of Soft and Disordered Matter, Pan Stanford Publishing Pte. Ltd., Singapore (2014) 

38 T. Curk, F. Martinez-Veracoechea, D. Frenkel and J. Dobnikar*: Nanoparticle organization in sandwiched polymer brushes, Nano Letters 2617 (2014) 

37 K. Müller, N.Osterman, D. Babić, C.N. Likos, J. Dobnikar*, A. Nikoubashman*: Pattern formation and coarse-graining in 2D colloids driven by multiaxial magnetic fields, Langmuir  18 5088 (2014) 

36 F. Martinez-Veracoechea, B.M. Mognetti, S. Angioletti-Uberti, P. Varilly, D. Frenkel, J. Dobnikar*, Designing stimulus-sensitive colloidal walkers, Soft Matter 10 3463 (2014) 

35 T. Curk, D. Marenduzzo, and J. Dobnikar*: Chemotactic sensing towards ambient and secreted attractant drives collective behaviour of E. coli, PLoS One 8 e74878 (2013) 

34 T. Curk, F. Martinez-Veracoechea, D. Frenkel, and J. Dobnikar*: Collective ordering of colloids in grafted polymer layers, Soft Matter 9 5565 (2013) 

33 J. Dobnikar*, A. Snezhko, and A. Yethiraj: Emergent colloidal dynamics in electromagnetic fields, Soft Matter 9 3693 (2013) 

32 J. Dobnikar*, T. Curk, F. J. Martinez-Veracoechea, and D. Frenkel: Slow colloidal dynamics in polymer brushes, AIP Conf. Proc. 1518 391 (2013) 

31 S. El Shawish, E. Trizac, and J. Dobnikar*: Phase behaviour of colloidal assemblies on 2D corrugated substrates, J. Phys.: Condens. Matter 24 284118 (2012) 

30 T. Curk, A. de Hough, F.J. Martinez-Veracoechea, E. Eiser, D. Frenkel, J. Dobnikar, M. Leunissen: Layering, freezing, and re-entrant melting of hard spheres in soft confinement,Phys. Rev. E 85 021502 (2012) 

29 B.M. Mognetti, P. Varilly, S. Angioletti-Uberti, F.J. Martinez-Veracoechea, J. Dobnikar, M. Leunissen, D. Frenkel: Predicting DNA-mediated colloidal pair interactions, PNAS 109 E378 (2012) 

28 T. Curk, F. Matthäus, Y. Brill-Karniely, J. Dobnikar*: Coarse graining E. coli chemotaxis: from multi-flagella propulsion to logarithmic sensing, Adv. Exp. Med. Biol. 736 381 (2012)

27 F. Matthäus, M.S. Mommer, T. Curk, J. Dobnikar*: On the origin and characteristics of noiseinduced Lévy Walks of E. Coli, PLoS ONE 6 e18623 (2011) 

26 S. Y. Lee, K. J. Webb, S. M. Clarke, M. O'Sullivan, and Jure Dobnikar: Low Salinity Oil Recovery: Increasing Understanding of the Underlying Mechanisms of Double Layer Expansion,Proceedings of the 16th EAGE meeting, Cambridge (2011) 

25 S. El Shawish, J. Dobnikar*, E. Trizac: Colloidal ionic complexes on periodic substrates: Ground-state configurations and pattern switching, Phys. Rev. E 83 041403 (2011) 

24 E. Trizac, S. El Shawish, J. Dobnikar: Dimeric and dipolar ground state orders in colloidal molecular crystals, An. Acad. Bras. Cienc. 82 87 (2010) 

23 N. Osterman, I. Poberaj, J. Dobnikar*, D. Frenkel, P. Ziherl* and D. Babić*: Field-induced selfassembly of suspended colloidal membranes, Phys. Rev. Lett. 103 228301 (2009); 

22 F. Mattheus, M. Jagodič, and J. Dobnikar*: E. coli Super-diffusion and Chemotaxis – Search Strategy, Precision and Motility, Biophys. J. 97 946 (2009) 

21 M. Kanduč, J. Dobnikar*, R. Podgornik*: Counterion-mediated electrostatic interactions between helical molecules, Soft Matter 5 868 (2009) 

20 J. Dobnikar*, J. Fornleitner, G. Kahl: Ground states of model core-softened colloids, J. Phys.: Condens. Matter 20 494220 (2008) 

19 J. Baumgartl, J. Dietrich, C. Bechinger, J. Dobnikar, H.H.von Grünberg: Phonon dispersion curves of two-dimensional colloidal crystals: on the wavelength dependence of friction, Soft Matter 4 2199 (2008); FRONT COVER 

18 S. El Shawish, J. Dobnikar*, E. Trizac: Ground states of colloidal molecular crystals on periodic substrates, Soft Matter 4 1491 (2008) 

17 N. Osterman, D. Babic*, I. Poberaj, J. Dobnikar*, P. Ziherl*: Observation of Condensed Phases of Quasiplanar Core-Softened Colloids, Phys. Rev. Lett. 99 248301 (2007) 

16 E. Trizac, L. Belloni, J. Dobnikar*, R. Castañeda-Priego, H.H. von Grünberg: Macroion virial contribution to the osmotic pressure in charge-stabilized colloidal suspensions, Phys. Rev. E 75 011401 (2007) 

15 J. Dobnikar*, P. Ziherl: Stability of the hexagonal lattice of charged colloids, J. Mol. Liquids 173 131-132 (2007) 

14 J. Dobnikar*, R. Castañeda-Priego, H.H von Grünberg, E. Trizac: Testing the relevance of effective interaction potentials between highly charged colloids in suspension, New J. Phys. 277 (2006) 

13 S. Bleil, H.H. von Grünberg, J. Dobnikar*, R. Castaneda-Priego, C. Bechinger: Strain-induced domain formation in two-dimensional colloidal systems, Europhys. Lett. 73 450 (2006) 

12 Brunner M., Dobnikar J.*, von Grünberg H.H., Bechinger C.*: Direct measurement of threebody interactions amongst charged colloids, Phys. Rev. Lett. 92 078301 (2004) 

11 Dobnikar J.*, Brunner M., von Grünberg H.H., Bechinger C.: Three-body interactions in colloidal systems, Phys. Rev. E 69 031402 (2004) 

10 Dobnikar J.*, Halozan D., Brumen M., von Grünberg H.H., Rzehak R.: Poisson-Boltzmann Brownian dynamics of charged colloids in suspension, Computer Phys. Comm. 159 73 (2004) 

9 Dobnikar J.*, M. Brunner, J. Baumgartl, C. Bechinger and H.H. von Grünberg: Three- and fourbody interactions in colloidal systems, Proceedings of SPIE 5514, 340 (2004) 

8 Dobnikar J.*, Chen Y., Rzehak R. von Grünberg H.H.: Many-body interactions and the melting of colloidal crystals, J. Chem. Phys. 119 (9) 4971 (2003) 

7 Dobnikar J.*, Rzehak R., von Grünberg H.H.: Effect of many-body interactions on solid-liquid phase behaviour of charge-stabilized colloidal suspensions, Europhys. Lett. 61 695 (2003) 

6 Dobnikar J.*, Chen Y., Rzehak R., von Grünberg H.H.: Many-body interactions in colloidal suspensions, J. Phys.: Condens. Matter 15 S263 (2003) 

5 Podgornik R., Dobnikar J.*: Casimir and pseudo-Casimir interactions in confined polyelectrolytes, J. Chem.Phys. 115 1951 (2001) 

4 Dobnikar J., Podgornik R.: Pseudo-Casimir force in confined nematic polymers, Europhys. Lett 53 735 (2001) 

3 Robnik M., Dobnikar J.*, Prosen T.: Energy level statistics in the transition regime between integrability and chaos for systems with broken antunitary symmetry, J. Phys. A: Math. Gen. 32 1427 (1999) 

2 Robnik M., Prosen T., Dobnikar J.*: Multi-component random model of diffusion in chaotic systems, J. Phys. A: Math. Gen. 32 1147 (1999) 

1 Robnik M., Dobnikar J.*, Rapisarda A., Prosen T., Petkovšek M.: New universal aspects of diffusion in strongly chaotic systems, J. Phys. A: Math. Gen. 30 L803 (1997)

Research Interests

I am broadly interested in studying organization of soft and biological matter and the unifying physical principles behind new materials design and complex biological processes. I use methods of theoretical physics and statistical mechanics to develop theoretical models and perform multiscale modeling of systems such as self-assembly and dynamics of complex colloids (e.g. charged, magnetic, polymer-nanoparticle mixtures…), collective motility of bacteria, and the role of multivalent binding in super-selective targeting, molecular recognition, and functioning of immune system. My work is usually interdisciplinary and related to experiments performed by my international collaborators. Recently, I have contributed to important achievements in topics that are shortly outlined below.

Multivalent binding & selectivity. In (PNAS 2017), we used computer simulations and statistical physics to formulate a theory for targeting multicomponent receptor profiles by probe particles. We derived simple design rules for optimal multivalent targeting. The key finding is that selectivity can only be achieved by coating the particles with many ligands that bind only weakly to the receptors: the optimal ligand-receptor binding free energy is only about kBT. The design rules discovered here are conceptually different from the traditional approaches in biomedicine, which are based on identifying antibodies that strongly and monovalently bind to the cell markers. Our work suggests that instead of antibodies that cannot be selective, the efficiency of cancer treatment could be greatly enhanced by using multivalent particles. A related question, how to selectively transport particles through the cell membrane, has been addressed in another study (Nano Letters 2018). We found a novel robust mechanism for controlling cargo trafficking by adjusting the membrane composition. The presence of inert membrane components with small spontaneous curvature dramatically influences cargo endocytosis, so curved lipids, such as cholesterol, or asymmetrically included proteins and tethered sugars can actively participate in the control of endocytosis.

New approach to genome detection. Our study (PNAS 2020) uses computer simulations to suggest how to detect pathogen DNA in a simple and efficient way – using probes that bind weakly all over the target DNA and exploit the concept of super-selectivity. We computationally designed probes, which can distinguish between viral and bacterial genome, and even between very similar strands of E. coli bacterium. This work has a potential to result in a new fast and economic disease detection method, which is urgently needed in the present-day situation.

Viral DNA prefers to be compartmentalized. In a recent work (PRL 2019), we addressed the problem of packing DNA molecules inside the viral capsids. We postulated a simplified model of an elastic filament confined to a sphere with three competing interactions: elasticity, excluded volume, and spherical confinement. This simple model gives rise to a surprisingly great deal of complexity. We observed that compartmentalization into multiple domains is always preferred to a single domain (inverted spool) proposed in previous works. Multidomain ordering is known from the structure of chromatin, where the complex protein-DNA interactions drive the segregation of DNA. Here, we have shown that it can emerge in a much simpler and smaller system, in the absence of specific structural constraints. Our results give a general context in which viral DNA packing can be discussed, offering fresh insight into the fundamental mechanisms that govern this process.

Physics of immune system activation. In (Nature Materials 2015), we report on collaborative research combining statistical mechanics, computer simulations, and experiments to elucidate physical principles behind immune system activation. We have shown that receptor activation leading to inflammatory immune response is intimately related to the structure of self-assembled peptide-DNA complexes. We observed similar mechanisms in RNA clusters activating TLR-3 receptors (ACS Nano 2018) and in other systems (preprint 2020). Our findings elucidate how non-specific interactions are turned into specific through multivalency and that immune response could be modulated deterministically.

Dynamic assembly of comlex colloids.   I studied dynamic assembly of magnetic colloids as a novel tool to control the structure formation in complex colloidal suspensions (Soft Matter 2019, Lnagmuir 2016, Soft Matter 2016, Langmuir 2016). A problem where fundamental physical mechanism is related is cement hydration. Perhaps surprisingly, soft matter nano physics plays a crucial role in developing material macroscopic strength. The complexity of the problem is in the fact that during the setting of the cement – due to the on-going chemical reactions – the nanoparticle interactions are varying with time. We discovered (Nature Commun. 2016) a subtle relation between this non-equilibrium process and the underlying thermodynamics, which will enable efficient design of novel green formulations of cement. We also studied (Nano Letters 2014, Soft Matter 2014) grafted polymer layers infiltrated by colloidal nanoparticles. The observed microphase separation is potentially interesting for applications in micro-sensing, surface characterization, photovoltaics, antifouling, filtration and catalysis.


CECAM 50 Conference

Lausanne, September 2019

Alignment-induced emerging interactions in active   fluids

High density DNA arrays: models, theories and   multiscale simulations

CECAM, Ljubljana, Slovenia, July 2019

Spontaneous Domain Formation in   Confined Elastic Filaments

World   Congress of Slovene Physicists

Ljubljana, Slovenia July 2019

Multivalent binding

Emergent   dynamics and self-assembly of out-of-equilibrium colloids

CECAM, Lausanne, Switzerland, March 2019

Microrheology in networks of magnetic   colloids

Annual Soft Matter Conference

Chongqing, China, November 2018

Multivalent binding in targeting and   activation

Charged   Species in Bulk and at Interfaces: Mobility and Motility of Macromolecular   Systems

CECAM, Vienna, Austria, September 2018

Soft physics of hard materials

KITS program: Jamming in biological systems

Beijing, China 2018

Multivalent binding

Data-driven Discovery and Design in Soft and   Biological Materials

Aspen Center for Physics, USA, January 2018

Modeling bacterial surface motility

Association in Solution IV

St. John’s, Canada, August 2017

Multivalent binding in cell targeting,   molecular imprinting and receptor activation

LIQUIDS 2017: 10th Liquid Matter Conference

Ljubljana, Slovenia, July 2017

Multivalent activation

NANOTRANS 2017 Berlin, Germany, March 2017, Early-stage gelation of cement 

Biophysical workshop ITP, CAS, Beijing, China, January 2017, Multivalent binding and receptor activation,

IoP Annual Conference Wuhan, China, October 2016, Nanoparticle organization in polymer layers 

STATPHYS24, Lyon, France, July 2016, Nanoparticle organization in polymer layers 

International Soft Matter Symposium Tianjin, China, June 2016, Early-stage gelation of cement Emergent dynamics of out-ofequilibrium colloidal systems at nano- to microscales

CECAM, Lausanne, Switzerland, April 2016, Dynamic assembly of magnetic colloids The Physics of Soft and Biological Matter

Cambridge, UK, April 2016, Nanoparticle organization in polymer layers

Chinese Physical Society Annual Meeting Changping, Sept. 2015, Multivalent receptor activation 

34th Int. Conference on Solution Chemistry Prague, August 2015, Nanoparticle organization in polymer layers Controlled structural formation of soft matter 

KITP, Beijing, China, August 2015, DNA complexes control TLR9 activation 

CECAM: Simulation of systems under thermodynamic-like gradients Zaragoza, Spain, March 2015, Colloidal and bacterial walkers

LIQUIDS: 9th Liquid Matter Conference Lisbon, Portugal, July 2014, Stimulus-sensitive colloidal walkers 

CECAM: Simulation of systems under thermodynamic gradients Paris, France, March 2014, 

Colloidal and bacterial walkers Active Fluids: Bridging Complex Fluids and Biofluids Aspen, USA, Jan 2014, Modeling bacterial surface motility 

Active Matter: Cytoskeleton, Cells, Tissues and Flocks (BIOACTER) KITP, Santa Barbara, USA, January 2014, Emergent dynamics in magnetic colloids 

Active particles and microswimmers Ringberg, July 2013, Colloidal and bacterial walkers 

ASPM 2013 Bled, Slovenia, April 2013 Collective ordering of colloids in polymers 

4 th International Symposium on Slow Dynamics in Complex Systems Sendai, Japan, December 2012, Slow colloidal dynamics in polymer layers 

Jülich Soft Matter Days Bad Honnef, Germany, Collective ordering of 2012 nanoparticles in polymer layers APS March Meeting Boston, USA, March 2012, Colloidal assembly on soft substrates 

8 th Liquid Matter Conference Vienna, September 2011, Assembly & dynamics of magnetic colloids 

New challenges for the simulation of electrokinetic phenomena Paris, France, 2011, (CECAM workshop) Assembly of magnetic colloids 

Self-Assembly Workshop Barcelona, Spain, 2011, Ordering of magnetic colloids 

Perspectives in Strongly Correlated Electrostatics in Soft Matter Aspen, USA, 2010, Field induced assembly of magnetic colloids 

Noise in Life Cambridge, UK, 2009, E. coli super-diffusion 

7 th Liquid Matter Conference Lund, Sweden, 2008, Condensed soft colloids Crystallization and Jamming 

Soft Matter under Driving Leiden, The Netherlands, 2008, Condensed phases of coresoftened colloids 

26. Winter Meeting on Statistical Physics Taxco, Mexico, 2007, Many-body colloidal interactions 

29th Int. Conf. on Solution Chemistry Portorož, Slovenija, 2005, Colloidal Compressibility Optical Trapping and Optical 

Micromanipulation (SPIE) Denver USA, 2004, Many-body colloidal interactions Attractive Interactions in Colloidal Systems 

Bad Gastein, Austria, 2003, Many-body colloidal interactions 

Max Planck Society Meeting Ringberg, Germany, 2003, Measurement of three-body interactions 5 th Liquid Matter Conference Konstanz, Germany 2002, Many-body effects on colloidal phase diagram



I collaborate with Daan Frenkel (Cambridge), Gerard Wong (UCLA), Ignacio Pagonabarraga (Barcelona), Anand Yethiraj (St. John’s), Emanuela Del Gado and Peter Olmsted (Georgetown University), Alexey Snezhko (Argonne National Laboratory), Erik Luijten (Northwestern), Emmanuel Trizac, Lyderic Bocquet, Benjamin Rotenberg (Paris), Christos Likos (Vienna), Jürgen Horbach (Düsseldorf), Clemens Bechinger (Stuttgart), Davide Marenduzzo (Edinburgh), Franziska Matthäus (Heidelberg), Dušan Babić, Matej Praprotnik, Vojko Vlachy, Primož Ziherl and Rudi Podgornik (Ljubljana); and others.

Honors & Distinctions

2020​            Chinese representative in CECAM council (

2018-2021  Knowledge Transfer Coordinator: HORIZON2020 FET-OPEN NANOPHLOW (3.8 M€)
2016-2020  Coordinator: FP7 ETN NANOTRANS (3.9 M€)

2009-2013  Deputy Coordinator: FP7 ITN COMPLOIDS (4.7 M€)

2006-2007  Marie Curie Reintegration Grant, Institut Jožef Stefan, Ljubljana, Slovenija

2004-2006   Marie-Curie Intra European fellowship, Graz Univerzity, Austria