Prof. Dr. Jingping Xiao
Group Leader, Professor
State Key Laboratory of Catalysis
Dalian Institute of Chemical Physics, Chinese Academy of Sciences
Zhongshan Road 457, Dalian 116023, China
Tel.: +86-411-82463310
E-mail: xiao@dicp.ac.cn
Education
2009.09-2013.09 PhD in Jacobs University Bremen , Computational Chemistry
2003.09-2009.06 Bachelor & Master in College of Materials Science & Engineering, Chongqing University.
Experience
2019.1-Present Professor, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences
2017.11-2018.12 Professor, Westlake Institute for Advanced Study, Westlake University.
2015.11-2017.10 Postdoctoral Fellow, Department of Chemical Engineering, Stanford University;
2013.10-2015.10 Postdoctoral Fellow, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences
Publications
2022
92. Computational Design of Spinel Oxides through Coverage-dependent Screening on the Reation
Phase Diagram. C. Guo*, X. Tian, X. Fu, G. Qin, J. Long, H. Li, H. Jing, Y. Zhou*, J. Xiao,
ACS catalysis, 2022, 12, 6781-6793.
91. Bifunctional Zeolites-Sliver catalyst enabled tandem oxidation of formaldehyde at low temperatures.
N. Li†, B. Huang†, X. Dong†, J. Luo, Y. Wang, D. Miao, Y. Pan, F. Jiao*, J. Xiao*, Z. Qu*,
Nature Commun, 2022, 13, 2209.
DOI: 10.1038/s41467-022-29936-8
90. Oxygen activation on Ba-containing perovskite materials. Y. Zhu†, D. Liu†, H. Jing†, F. Zhang, X. Zhang,
S. Hu, L. Zhang, J. Wang, L. Zhang, W. Zhang, B. Pang, P. Zhang, F. Fan, J. Xiao, W. Liu, X. Zhu*, W. Yang*,
Sci. Adv., 2022, 8 (15), eabn4072.
89. Theoretical Understanding of Electrocatalysis beyond Thermodynamic Analysis.
H. Li, C. Guo, J. Long, X. Fu, J. Xiao*,
Chin. J. Catal., 2022, accepted (perspective).
88. Enhancing the stability of cobalt spinel oxide towards sustainable oxygen evolution in acid.
A. Li† , S. Kong† , C. Guo† , H. Ooka, K. Adachi, D. Hashizume, Q, Jiang, H. Han, J. Xiao*, R. Nakamura*,
Nature Catalysis, 2022, 5, 109-118.
87. Rational design of CO2 electroreduction cathode via in situ electrochemical phase transition.
S. Hu†, H. Li†, X. Dong, Z. Cao, B. Pang, L. Zhang, W. Yu, J. Xiao*, X. Zhu*, W. Yang,
J. Energy Chem, 2022, 66, 603–611.
DOI: 10.1016/j.jechem.2021.08.069
2021
86. Toward understanding and simplifying the reaction network of ketene production on ZnCr2O4
spinel catalysts. X. Fu and J. Xiao*,
J. Phys. Chem. C, 2021, 125, 45, 24902-24914.
85. Engineering nitrogen vacancy in polymeric carbon nitride for nitrate electroreduction to ammonia.
Y. Huang†, J. Long†, Y. Wang, N. Meng, Y. Yu*, S. Lu, J. Xiao*, B. Zhang,
ACS Appl. Mater. Inter., 2021, 13, 46, 54967-54973.
84. Activation of transition metal (Fe, Co and Ni) – oxide nanoclusters by nitrogen defects in carbon
nanotube for selective CO2 reduction reaction. Y. Cheng*, J. Chen, C. Yang, H. Wang, B. Johannessen,
L. Thomsen, M. Saunders, J. Xiao, S. Yang, S. P. Jiang*,
Energy Environ. Mater., 2021, accepted.
83. Understanding the Product Selectivity of Syngas Conversion on ZnO Surfaces with Complex
Reaction Network and Structural Evolution. X. Fu, J. Li, J. Long, C. Guo, J. Xiao*,
ACS catalysis, 2021, 11, 12264–12273.
82. Advances in Electrochemical Ammonia Synthesis Beyond the Use of Nitrogen Gas as a Source.
T. Mou, J. Long, T. Frauenheim, J. Xiao*,
ChemPlusChem, 2021, 86, 1211-1224 (invited review).
81. Activity and mechanism mapping of photocatalytic NO2 conversion on the anatase TiO2(101) surface.
P. Guo, X. Fu, P. Deák, T. Frauenheim, J. Xiao*,
J. Phys. Chem. Lett., 2021, 12, 7708-7716.
DOI: 10.1021/acs.jpclett.1c02263
80. Copper-catalyzed exclusive CO2 to pure formic acid conversion via single-atom alloying.
T. Zheng† , C. Liu† , C. Guo† , M. Zhang, X. Li, Q. Jiang, W. Xue, H. Li, A. Li, C. Pao, J. Xiao*, C. Xia*, J. Zeng*,
Nature Nanotechnology, 2021, 16, 1386-1393.
DOI: 10.1038/s41565-021-00974-5
79. Unveiling Potential Dependence in NO Electroreduction to Ammonia.
J. Long, C. Guo, X. Fu, H. Jing, G. Qin, H. Li, J. Xiao*,
J. Phys. Chem. Lett., 2021, 12, 6988-6995.
DOI: 10.1021/acs.jpclett.1c01691
78. Molecular routes of dynamic autocatalysis for methanol to hydrocarbon (MTH) reaction.
S. Lin†, Y. Zhi†, W. Chen, H. Li, W. Zhang, C. Lou, X. Wu, S. Zeng, S. Xu, J. Xiao*, A. Zheng*, Y. Wei*, Z. Liu*,
J. Am. Chem. Soc., 2021, 143, 12038-12052.
77. Ultrafine nickel nanoparticles encapsulated in N-doped carbon promoting hydrogen oxidation
reaction in alkaline media. J. Wang† , X. Dong† , J. Liu*, W. Li, L. T. Roling, J. Xiao*, L. Jiang*,
ACS catalysis, 2021, 11, 12, 7422-7428.
76. Material and Composition Screening Approaches in Electrocatalysis and Battery Research.
T. Kadyk, J. Xiao, H. Ooka, J. Huang, K. S. Exner*,
Front. Energy Res., 9, 699376, 2021 (Editorial)
75. Elucidation of the Synergistic Effects of Dopants and Vacancies on Promoted Selectivity for CO2
Electroreduction to Formate. Z. Li†, A. Cao†, Q. Zheng, Y. Fu, T. Wang, K. T. Arul, J. L. Chen, B. Yang,
N. M. Adli, L. Lei, C. L. Dong, J. Xiao*, G. Wu*, Y. Hou*,
Adv. Mater., 2021, 33, 2005113.
74. Heterogeneous Catalysts: Advanced Design, Characterization and Applications (High-Throughput
Computational Design of Novel Catalytic Materials).
C. Guo, J. Chen, J. Xiao*,
Wiley-VCH GmbH, 2021, 497-524.
(Book Editor: Wey Yang Teoh, Atsushi Urakawa, Yun Hau Ng, Patrick Sit)
73. One-dimensional metal-organic nanowires-derived catalyst of carbon nanobamboos with
encapsulated cobalt nanoparticles for oxygen reduction.
W. Hong†, C. Guo†, S. W. Koh, J. Ge, Q. Liu, J. Xiao*, H. Li*,
J. Catal., 2021, 394, 366-375.
DOI: 10.1016/j.jcat.2020.10.030
72. Toward Computational Design of Chemical Reactions with Reaction Phase Diagram.
C. Guo†, X. Fu†, J. Long, H. Li, G. Qin, A. Cao, H. Jing, J. Xiao*,
WIREs Comput. Mol. Sci., 2021, 11, 5, e1514. (invited review)
71. Incorporation of layered tin (IV) phosphate in graphene framework for high performance lithium-
sulfur batteries. H. Yuan†, N. Zhang†, L. Tian, L. Xu, Q. Shao, S. D. Alizaidi, J. Xiao*, J. Chen*,
J. Energy. Chem., 2021, 53, 99-108.
DOI: 10.1016/j.jechem.2020.05.028
2020
70. Theoretical Insights on the Synergy and Competition between Thermochemical and Electrochemical
Steps in Oxygen Electroreduction. C. Guo, X. Fu, J. Xiao*,
J. Phys. Chem. C, 2020, 124, 47, 25796-25804.
69. Reaction-induced strong metal-support interactions between metals and inert boron nitride
nanosheets. J. Dong, Q. Fu* H. Li, J. Xiao, B. Yang, B. Zhang, Y. Bai, T. Song, R. Zhang, L. Gao, J. Cai,
H. Zhang, Z. Liu, X. Bao,
J. Am. Chem. Soc., 2020, 142, 40, 17167-17174.
68. Enhancing CO2 electroreduction to methane with cobalt phthalocyanine and zinc-nitrogen-carbon
tandem catalyst. L. Lin†, T. Liu†, J. Xiao, H. Li, P. Wei, D. Gao, B, Nan, R. Si, G. Wang*, X. Bao,
Angew. Chem. Int. Ed., 2020, 59, 22408-22413.
67. Coking-resistant iron catalyst in ethane dehydrogenation achieved through siliceous zeolite
modulation. Z. Yang†, H. Li†, H. Zhou†, L. Wang*, L. Wang, Q. Zhu, J. Xiao*, X. Meng, J. Chen, F. S. Xiao*,
J. Am. Chem. Soc., 2020, 142, 38,16429-16436.
66. The rational design of single-atom catalysts for electrochemical ammonia synthesis via a descriptor-
based approach. J. Long, Xiaoyan Fu and J. Xiao*,
J. Mater. Chem. A, 2020, 8, 17078-17088.
65. Coordination structure dominated performance of single-atomic Pt catalyst for anti-Markovnikov
hydroboration of alkenes. Q. Xu†, C. Guo†, S. Tian†, J. Zhang, W. Chen, W. Cheong, L. Gu, L. Zheng, J. Xiao,
Q. Liu, B. Li, D. Wang*, Y. Li,
Sci. China. Mater., 2020, 63, 6, 972-981.
DOI: 10.1007/s40843-020-1334-6
64. Unveiling hydrocerussite as an electrochemically stable active phase for efficient carbon dioxide
electroreduction to formate. Y. Shi† , Y. Ji† , J. Long† , Y. Liang, Y. Liu, Y. Yu, J. Xiao*, B. Zhang*,
Nature Commun, 2020, 11, 3415.
DOI: 10.1038/s41467-020-17120-9
63. Direct electrochemical ammonia synthesis from nitric oxide.
J. Long#, S. Chen#, Y. Zhang, C. Guo, X. Fu, D. Deng*, J. Xiao*,
Angew. Chem. Int. Ed. 2020, 59, 9711-9718. (hot paper)
62. Synergy effects on Sn-Cu alloy catalyst for efficient CO2 electroreduction to formate with high mass activity.
K.Ye, A. Cao, J. Shao, G. Wang, R. Si, N. Ta, J. Xiao*, G. Wang*,
Science Bulletin, 2020,65 (9), 711-719.
DOI: 10.1016/j.scib.2020.01.020
61. Morphology controlling of silver by plasma engineering for electrocatalytic carbon dioxide reduction.
Q. Yu, C. Guo, J. Ge, Y. Zhao, Q. Liu, P. Gao, J. Xiao*, H. Li*,
J. Power Sources, 453, 2020, 227846.
DOI: 10.1016/j.jpowsour.2020.227846
60. Toward a comparative description between transition metal and zeolite catalysts for methanol conversion.
H. Li, C. Guo, L. Huang, J. Long, X. Fu, W. Chu*, J. Xiao*,
Phys. Chem. Chem. Phys., 2020, 22, 5293-5300.
59. Direct conversion of syngas to ethanol within zeolite crystals.
C. Wang, J. Zhang, G. Qin. L. Wang*. E. Zuidema. Q. Yang. S. Dang. C. Yang, J. Xiao*, X. Meng. C. Mesters, F.-S. Xiao*,
Chem., 2020, 6, 646-657.
DOI: 10.1016/j.chempr.2019.12.007
2019
58. PdZn alloy nanoparticles encapsulated within a few layers of graphene for efficient semi-hydrogenation of acetylene.
L. Yang, Y. Guo, J. Long, L. Xia*, D. Li, J. Xiao*, H. Liu*,
Chem. Commun., 2019, 55, 14693-14696.
57. Vertical Silver@Silver Choloride Core-Shell Nanowire Array for Carbon Dioxide Electroreduction.
J. Ge, J. Long, Z. Sun, H. Feng, J. Hu, SW. Koh, Q. Yu, J. Xiao*, H. Li*,
ACS Appl. Energy Mater., 2019, 2 (9), 6163-6169.
56. Synergistic Catalysis over Iron-Nitrogen Sites Anchored with Cobalt Phthalocyanine for Efficient CO2 Electroreduction.
L. Lin, H. Li, C. Yan, H. Li, R. Si, M. Li, J. Xiao, G. Wang*, X. Bao,
Adv. Mater., 2019, 1903470.
55. Combination of Theory and Experiment Achieving Rational Design of Electrocatalysts for Hydrogen Evolution on Hierarchically
Mesoporous CoS2 Microsphere.
A. Wang, M. Zhang, H. Li, F. Wu, K. Yan*, J. Xiao*,
J. Phys. Chem. C, 2019, 123 (22), 13428-13433.
54. Highly Active Metallic Nickel Sites Confined in N-doped Carbon Nanotubes Toward Significantly Enhanced Activity of CO2 Electroreduction.
W. Zheng, C. Guo, J. Yang, F. He*, B. Yang, Z. Li, L. Lei, J. Xiao*, G. Wu*, Y. Hou*,
Carbon, 2019, 150, 52-59.
DOI: https://doi.org/10.1016/j.carbon.2019.04.112
53. Room-Temperature Conversion of Ethane and Mechanism Understanding over Single Iron Atoms Confined in Graphene.
S. Wang, H. Li, M. He, X. Cui, L. Hua, H. Li, J. Xiao, L. Yu, R. N. Pethan, Z. Xie, D. Deng*,
J. Energy. Chem., 2019, 36, 47-50.
DOI: https://doi.org/10.1016/j.jechem.2019.04.003
52. Exceptional Stability and Chemical Mechanism over Spinel ZnCr2O4 Catalyst for HCl Oxidation to Cl2.
X. Tian, C. Guo, H. Zhong, Y. Zhou*, J. Xiao*,
Molecular Catalysis, 2019, 470, 82-88.
DOI: https://doi.org/10.1016/j.mcat.2019.03.025
51. Towards Unifying the Concepts of Catalysis in Confined Space.
C. Guo and J. Xiao*,
Comp. Mater. Sci., 2019, 161, 58-63.
(Invited Review: the special issue for Rising Stars Prize)
DOI: doi.org/10.1016/j.commatsci.2019.01.039
50. Towards Computational Design of Catalysts for CO2 Selective Reduction via Reaction Phase Diagram Analysis.
M. Han, X. Fu, A. Cao, C. Guo, W. Chu*, J. Xiao*,
Adv. Theory Simul., 2019, 2, 1800200.
49. N-doped Graphene Confined Pt Nanoparticles for Efficient Semi-hydrogenation of Phenylacetylene.
L. Xia, D. Li, J. Long, F. Huang, L. Yang*, Y. Guo, Z. Jia, J. Xiao*, H. Liu*,
Carbon, 2019, 145, 47-52 (IF = 7.1).
DOI: https://doi.org/10.1016/j.carbon.2019.01.014
48. Towards Fundamentals of Confined Electrocatalysis in Nanoscale Reactors.
H. Li, C. Guo, Q. Fu, J. Xiao*,
J. Phys. Chem. Lett., 2019, 10, 533-539 (IF = 8.7).
DOI: 10.1021/acs.jpclett.8b03448
47. pH Effects on the Electrochemical Reduction of CO(2) Towards C2 Products on Stepped Copper
X. Liu, P. Schlexer, J. Xiao, Y. Ji, L. Wang, R. Sandberg, M. Tang, K. Brown, H. Peng, S. Ringe, C. Hahn, T. Jaramillo, J. Nørskov, K. Chan*,
Nat. Commun., 2019, 10 (1), 32 (IF = 12.1).
DOI: https://doi.org/10.1038/s41467-018-07970-9
46. Room-Temperature Electrochemical Water-Gas Shift Reaction for High Purity Hydrogen Production.
X. Cui, H. Su, R. Chen, L. Yu, J. Dong, C. Ma, S. Wang, J. Li, F. Yang, J. Xiao, M. Zhang,D. Deng*, D. H. Zhang, Z. Tian, X. Bao*,
Nat. Commun., 2019, 10 (1), 86 (IF = 12.1).
DOI: https://doi.org/10.1038/s41467-018-07937-w
45. Unsaturated Edge-anchored Ni Single Atoms on Porous Microwave Exfoliated Graphene Oxide for Electrochemical CO2 reduction.
C. Yi, S. Zhao, H. Li, S. He, J.P. Veder, B. Johannessen, J. Xiao, S. Lu, J. Pan, M. F. Chisholm, S.Z. Yang, Ch. Liu, J. G. Chen, S. P. Jiang,
Appl. Catal. B Environ., 2019, 243, 294-303 (IF = 11.7).
DOI: https://doi.org/10.1016/j.apcatb.2018.10.046
2018
44. Integration of Theory and Experiment on Mesoporous Nickel Sulfide Microsphere for Hydrogen Evolution Reaction.
A. Wang, H. Li, J. Xiao, Y. Lu, M. Zhang, H. Kang, K. Yan*,
ACS Sustain. Chem. Eng., 2018, 6, 15995 - 16000 (IF = 6.1).
DOI: 10.1021/acssuschemeng.8b04148
43. One-Step Synthesis of NiMn Layered Double Hydroxide Nanosheets Efficient for Water Oxidation.
R Li, Y Liu, H Li, M Zhang, Y Lu, L Zhang, J. Xiao, F Boehm, K Yan,
Small Methods, 2018, 3, 1800344.
DOI: https://doi.org/10.1002/smtd.201800344
42. Mechanistic Insights into the Synthesis of Higher Alcohols from Syngas on CuCo Alloys.
A. Cao, J. Schumann, T. Wang, L. Zhang, J. Xiao, P. Bothra, Y. Liu, F. Abild-Pedersen*, J. K. Nørskov*,
ACS catalysis, 2018, 8, 10148-10155 (IF = 11.4).
41. Carbon doped Hexagonal BN as a Highly Efficient Metal-free Base Catalyst for Knoevenagel Condensation Reaction.
X. Li*, B. Lin, H. Li, Q. Yu, Y. Ge, X. Jin, X. Liu, Y. Zhou*, J. Xiao*,
Appl. Catal. B Environ., 2018, 239, 254-259 (IF = 11.7).
DOI: https://doi.org/10.1016/j.apcatb.2018.08.021
40. Carbon Dioxide Electroreduction over Imidazolate Ligands Coordinated with Zn (II) Center in ZIFs.
X. Jiang, H. Li, J. Xiao, D. Gao, R. Si, F. Yang, Y. Li, G. Wang*, X Bao*,
Nano Energy, 2018, 52, 345-350 (IF = 12.3).
DOI: https://doi.org/10.1016/j.nanoen.2018.07.047
39. Coordinatively Unsaturated Nickel-Nitrogen Sites Towards Selective and High-rate CO2 Electroreduction.
C. Yan, H. Li, Y. Ye, H. Wu, F. Cai, R. Si, J. Xiao, S. Miao, S. Xie, F. Yang, Y. Li, G. Wang*, X. Bao*,
Energy & Environ. Sci., 2018, 11, 1204-1210 (IF = 29.5).
38. Highly Efficient Catalytic Scavenging of Oxygen Free Radicals with Graphene-encapsulated Metal Nanoshields.
J. Wang, X. Cui, H. Li, J. Xiao, J. Yang, X. Mu, H. Liu, Y. Sun, X. Xue, C. Liu, X. Zhang*, D. Deng*, X. Bao,
Nano Research, 11(5), 2821-2835 (2018) (IF = 8.0).
DOI: doi.org/10.1007/s12274-017-1912-9
37. The Predominance of Hydrogen Evolution on Transition Metal Sulfides and Phosphides under CO2 Reduction Conditions:
An experimental and Theoretical Study.
A. T. Landers, M. Fields, D. A. Torelli, J. Xiao, T. R. Hellstern, S. A. Francis, C. Tsai, J. Kibsgaard, N. S. Lewis*, K. Chan*, C. Hahn*, T. F. Jaramillo*,
ACS Energy Lett., 2018, 3, 1450-1457.
DOI: 10.1021/acsenergylett.8b00237
36. Robust and Conductive Two-Dimensional Metal−Organic Frameworks with Exceptionally High Volumetric and Areal Capacitance.
D. Feng, T. Lei, M.R. Lukatskaya, J. Park, Z. Huang, M. Lee, L. Shaw, S. Chen, A.A. Yakovenko, A. Kulkarni, J. Xiao, K. Fredrickson, J. B. Tok,
X. Zou, Y. Cui, Z. Bao*,
Nature Energy, 2018, 3, 30-36.
DOI: https://doi.org/10.1038/s41560-017-0044-5
35. Room-Temperature Methane Conversion by Graphene-Confined Single Iron Atoms.
X. Cui, H. Li, Y. Wang, Y. Hu, L. Hua, H. Li, X. Han, Q. Liu, F. Yang, L, He, X. Chen, Q. Li, J. Xiao, D. Deng*, X. Bao*,
Chem, 4, 1902-1910, 2018.
DOI: https://doi.org/10.1016/j.chempr.2018.05.006
34. Reaction Mechanisms of Well-defined Metal-N4 Sites in Electrocatalytic CO2 Reduction
[Z. Zhang#, J. Xiao#,] X. Chen, S. Yu, L. Yu, R. Si, Y. Wang, S. Wang, X. Meng, Z. Tian, D. Deng*,
Angew. Chem. Int. Ed. 2018, 2018, 57, 16339-16342. (IF=12.0).
(theory + experiment collaboration)
DOI: https://doi.org/10.1002/anie.201808593
2017
33. Structure and Electronic Properties of Interface-Confined Oxide Nanostructures.
Y. Liu, Y. Ning, L. Yu, Z. Zhou, Q. Liu, Y. Zhang, H. Chen, J. Xiao, P. Liu, F. Yang*, X. Bao*,
ACS Nano, 2017, 11, 11449-11458. (IF = 13.9).
32. Machine-Learning Methods Enable Exhaustive Searches for Active Bimetallic Facets and Reveal New Active Motifs for CO2 reduction.
Z. W. Ulissi, M. T. Tang, J. Xiao, X. Liu, D. A. Torelli, M. Karamad, K. Cummins, C. Hahn, N.S. Lewis, T. F. Jaramillo, K. Chan*, J. K. Nørskov*,
ACS catalysis, 7, 6600-6608, 2017 (IF = 10.6).
31. Highly Doped and Exposed Cu(I)-N Active Sites within Graphene Towards Efficient Oxygen Reduction for Zinc-air Battery.
H. Wu, H. Li, X. Zhao, Q. Liu, J. Wang, J. Xiao, S. Xie, R. Si, F. Yang, S. Miao, X. Guo, G. Wang* and X. Bao*,
Energy Environ. Sci., 9, 3736-3745, 2017. (IF = 29.5).
30. Enhanced Oxidation Resistance of Active Nanostructures via Dynamic Size Effect.
Y. Liu, F. Yang,* Y. Zhang, J. Xiao, L. Yu, Q. Liu, Y. Ning, Z. Zhou, H. Chen, W. Huang, P. Liu, X. Bao*,
Nature Commun., 8, 14459, 2017. (IF = 12.1).
DOI: https://doi.org/10.1038/ncomms14459
29. Confined Catalysis under Two-dimensional Materials,
H. Li, J. Xiao, Q. Fu*, X. Bao,
Proc. Natl. Acad. Sci. U.S.A., 2017, 114, 5930-5934. (IF = 9.7).
DOI: https://doi.org/10.1073/pnas.1701280114
28. Size-dependence of Carbon Nanotube Confinement in Catalysis,
J. Xiao, X. Pan*, F. Zhang, H. Li, X. Bao*,
Chem. Sci., 8, 278-283, 2017 (IF = 8.7).
27. Understanding Trends in Electrochemical Carbon Dioxide Reduction Rates.
[X. Liu#, J. Xiao#], H. Peng, X. Hong, K. Chan, J.K. Nørskov*.
Nat. Commun., 8, 15438, 2017. (IF = 12.1) (collection in Nature Catalysis)
(theory + theory collaboration)
2016
26. Low Charge Overpotential of Lithium-Oxygen Batteries with Metallic Co Encapsulated in Single-Layer Graphene Shell as the Catalyst,
Y. Tu, H. Li, D. Deng, J. Xiao, X. Cui, D. Ding, M. Chen, X. Bao,
Nano Energy, 30, 877-884, 2016. (IF = 12.3)
DOI: https://doi.org/10.1016/j.nanoen.2016.08.066
25. Selective Conversion of Syngas to Light Olefins.
F. Jiao, J. Li, X. Pan,* J. Xiao, H. Li, H. Ma, M. Wei, Y. Pan, Z. Zhou, M. Li, S. Miao, J. Li, Y. Zhu, D. Xiao, T. He, F. Qi, Q. Fu, X. Bao*,
Science, 351 (6277), 2016, 1065-1068.
24. A Graphene Composite Material with Single Cobalt Active Sites: A Highly Efficient Counter Electrode for Dye-Sensitized Solar Cells.
[X. Cui#, J. Xiao#,] Y. Wu, P. Du, R. Si, H. Yang, H. Tian, J. Li, W. Zhang*, D. Deng*, X. Bao,
Angew. Chem. Int. Ed. 2016, 55, 6708-6712. (IF=12.0) (Inside Back Cover)
(experiment + theory collaboration)
DOI: https://doi.org/10.1002/ange.201602097
2015
23. A Single Iron Site Confined in Graphene Matrix for Catalytic Oxidation of Benzene at Room Temperature.
D.Deng, X.Chen, L.Yu, X.Wu, Q.Liu, Y.Liu, H.Yang, H.Tian, Y.Hu, P.Du, R.Si, J.Wang, X.Cui, H.Li, J. Xiao, T.Xu, J.Deng, F.Yang, J.Zhou,
L.Sun, J.Li, X.Pan, X.Bao*,
Science Advances 2015, 1 (11), e1500462.
22. Exploring the Ring Current of Carbon Nanotubes by First-Principles Calculations.
P. Ren, A. Zheng, J. Xiao, X. Pan, X. Bao*,
Chem. Sci., 2015, 6, 902-908 (IF = 8.7).
21. Tailoring the Oxidation Activity of Pt Nanoclusters via Encapsulation.
F. Zhang, F. Jiao, X. Pan,* K. Gao, J. Xiao, S. Zhang, X. Bao*,
ACS catalysis, 2015, (5), 1381−1385 (IF = 12.7).
20. Hexagonal Boron Nitride Cover on Pt(111):A New Route to Tune Molecule-Metal Interaction and Metal-Catalyzed Reactions.
Y. Zhang, X. Weng, H. Li, H. Li, M. Wei, J. Xiao, Z. Liu, M. Chen,* Q. Fu,* X. Bao,
Nano Lett., 2015, 15, 3616−3623 (IF = 12.7).
DOI: 10.1021/acs.nanolett.5b01205
19. Creating Nano-Space under h-BN Cover for Adlayer Growth on Ni(111).
Y. Yang, Q, Fu,* H. Li, M. Wei, J. Xiao, W. Wei, X. Bao,
ACS Nano, 2015, 9 (12), 11589–11598. (IF = 13.9)
18. Triggering the Catalytic Activity of Inert Two-dimensional MoS2 Surface via Single-Atom Metal Doping.
J. Deng, H. Li, J. Xiao, Y. Tu, D. Deng*, H. Yang, H. Tian, J. Li, X. Bao* ,
Energy Environ. Sci., 2015, 8, 1594 −1601. (IF = 29.5).
17. Visualizing Electronic Interactions Between Iron and Carbon by X-ray Chemical Imaging and Spectroscopy,
[X. Chen#, J. Xiao#], J. Wang, D. Deng*, Y. Hu, J. Zhou, L. Yu, T. Heine, X. Pan, X. Bao*,
Chem. Sci., 2015, 6, 3262-3267. (IF = 8.7)
(experiment + theory collaboration)
16. Towards Rational Design of Catalysts Supported on a Topological Insulator Substrate.
J. Xiao*, L. Kou, C. Y. Yam, T. Frauenheim, B. Yan,
ACS catalysis, 2015, 5 (12), 7063-7067 (IF = 10.6).
15. Toward Fundamentals of Confined Catalysis in Carbon Nanotubes.
J. Xiao, X. Pan*, S. Guo, P. Ren, X. Bao*,
J. Am. Chem. Soc., 2015, 137, 477-482. (IF = 13.9) (spotlight).
(ACS collection for nanoreactors: small spaces, big implications in chemistry)
2014
14. Oxygen Vacancy Diffusion in Bare ZnO Nanowire.
B. Dei, A. L. Rosa, T. Frauenheim, J. Xiao, X. Q. Shi, R. Q. Zhang*, M. A. Hove,
Nanoscale, 2014 (6), 11882-11886 (IF = 7.8).
13. Theoretical Prediction of Carbon Dioxide Reduction to Methane at Coordinatively Unsaturated Ferric Sites in the Presence of Cu Impurities,
J. Xiao*, and T. Frauenheim,
Phys. Chem. Chem. Phys., 2014, 16 (8), 3515 – 3519 (IF = 4.1).
12. Structural Evolution of Active Sites of Cu/ZnO Catalysts: From Reactive Environments to Ultrahigh Vacuum Condition.
J. Xiao*, A. L. Rosa, R. Zhang, W. Y. Teoh, T. Frauenheim,
ChemCatChem, 2014 (6) 2322-2326 (IF = 4.8).
11. CO2 Reduction at Low Overpotential on Cu Electrodes in the Presence of Impurities at Subsurface.
J. Xiao*, A. Kuc, T. Frauenheim, T. Heine,
J. Mater. Chem. A, 2014, 2, 4885-4889 (IF = 9.9).
10. Stabilization Mechanism of ZnO Nanoparticles by Fe Doping
J. Xiao, A. Kuc, T. Frauenheim, T. Heine*,
Phys. Rev. Lett., 2014, 112, 106102/1-106102/5. (IF = 8.5).
DOI: 10.1103/PhysRevLett.112.106102
2013
9. Theoretical Characterizations of Spinels Containing Iron and Vanadium via ab initio Calculations.
J. Xiao*, B. Xie and Y. Wang,
ISIJ International, 2013 (53) 245-249. (IF = 1.0).
DOI: https://doi.org/10.2355/isijinternational.53.245
8. Theoretical Insights into CO2 Activation and Reduction on the Ag(111) Monolayer Supported on a ZnO(0001) Substrate.
J. Xiao* and T. Frauenheim,
J. Phys. Chem. C, 2013 (117) 1804-1808. (IF = 3.4).
7. Temperature Mediated Magnetism in Fe-doped ZnO Semiconductors.
J. Xiao, T. Frauenheim, T. Heine, A. Kuc*,
J. Phys. Chem. C, 2013 (117) 5338-5342. (IF = 4.5)
6. Fe-Doped ZnO Nanoparticles: The Oxidation Number and Local Charge on Iron, Studied by 57Fe Möβbauer Spectroscopy and DFT calculations,
J. Xiao, A. Kuc, S. Pokhrel, L. Mädler, R. Pöttgen, F. Winter, T. Frauenheim, T. Heine*,
Chem. Eur. J., 2013 (19) 3287-3291 (IF = 5.3) (Front Cover).
(spotlights in Angew. Chem. Int. Ed. 2013 (52) 2640-2642).
DOI: https://doi.org/10.1002/chem.201204308
2012
5. Activation Mechanism of Carbon Monoxide on α-Fe2O3 (0001) Surface Studied by Using First Principle Calculations,
J. Xiao* and T. Frauenheim,
Appl. Phys. Lett., 2012 (101) 041603/1-3. (IF =3.1)
DOI: https://doi.org/10.1063/1.4739935
4. Activity and Synergy Effects on a Cu/ZnO(0001) Surface Studied Using First-Principle Thermodynamics.
J. Xiao* and T. Frauenheim,
J. Phys. Chem. Lett., 2012 (3) 2638−2642. (IF = 9.4).
2011
3. Evidence for Fe2+ in Wurtzite Coordination: Iron Doping Stabilizes ZnO Nanoparticles.
J. Xiao, A. Kuc, S. Pokhrel, M. Schowalter, S. Porlapalli, A. Rosenauer, T. Frauenheim, L. Mädler, L. G.M. Pettersson, T. Heine*,
Small, 2011(7) 2879-2886. (IF = 9.6) (Frontispiece).
DOI: https://doi.org/10.1002/smll.201100963
2009
2. Radiative Heat Transfer in Transition Metal Oxides Contained in Mold Fluxes.
J. Diao, B. Xie*, J. Xiao, C. Ji,
ISIJ International, 2009 (49) 1710-1714. (IF = 1.1).
DOI: https://doi.org/10.2355/isijinternational.49.1710
1. Experimental Investigation into Radiative Heat Transfer Characteristics for Mould Fluxes Containing Transition Oxides.
J. Diao, B.Xie*, J. Xiao,
Ironmaking & Steelmaking, 2009 (36) 610-614. (IF = 0.8).
DOI: https://doi.org/10.1179/030192309X12492910938096
Research Interests
Construction of heterogeneous catalysis reaction phase diagram;
Development of self-consistent micro reaction kinetics model;
Exploration of synergistic reaction mechanism;
Application of machine learning in catalyst design.
Conferences
2018, [Sydney, Australia] Invited from Prof. Sean Smith (ACEMD18) (oral)
2018, [Sydney, Australia] Invited from Prof. Jun Huang (CatalSymp2018) (oral)
2018, [Hangzhou, China] Invited from Prof. Xin Xu (31th CCS annual meeting) (oral)
2018, [Lanzhou, China] Invited talk from Prof. Fuwei Li (Chem, LICP) (oral)
2018, [Suzhou, China] Invited talk from Prof. Fuwei Li (Chem, LICP) (oral)
2018, [Shenzhen, China] Invited from Prof. Xianzhu Fu (MSE, SZU) (oral)
2018, [Shenzhen, China] Invited from Prof. Lele Duan (Chem, Sustech) (oral)
2018, [Guangzhou, China] Invited from Prof. Kai Yan (ES, SunYatSen) (oral)
2017, [Hangzhou, China] Invited from Prof. Jianguo Wang (ChemE, ZJUT) (oral)
2017, [Hangzhou, China] Invited from Prof. Xinhui Xia (MSE, Zhejing Univ.) (oral)
2017, [Chengdu, China] Invited from Prof. Wei Chu (ChemE, Sichuan Univ.) (oral)
2017, [Chongqing, China] Invited from Prof. Xuewei Lv (MSE, Chongqing Univ.) (oral)
2017, [Chongqing, China] Invited from Prof. Zhidong Wei (ChemE, CQU) (oral)
2017, [Hong Kong, China] Invited from City University of Hong Kong (oral)
2017, [Hangzhou, China] Invited from Westlake Institute of Advanced Study (oral)
Honors & Distinctions
2022: Lu Jiaxi Outstanding Mentor Award
2021: The funding for the Mercator Fellowship
2020: The support of the Hundreds of Thousands of Talents Project
2019: The top-notch young talents in Liaoning Province
2019.04: Youth Scholar of Da-Yu Zhang(Dalian Institute of Chemical Physics);
2018:ACS Catalysis Award for Early Career Researcher
2009.10-2013.09: PhD Candidate Scholarship (China Scholarship Council);
2013.10-2014.10: Excellent Postdoctoral Fellow in 2014 (Dalian Institute of Chemical Physics);
2013.10-2014.10: Excellent Presentation Award in 2014 (Dalian Institute of Chemical Physics);
2015.06: Best Poster Award in 15th ICQC, Peking, China;
2013.10-2015.10: Outstanding Postdoctoral Award (Dalian Institute of Chemical Physics); 2014.04-2015.10: Postdoctoral Grant (China Postdoctoral Science Foundation).