基本信息

陈俊 研究员 中科院福建物质结构研究所

电子邮件: chenjun@fjirsm.ac.cn

通信地址: 福州市高新区高新大道8号海西研究院工作区2号楼1325室

邮政编码:351002

招生信息

   
招生专业
070304-物理化学
招生方向
分子反应动力学,理论计算化学

教育背景

2010-09--2016-07   中国科学院大连化学物理研究所   理学博士
2006-09--2010-06   南京大学化学化工学院   理学学士

工作经历

2020-11~现在, 中国科学院福建物质结构研究所
2019-10~2020-07, University of New Mexico (美国)
2016-07~2019-07, 厦门大学化学化工学院

已发表论文

62Qingyong Meng*, Junbo Chen, Jianxing Ma, Xingyu Zhang, Jun Chen
Adiabatic Models for the Quantum Dynamics of Surface Scattering with Lattice Effects 
Phys. Chem. Chem. Phys., 2022, 24: 16415-16436.

61Xin Xu, Jun Chen, Xiaoxiao Lu, Wei Fang, Shu Liu, Dong H. Zhang*
Strong Non-Arrhenius behavior at low temperatures in the OH + HCl → H2O + Cl reaction due to resonance induced quantum tunneling  
Chem. Sci., 2022, 13: 7955-7961.

60Jun Chen*, Wei Zhuang*
Theoretical Description of Water from Single-Molecule to Condensed Phase: Recent Progress on Potential Energy Surfaces and Molecular Dynamics 
Chin. J. Chem. Phys., 2022, 35(2): 227-241.

59Jun Chen, Tan Jin, Tonghao Shen*, Mingjun Yang*, Zhe-Ning Chen*
Toward Accurate and Efficient Dynamic Computational Strategy for Heterogeneous Catalysis: Temperature-Dependent Thermodynamics and Kinetics for the Chemisorbed on-surface CO  
Chin. Chem. Lett., 2022, 33(11): 4936-4942.

58Zaifa Shi, Yihuang Jiang, Jingxiong Yu, Shanjun Chen*, Jun Chen*, Zichao Tang*, Lansun Zheng
Develop the low-temperature oxidation mechanism of cyclopentane: an experimental and theoretical study 
Chem. Eur. J., 2022, 28(8): e202103546.

57Chenyao Shang, Jun Chen, Xin Xu*, Shu Liu*, Dong H. Zhang
State-to-State Quantum Dynamical Study of H + Br2 → HBr + Br Reaction 
Chin. J. Chem. Phys., 2021, 34(6): 949-956.

56Danan Lu, Jun Chen, Hua Guo, Jun Li*
Vibrational energy pooling via collisions between asymmetric stretching excited CO2: a quasi-classical trajectory study on an accurate full-dimensional potential energy surface 
Phys. Chem. Chem. Phys., 2021, 23(42): 24165-24174.

55Chenyao Shang, Jun Chen, Xin Xu*, Shu Liu*, Liucheng Li, Liping Duo, Dong H. Zhang
A quantum wave packet study of the H + Br2 → HBr + Br reaction on a new ab initio potential energy surface 
J. Phys. Chem. A, 2021, 125(33): 7289-7296.

54Yishan Yang, Jing Lyu, Jun Chen, Jianhe Liao*, Xuetong Zhang*
Flame-Retardant Host-Guest Films for Efficient Thermal Management of Cryogenic Devices 
Adv. Funct. Mater., 2021, 31(41): 2102232.

53Shu Liu*, Xiaoren Zhang, Jun Chen, Dong H. Zhang*
Feshbach Resonances in the Vibrationally Excited F + HOD(vOH/vOD = 1) Reaction Due to Chemical Bond Softening 
J. Phys. Chem. Lett., 2021, 12(26): 6090-6094.

52Yizhen Wang†, Yajing Li†, Jun Chen, Igor Ying Zhang*, Xin Xu*
Doubly Hybrid Functionals Close to Chemical Accuracy for Both Finite and Extended Systems: Implementation and Test of XYG3 and XYGJ-OS
JACS Au, 2021, 1(5): 543-549.

51Xiaoren Zhang, Jun Chen, Xin Xu, Shu Liu*, Dong H. Zhang*
A neural network potential energy surface for the F + H2O ↔ HF + OH reaction and quantum dynamics study of isotopic effect
Phys. Chem. Chem. Phys., 2021, 23: 8809-8816.

50Apurba Nandi, Peng Zhang, Jun Chen, Hua Guo, Joel M. Bowman*
Vibration facilitated roaming in the isomerization of CO adsorbed on NaCl: A quasiclassical simulation based on cluster models
Nat. Chem., 2021, 13(3): 249-254.

49Jiayu Huang, Jun Chen, Shu Liu*, Dong H. Zhang*
Time-Dependent Wave Packet Dynamics Calculations of Cross Sections for Ultracold Four-atom Reactions
J. Phys. Chem. Lett., 2020, 11(20): 8560-8564.

48Xilin Jia, Quan Zhou, Jun Chen, Lu Zhang*, Zhe-Ning Chen*
Theoretical Insight into the Structural Nonplanarity in Aromatic Fused-Ring Metallabenzenes
J. Phys. Chem. A, 2020, 124(35): 7071-7079.

47Jun Chen, Seenivasan Hariharan, Jörg Meyer, Hua Guo*
Potential Energy Landscape of CO Adsorbates on NaCl(100) and Implications in Isomerization of Vibrationally Excited CO
J. Phys. Chem. C, 2020, 124(35): 19146-19156.

46Jun Chen, Jun Li, Joel M. Bowman, Hua Guo*
Energy Transfer between Vibrationally Excited Carbon Monoxide based on a Highly Accurate Six-dimensional Potential Energy Surface
J. Chem. Phys., 2020, 153(5): 054310.

45Yingzi Han, Jiangle Zhang, Xingtai Qiu, Yihuang Jiang, Jun Chen, Jing Yang, Zichao Tang*, Lansun Zheng
Composition, structure and reaction mechanism study of metal cluster complexes based on the time-of-flight mass spectrometry (in Chinese)
J. Xiamen Univ. Nat. Sci., 2020, 59(5): 850-863.

44Kan Zhan, Ziyi Li, Jun Chen, Yaqi Hou, Jian Zhang, Runqing Sun, Zhengxiang Bu, Lingyun Wang, Miao Wang, Xinyu Chen, Xu Hou*
Tannic Acid Modified Single Nanopore with Multivalent Metal Ions Recognition and Ultra-Trace Level Detection
Nano Today, 2020, 33: 100868.

43Zhen Chen, Jun Chen, Rongjun Chen, Ting Xie, Xingan Wang, Shu Liu*, Guorong Wu*, Dongxu Dai, Xueming Yang*, Dong H. Zhang*
Reactivity oscillation in the heavy-light-heavy Cl + CH4 reaction
Proc. Natl. Acad. Sci. U.S.A, 2020, 117(17): 9202-9207.

42Xiaoren Zhang†, Lulu Li†, Jun Chen, Shu Liu*, Dong H. Zhang*
Feshbach resonances in the F + H2O → HF + OH reaction
Nat. Commun., 2020, 11: 223.

41Qingfei Song, Jun Chen, Qingyong Meng*
Reduction Method for Quantum Dynamics Study on Large Period Cyclic Molecule (in Chinese)
Polym. Bull., 2019, (10): 74-79.

40Tiangang Yang†, Long Huang†, Chunlei Xiao†, Jun Chen, Tao Wang, Dongxu Dai, Francois Lique, Millard Alexander*, Zhigang Sun*, Dong H. Zhang, Xueming Yang*, Daniel M. Neumark*
Enhanced Reactivity of Fluorine with para-Hydrogen in Cold Interstellar Clouds by Resonance-Induced Quantum Tunneling
Nat. Chem., 2019, 11(8): 744-749.

39Yi Fan†, Zhizhi Sheng†, Jun Chen, Hong Pan, Baiyi Chen, Feng Wu, Shuli Wang, Xinyu Chen, Xu Hou*
Visual Chemical Detection Mechanism by Liquid Gating System with Dipole-Induced Interfacial Molecular Reconfiguration
Angew. Chem. Int. Ed., 2019, 58: 3967-3971.

38Qingyong Meng*, Jun Chen*
Ring-Polymer Molecular Dynamics Study on Rate Coefficient of the Barrierless OH + CO System at Low Temperature
J. Chem. Phys., 2019, 150(4): 044307.

37Xin Xu, Jun Chen, Shu Liu*, Dong H. Zhang*
An ab initio based global potential energy surface for the SH3 system and full-dimensional state-to-state quantum dynamics study for the H2 + HS → H2S + H reaction
J. Comput. Chem., 2019, 40(10): 1151-1160.

36Peng Sun, Zhaojun Zhang, Jun Chen, Shu Liu*, Dong H. Zhang*
Well converged quantum rate constants for the H2 + OH → H2O + H reaction via transition state wave packet
J. Chem. Phys., 2018, 149(6): 064303.

35Peng Sun, Jun Chen, Shu Liu*, Dong H. Zhang*
Accurate integral cross sections for the H + CO2 → OH + CO reaction
Chem. Phys. Lett., 2018, 706: 675-679.

34Tianhui Liu, Jun Chen, Zhaojun Zhang, Xiangjian Shen, Bina Fu*, Dong H. Zhang*
Water dissociating on rigid Ni(100): a quantum dynamics study on a full-dimensional potential energy surface
J. Chem. Phys., 2018, 148(14): 144705.

33Bina Fu*, Jun Chen, Tianhui Liu, Kejie Shao, Dong H. Zhang*
Highly accurately fitted potential energy surfaces for polyatomic reactive systems (in Chinese)
Acta Phys. -Chim. Sin., 2019, 35(2): 145-157.

32Jun Chen, Xin Xu, Shu Liu, Dong H. Zhang*
A neural network potential energy surface for F + CH4 reaction including multiple channels based on coupled cluster theory
Phys. Chem. Chem. Phys., 2018, 20(14): 9090-9100.

31Zhiqiang Zhao*, Jun Chen*, Zhaojun Zhang*, Dong H. Zhang*, Xiao-Gang Wang*, Tucker Carrington Jr.*, Fabien Gatti*
Computing energy levels of CH4, CHD3, CH3D and CH3F with a direct product basis and coordinates on the methyl subsystem
J. Chem. Phys., 2018, 148(7): 074113.

30Fangfang Li†, Changwu Dong†, Jun Chen, Jiaxing Liu, Fengyan Wang*, Xin Xu*
The harpooning mechanism as evidenced in the oxidation reaction of the Al atom
Chem. Sci., 2018, 9(2): 488-494.

29Xueyao Zhou, Francesco Nattino, Yaolong Zhang, Jun Chen, Geert-Jan Kroes*, Hua Guo*, Bin Jiang*
Dissociative chemisorption of methane on Ni(111) using a chemically accurate fifteen dimensional potential energy surface
Phys. Chem. Chem. Phys., 2017, 19: 30540-30550.

28Jun Chen, Neil Qiang Su, Xin Xu*, Dong H. Zhang*
Accurate potential energy surfaces for hydrogen abstraction reactions: A benchmark study on the XYG3 doubly hybrid density functional
J. Comput. Chem., 2017, 38(27): 2326-2334. (Contributed equally.)

27Peng Sun, Jun Chen, Shu Liu*, Dong H. Zhang*
A full-dimensional time-dependent wave packet study of the H + CO2 → OH + CO reaction
Chem. Phys. Lett., 2017, 683: 352-356.

26Qingyong Meng*, Jun Chen*
Ring-polymer molecular dynamics studies on the rate coefficient of the abstraction channel of hydrogen plus ethane, propane, and dimethyl ether
J. Chem. Phys., 2017, 146(2): 024108.

25Xiangjian Shen*, Jun Chen, Yuemei Sun, Tianshui Liang
Hydrogen diffusion on Fe surface and into subsurface from first principles
Surf. Sci., 2016, 654: 48-55.

24Tianhui Liu, Zhaojun Zhang, Jun Chen, Bina Fu*, Dong H. Zhang*
Mode specificity of the dissociative chemisorption of HOD on rigid Cu(111): An approximate full-dimensional quantum dynamics study
Phys. Chem. Chem. Phys., 2016, 18(38): 26358.

23Kejie Shao, Jun Chen, Zhiqiang Zhao, Dong H. Zhang*
Communication: Fitting potential energy surfaces with fundamental invariant neural network
J. Chem. Phys., 2016, 145(7): 071101.

22Zhiqiang Zhao, Jun Chen, Zhaojun Zhang*, Dong H. Zhang*, David Lauvergnat*, Fabien Gatti*
Full-dimensional vibrational calculations of five-atom molecules using a combination of Radau and Jacobi coordinates: Application to methane and fluoromethane
J. Chem. Phys., 2016, 144(20): 204302.

21Liuyang Chen, Kejie Shao, Jun Chen, Minghui Yang*, Dong H. Zhang
Full-dimensional quantum dynamics study of the H2 + C2H → H + C2H2 reaction on an ab initio potential energy surface
J. Chem. Phys., 2016, 144(19): 194309.

20Qingyong Meng*, Jun Chen†*, Dong H. Zhang*
Ring polymer molecular dynamics fast computation of rate coefficients on accurate potential energy surfaces in local configuration space: Application to the abstraction of hydrogen from methane
J. Chem. Phys., 2016, 144(15): 154312. (Contributed equally.)

19Neil Qiang Su, Jun Chen, Xin Xu*, Dong H. Zhang*
Quantum reaction dynamics based on a new generation density functional and neural network potential energy surfaces (in Chinese)
Acta Phys. -Chim. Sin., 2016, 32(1): 119-130. (Contributed equally.)

18Jun Chen, Dong H. Zhang*
Construction of molecular reactive potential energy surfaces based on neural networks (in Chinese)
Sci. Sin. Chim., 2015, 45(12): 1241-1253.

17Zhaojun Zhang, Jun Chen, Minghui Yang*, Dong H. Zhang*
Time-dependent wave packet study of the H2 + CH3 → H + CH4 reaction
J. Phys. Chem. A, 2015, 119(50): 12480-12484.

16Dequan Yu, Jun Chen, Shu-Lin Cong*, Zhigang Sun*
Theoretical Study of FH2- Electron photodetachment spectra on new ab initio potential energy surface
J. Phys. Chem. A, 2015, 119(50): 12193-12208.

15Xiangjian Shen, Jun Chen, Zhaojun Zhang, Kejie Shao, Dong H. Zhang*
Methane dissociation on Ni(111): A fifteen-dimensional potential energy surface using neural network method
J. Chem. Phys., 2015, 143(14): 144701.

14Qingyong Meng, Jun Chen, Dong H. Zhang*
Communication: Rate coefficients of the H + CH4 → H2 + CH3 reaction from ring polymer molecular dynamics on a highly accurate potential energy surface
J. Chem. Phys., 2015, 143(10): 101102.

13Jun Li*, Jun Chen, Zhiqiang Zhao, Daiqian Xie, Dong H. Zhang*, Hua Guo
A permutationally invariant full-dimensional ab initio potential energy surface for the abstraction and exchange channels of the H + CH4 system
J. Chem. Phys., 2015, 142(20): 204302. (Contributed equally.)

12Neil Qiang Su, Jun Chen, Zhigang Sun, Dong H. Zhang*, Xin Xu*
H + H2 quantum dynamics using potential energy surfaces based on the XYG3 type of doubly hybrid density functionals: Validation of the density functionals
J. Chem. Phys., 2015, 142(8): 084107. (Contributed equally.)

11Jun Chen, Zhigang Sun*, Dong H. Zhang*
An accurate potential energy surface for the F + H2 → HF + H reaction by the coupled-cluster method
J. Chem. Phys., 2015, 142(2): 024303. (Featured article of J. Chem. Phys.)

10Tiangang Yang, Jun Chen, Long Huang, Tao Wang, Chunlei Xiao*, Zhigang Sun*, Dongxu Dai, Xueming Yang*, Dong H. Zhang*
Extremely short-lived reaction resonances in Cl + HD (v = 1) → DCl + H due to chemical bond softening
Science, 2015, 347(6217): 60-63. (Contributed equally.)

9Shu Liu, Jun Chen, Bina Fu, Dong H. Zhang*
State-to-state quantum versus classical dynamics study of the OH + CO → H + CO2 reaction in full dimensions (J = 0): checking the validity of the quasi-classical trajectory method
Theor. Chem. Acc., 2014, 133: 1558.

8Xin Xu, Jun Chen, Dong H. Zhang*
Global potential energy surface for the H + CH4 ↔ H2 + CH3 reaction using neural networks
Chin. J. Chem. Phys., 2014, 27(4): 373-379. (Contributed equally.)

7Zhaojun Zhang, Jun Chen, Shu Liu, Dong H. Zhang*
Accuracy of the centrifugal sudden approximation in the H + CHD3 ↔ H2 + CD3 reaction
J. Chem. Phys., 2014, 140(22): 224304.

6Jun Li, Jun Chen, Dong H. Zhang*, Hua Guo*
Quantum and quasi-classical dynamics of the OH + CO → H + CO2 reaction on a new permutationally invariant neural network potential energy surface
J. Chem. Phys., 2014, 140(4): 044327.

5Tao Wang, Jun Chen, Tiangang Yang, Chunlei Xiao*, Zhigang Sun*, Long Huang, Dongxu Dai, Xueming Yang*, Dong H. Zhang*
Dynamical resonances accessible only by reagent vibrational excitation in the F + HD → HF + D reaction
Science, 2013, 342(6165): 1499-1502. (Contributed equally.)

4Jun Chen, Xin Xu, Xin Xu, Dong H. Zhang*
Communication: An accurate global potential energy surface for the OH + CO → H + CO2 reaction using neural networks
J. Chem. Phys., 2013, 138(22): 221104. (Contributed equally. Top 20 Most Read in June 2013 of J. Chem. Phys.)

3Jun Chen, Xin Xu, Xin Xu, Dong H. Zhang*
A global potential energy surface for the H2 + OH ↔ H2O + H reaction using neural networks
J. Chem. Phys., 2013, 138(15): 154301.

2Shu Liu, Jun Chen, Zhaojun Zhang, Dong H. Zhang*
Communication: A six-dimensional state-to-state quantum dynamics study of the H + CH4 → H2 + CH3 Reaction (J = 0)
J. Chem. Phys., 2013, 138(1): 011101.

1Shu Liu, Chunlei Xiao, Tao Wang, Jun Chen, Tiangang Yang, Xin Xu, Dong H. Zhang*, Xueming Yang*
The dynamics of the D2 + OH → HOD + D reaction: A combined theoretical and experimental study
Faraday Discussions, 2012, 157: 101-111.