General

Prof. Dr. Jingping Xiao

Group Leader, Professor

State Key Laboratory of Catalysis

Dalian Institute of Chemical Physics, Chinese Academy of Sciences

Zhongshan Road 457, Dalian 116023, China 

Tel.: +86-411-82463310

E-mail: xiao@dicp.ac.cn




Education

2009.09-2013.09  PhD in Jacobs University Bremen , Computational Chemistry

2003.09-2009.06  Bachelor & Master in College of Materials Science & Engineering, Chongqing University.


Experience

2019.1-Present Professor, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences

2017.11-2018.12 Professor, Westlake Institute for Advanced Study, Westlake University.

2015.11-2017.10 Postdoctoral Fellow, Department of Chemical Engineering, Stanford University;

2013.10-2015.10 Postdoctoral Fellow, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences


Publications

2022

92. Computational Design of Spinel Oxides through Coverage-dependent Screening on the Reation 

Phase Diagram. C. Guo*, X. Tian, X. Fu, G. Qin, J. Long, H. Li, H. Jing, Y. Zhou*, J. Xiao,

ACS catalysis2022, 12, 6781-6793.

DOI: 10.1021/acscatal.2c00237

91. Bifunctional Zeolites-Sliver catalyst enabled tandem oxidation of formaldehyde at low temperatures.

N. Li, B. Huang, X. Dong, J. Luo, Y. Wang, D. Miao, Y. Pan, F. Jiao*, J. Xiao*Z. Qu*,

Nature Commun202213, 2209.

DOI: 10.1038/s41467-022-29936-8

90. Oxygen activation on Ba-containing perovskite materials. Y. Zhu†, D. Liu†, H. Jing†, F. Zhang, X. Zhang, 

S. Hu, L. Zhang, J. Wang, L. Zhang, W. Zhang, B. Pang, P. Zhang, F. Fan, J. Xiao, W. Liu, X. Zhu*, W. Yang*,

Sci. Adv., 2022, 8 (15), eabn4072.

DOI: 10.1126/sciadv.abn4072

89. Theoretical Understanding of Electrocatalysis beyond Thermodynamic Analysis. 

H. Li, C. Guo, J. Long, X. Fu, J. Xiao*,

Chin. J. Catal.2022, accepted (perspective).

88. Enhancing the stability of cobalt spinel oxide towards sustainable oxygen evolution in acid.

A. Li† , S. Kong† , C. Guo† , H. Ooka, K. Adachi, D. Hashizume, Q, Jiang, H. Han, J. Xiao*, R. Nakamura*,

Nature Catalysis2022, 5, 109-118.

DOI: s41929-021-00732-9

87. Rational design of CO2 electroreduction cathode via in situ electrochemical phase transition.

S. Hu†, H. Li†, X. Dong, Z. Cao, B. Pang, L. Zhang, W. Yu, J. Xiao*, X. Zhu*, W. Yang,

J. Energy Chem2022, 66, 603–611.

DOI: 10.1016/j.jechem.2021.08.069


2021

86. Toward understanding and simplifying the reaction network of ketene production on ZnCr2O4 

spinel catalysts. X. Fu and J. Xiao*,

J. Phys. Chem. C2021, 125, 45, 24902-24914.

DOI: 10.1021/acs.jpcc.1c07375

85. Engineering nitrogen vacancy in polymeric carbon nitride for nitrate electroreduction to ammonia.

Y. Huang†, J. Long†, Y. Wang, N. Meng, Y. Yu*, S. Lu, J. Xiao*, B. Zhang,

ACS Appl. Mater. Inter.2021, 13, 46, 54967-54973.

DOI: 10.1021/acsami.1c15206

84. Activation of transition metal (Fe, Co and Ni) – oxide nanoclusters by nitrogen defects in carbon 

nanotube for selective CO2 reduction reaction. Y. Cheng*, J. Chen, C. Yang, H. Wang, B. Johannessen, 

L. Thomsen, M. Saunders, J. Xiao, S. Yang, S. P. Jiang*,

Energy Environ. Mater.2021, accepted.

83. Understanding the Product Selectivity of Syngas Conversion on ZnO Surfaces with Complex 

Reaction Network and Structural Evolution. X. Fu, J. Li, J. Long, C. Guo, J. Xiao*,

ACS catalysis2021, 11, 12264–12273.

DOI: 10.1021/acscatal.1c02111

82. Advances in Electrochemical Ammonia Synthesis Beyond the Use of Nitrogen Gas as a Source.

T. Mou, J. Long, T. Frauenheim,  J. Xiao*,

ChemPlusChem2021, 86, 1211-1224 (invited review).

DOI: 10.1002/cplu.202100356

81. Activity and mechanism mapping of photocatalytic NO2 conversion on the anatase TiO2(101) surface.

P. Guo, X. Fu, P. Deák, T. FrauenheimJ. Xiao*,

J. Phys. Chem. Lett.2021, 12, 7708-7716.

DOI: 10.1021/acs.jpclett.1c02263

80. Copper-catalyzed exclusive CO2 to pure formic acid conversion via single-atom alloying.

T. Zheng† , C. Liu† , C. Guo† , M. Zhang, X. Li, Q. Jiang, W. Xue, H. Li, A. Li, C. Pao, J. Xiao*, C. Xia*, J. Zeng*,

Nature Nanotechnology2021, 16, 1386-1393.

DOI: 10.1038/s41565-021-00974-5

79. Unveiling Potential Dependence in NO Electroreduction to Ammonia.

J. Long, C. Guo, X. Fu, H. Jing, G. Qin, H. Li, J. Xiao*,

J. Phys. Chem. Lett.2021, 12, 6988-6995.

DOI: 10.1021/acs.jpclett.1c01691

78. Molecular routes of dynamic autocatalysis for methanol to hydrocarbon (MTH) reaction.

S. Lin†, Y. Zhi†, W. Chen, H. Li, W. Zhang, C. Lou, X. Wu, S. Zeng, S. Xu, J. Xiao*, A. Zheng*, Y. Wei*, Z. Liu*,

J. Am. Chem. Soc.2021, 143, 12038-12052.

DOI: 10.1021/jacs.1c03475

77. Ultrafine nickel nanoparticles encapsulated in N-doped carbon promoting hydrogen oxidation 

reaction in alkaline media. J. Wang† , X. Dong† , J. Liu*, W. Li, L. T. Roling, J. Xiao*, L. Jiang*,

ACS catalysis2021, 11, 12, 7422-7428.

DOI:10.1021/acscatal.1c01284

76. Material and Composition Screening Approaches in Electrocatalysis and Battery Research. 

T. Kadyk, J. Xiao, H. Ooka, J. Huang, K. S. Exner*, 

Front. Energy Res., 9, 699376, 2021 (Editorial)

DOI:10.3389/fenrg.2021.699376

75. Elucidation of the Synergistic Effects of Dopants and Vacancies on Promoted Selectivity for CO2

Electroreduction to Formate. Z. Li†, A. Cao†, Q. Zheng, Y. Fu, T. Wang, K. T. Arul, J. L. Chen, B. Yang,

N. M. Adli, L. Lei, C. L. Dong, J. Xiao*, G. Wu*, Y. Hou*,

Adv. Mater.2021, 33, 2005113.

DOI: 10.1002/adma.202005113

74. Heterogeneous Catalysts: Advanced Design, Characterization and Applications (High-Throughput 

Computational Design of Novel Catalytic Materials). 

C. Guo, J. Chen, J. Xiao*,

Wiley-VCH GmbH2021, 497-524.

(Book Editor: Wey Yang Teoh, Atsushi Urakawa, Yun Hau Ng, Patrick Sit)

73. One-dimensional metal-organic nanowires-derived catalyst of carbon nanobamboos with

encapsulated cobalt nanoparticles for oxygen reduction.

W. Hong†, C. Guo†, S. W. Koh, J. Ge, Q. Liu, J. Xiao*, H. Li*,

J. Catal., 2021, 394, 366-375.

DOI: 10.1016/j.jcat.2020.10.030                                                                                            

72. Toward Computational Design of Chemical Reactions with Reaction Phase Diagram.

C. Guo†, X. Fu†, J. Long, H. Li, G. Qin, A. Cao, H. Jing, J. Xiao*,

WIREs Comput. Mol. Sci., 2021, 11, 5, e1514. (invited review)

DOI: 10.1002/wcms.1514

71. Incorporation of layered tin (IV) phosphate in graphene framework for high performance lithium-

sulfur batteries. H. Yuan†, N. Zhang†, L. Tian, L. Xu, Q. Shao, S. D. Alizaidi, J. Xiao*, J. Chen*,

J. Energy. Chem.2021, 53, 99-108.

DOI: 10.1016/j.jechem.2020.05.028


2020

70. Theoretical Insights on the Synergy and Competition between Thermochemical and Electrochemical

Steps in Oxygen Electroreduction. C. Guo, X. Fu, J. Xiao*,

J. Phys. Chem. C2020124, 47, 25796-25804.

DOI: 10.1021/acs.jpcc.0c06691                                                                                            

69. Reaction-induced strong metal-support interactions between metals and inert boron nitride 

nanosheets. J. Dong, Q. Fu* H. Li, J. Xiao, B. Yang, B. Zhang, Y. Bai, T. Song, R. Zhang, L. Gao, J. Cai, 

H. Zhang, Z. Liu, X. Bao,

J. Am. Chem. Soc.2020, 142, 40, 17167-17174.

DOI: 10.1021/jacs.0c08139

68. Enhancing CO2 electroreduction to methane with cobalt phthalocyanine and zinc-nitrogen-carbon

tandem catalyst. L. Lin, T. LiuJ. Xiao, H. Li, P. Wei, D. Gao, B, Nan, R. Si, G. Wang*, X. Bao,

Angew. Chem. Int. Ed.2020, 59, 22408-22413.

DOI: 10.1002/anie.202009191

67. Coking-resistant iron catalyst in ethane dehydrogenation achieved through siliceous zeolite 

modulation. Z. Yang†, H. Li†, H. Zhou†, L. Wang*, L. Wang, Q. Zhu, J. Xiao*, X. Meng, J. Chen, F. S. Xiao*,

J. Am. Chem. Soc.2020, 142, 38,16429-16436.

DOI: 10.1021/jacs.0c07792

66. The rational design of single-atom catalysts for electrochemical ammonia synthesis via a descriptor-

based approach. J. Long, Xiaoyan Fu and J. Xiao*,

J. Mater. Chem. A20208, 17078-17088.

DOI: 10.1039/D0TA05943A

65. Coordination structure dominated performance of single-atomic Pt catalyst for anti-Markovnikov

hydroboration of alkenes. Q. Xu, C. Guo, S. Tian, J. Zhang, W. Chen, W. Cheong, L. Gu, L. Zheng, J. Xiao

Q. Liu, B. Li, D. Wang*, Y. Li,

Sci. China. Mater.2020, 63, 6, 972-981.

DOI: 10.1007/s40843-020-1334-6

64. Unveiling hydrocerussite as an electrochemically stable active phase for efficient carbon dioxide 

electroreduction to formate. Y. Shi† , Y. Ji† , J. Long† , Y. Liang, Y. Liu, Y. Yu, J. Xiao*, B. Zhang*,

Nature Commun2020, 11, 3415.

DOI: 10.1038/s41467-020-17120-9

63. Direct electrochemical ammonia synthesis from nitric oxide. 

J. Long#, S. Chen#, Y. Zhang, C. Guo, X. Fu, D. Deng*, J. Xiao*,          

Angew. Chem. Int. Ed. 2020, 59, 9711-9718. (hot paper)

DOI: 10.1002/anie.202002337

62. Synergy effects on Sn-Cu alloy catalyst for efficient CO2 electroreduction to formate with high mass activity.       

K.Ye, A. Cao, J. Shao, G. Wang, R. Si, N. Ta, J. Xiao*, G. Wang*,       

Science Bulletin, 2020,65 (9), 711-719.

DOI: 10.1016/j.scib.2020.01.020

61. Morphology controlling of silver by plasma engineering for electrocatalytic carbon dioxide reduction.

Q. Yu, C. Guo, J. Ge, Y. Zhao, Q. Liu, P. Gao, J. Xiao*, H. Li*,       

J. Power Sources, 453, 2020, 227846.

DOI: 10.1016/j.jpowsour.2020.227846

60. Toward a comparative description between transition metal and zeolite catalysts for methanol conversion.

H. Li, C. Guo, L. Huang, J. Long, X. Fu, W. Chu*, J. Xiao*,

Phys. Chem. Chem. Phys., 2020, 22, 5293-5300.

DOI: 10.1039/d0cp00126k

59. Direct conversion of syngas to ethanol within zeolite crystals.

C. Wang, J. Zhang, G. Qin. L. Wang*. E. Zuidema. Q. Yang. S. Dang. C. Yang, J. Xiao*, X. Meng. C. Mesters, F.-S. Xiao*,

Chem., 2020, 6, 646-657.

DOI: 10.1016/j.chempr.2019.12.007


2019

58. PdZn alloy nanoparticles encapsulated within a few layers of graphene for efficient semi-hydrogenation of acetylene.

L. Yang, Y. Guo, J. Long, L. Xia*, D. Li, J. Xiao*, H. Liu*, 

Chem. Commun., 2019, 55, 14693-14696.

DOI: 10.1039/C9CC06442G 

57. Vertical Silver@Silver Choloride Core-Shell Nanowire Array for Carbon Dioxide Electroreduction.

J. Ge, J. Long, Z. Sun, H. Feng, J. Hu, SW. Koh, Q. Yu, J. Xiao*, H. Li*,

ACS Appl. Energy Mater., 2019, 2 (9), 6163-6169.

DOI: 10.1021/acsaem.9b01286

56. Synergistic Catalysis over Iron-Nitrogen Sites Anchored with Cobalt Phthalocyanine for Efficient CO2 Electroreduction.

L. Lin, H. Li, C. Yan, H. Li, R. Si, M. Li, J. Xiao, G. Wang*, X. Bao,

Adv. Mater., 2019, 1903470.

DOI: 10.1002/adma.201903470

55. Combination of Theory and Experiment Achieving Rational Design of Electrocatalysts for Hydrogen Evolution on Hierarchically 

Mesoporous CoS2 Microsphere.

A. Wang, M. Zhang, H. Li, F. Wu, K. Yan*, J. Xiao*,

J. Phys. Chem. C, 2019, 123 (22), 13428-13433.

DOI: 10.1021/acs.jpcc.9b01814

54. Highly Active Metallic Nickel Sites Confined in N-doped Carbon Nanotubes Toward Significantly Enhanced Activity of CO2 Electroreduction.

W. Zheng, C. Guo, J. Yang, F. He*, B. Yang, Z. Li, L. Lei, J. Xiao*, G. Wu*, Y. Hou*,

Carbon, 2019, 150, 52-59.

DOI: https://doi.org/10.1016/j.carbon.2019.04.112

53. Room-Temperature Conversion of Ethane and Mechanism Understanding over Single Iron Atoms Confined in Graphene.

S. Wang, H. Li, M. He, X. Cui, L. Hua, H. Li, J. Xiao, L. Yu, R. N. Pethan, Z. Xie, D. Deng*,

J. Energy. Chem., 2019, 36, 47-50.

DOI: https://doi.org/10.1016/j.jechem.2019.04.003

52. Exceptional Stability and Chemical Mechanism over Spinel ZnCr2O4 Catalyst for HCl Oxidation to Cl2.

X. Tian, C. Guo, H. Zhong, Y. Zhou*, J. Xiao*,

Molecular Catalysis, 2019, 470, 82-88.

DOI: https://doi.org/10.1016/j.mcat.2019.03.025

51. Towards Unifying the Concepts of Catalysis in Confined Space.

C. Guo and J. Xiao*,

Comp. Mater. Sci., 2019, 161, 58-63.

(Invited Review: the special issue for Rising Stars Prize)

DOI: doi.org/10.1016/j.commatsci.2019.01.039

50. Towards Computational Design of Catalysts for CO2 Selective Reduction via Reaction Phase Diagram Analysis.

M. Han, X. Fu, A. Cao, C. Guo, W. Chu*, J. Xiao*,

Adv. Theory Simul., 2019, 2, 1800200.

DOI: 10.1002/adts.201800200

49. N-doped Graphene Confined Pt Nanoparticles for Efficient Semi-hydrogenation of Phenylacetylene.

L. Xia, D. Li, J. Long, F. Huang, L. Yang*, Y. Guo, Z. Jia, J. Xiao*, H. Liu*,

Carbon, 2019, 145, 47-52 (IF = 7.1).

DOI: https://doi.org/10.1016/j.carbon.2019.01.014

48. Towards Fundamentals of Confined Electrocatalysis in Nanoscale Reactors.

H. Li, C. Guo, Q. Fu, J. Xiao*,

J. Phys. Chem. Lett., 2019, 10, 533-539 (IF = 8.7).

DOI: 10.1021/acs.jpclett.8b03448

47. pH Effects on the Electrochemical Reduction of CO(2) Towards C2 Products on Stepped Copper

X. Liu, P. Schlexer, J. Xiao, Y. Ji, L. Wang, R. Sandberg, M. Tang, K. Brown, H. Peng, S. Ringe, C. Hahn, T. Jaramillo, J. Nørskov, K. Chan*,

Nat. Commun., 2019, 10 (1), 32 (IF = 12.1).

DOI: https://doi.org/10.1038/s41467-018-07970-9

46. Room-Temperature Electrochemical Water-Gas Shift Reaction for High Purity Hydrogen Production.

X. Cui, H. Su, R. Chen, L. Yu, J. Dong, C. Ma, S. Wang, J. Li, F. Yang, J. Xiao, M. Zhang,D. Deng*, D. H. Zhang, Z. Tian, X. Bao*,

Nat. Commun., 2019, 10 (1), 86 (IF = 12.1).

DOI: https://doi.org/10.1038/s41467-018-07937-w

45. Unsaturated Edge-anchored Ni Single Atoms on Porous Microwave Exfoliated Graphene Oxide for Electrochemical CO2 reduction.

C. Yi, S. Zhao, H. Li, S. He, J.P. Veder, B. Johannessen, J. Xiao, S. Lu, J. Pan, M. F. Chisholm, S.Z. Yang, Ch. Liu, J. G. Chen, S. P. Jiang,

Appl. Catal. B Environ., 2019, 243, 294-303 (IF = 11.7).

DOI: https://doi.org/10.1016/j.apcatb.2018.10.046


2018

44. Integration of Theory and Experiment on Mesoporous Nickel Sulfide Microsphere for Hydrogen Evolution Reaction.

A. Wang, H. Li, J. Xiao, Y. Lu, M. Zhang, H. Kang, K. Yan*,

ACS Sustain. Chem. Eng., 2018, 6, 15995 - 16000 (IF = 6.1).

DOI: 10.1021/acssuschemeng.8b04148

43. One-Step Synthesis of NiMn Layered Double Hydroxide Nanosheets Efficient for Water Oxidation.

R Li, Y Liu, H Li, M Zhang, Y Lu, L Zhang, J. Xiao, F Boehm, K Yan,

Small Methods, 2018, 3, 1800344.

DOI: https://doi.org/10.1002/smtd.201800344

42. Mechanistic Insights into the Synthesis of Higher Alcohols from Syngas on CuCo Alloys.

A. Cao, J. Schumann, T. Wang, L. Zhang, J. Xiao, P. Bothra, Y. Liu, F. Abild-Pedersen*, J. K. Nørskov*,

ACS catalysis, 2018, 8, 10148-10155 (IF = 11.4).

DOI: 10.1021/acscatal.8b01596

41. Carbon doped Hexagonal BN as a Highly Efficient Metal-free Base Catalyst for Knoevenagel Condensation Reaction.

X. Li*, B. Lin, H. Li, Q. Yu, Y. Ge, X. Jin, X. Liu, Y. Zhou*, J. Xiao*,

Appl. Catal. B Environ., 2018, 239, 254-259 (IF = 11.7).

DOI: https://doi.org/10.1016/j.apcatb.2018.08.021

40. Carbon Dioxide Electroreduction over Imidazolate Ligands Coordinated with Zn (II) Center in ZIFs.

X. Jiang, H. Li, J. Xiao, D. Gao, R. Si, F. Yang, Y. Li, G. Wang*, X Bao*,

Nano Energy, 2018, 52, 345-350 (IF = 12.3).

DOI: https://doi.org/10.1016/j.nanoen.2018.07.047

39. Coordinatively Unsaturated Nickel-Nitrogen Sites Towards Selective and High-rate CO2 Electroreduction.

C. Yan, H. Li, Y. Ye, H. Wu, F. Cai, R. Si, J. Xiao, S. Miao, S. Xie, F. Yang, Y. Li, G. Wang*, X. Bao*,

Energy & Environ. Sci., 2018, 11, 1204-1210 (IF = 29.5).

DOI: 10.1039/C8EE00133B

38. Highly Efficient Catalytic Scavenging of Oxygen Free Radicals with Graphene-encapsulated Metal Nanoshields.

J. Wang, X. Cui, H. Li, J. Xiao, J. Yang, X. Mu, H. Liu, Y. Sun, X. Xue, C. Liu, X. Zhang*, D. Deng*, X. Bao,

Nano Research, 11(5), 2821-2835 (2018) (IF = 8.0).

DOI: doi.org/10.1007/s12274-017-1912-9

37. The Predominance of Hydrogen Evolution on Transition Metal Sulfides and Phosphides under CO2 Reduction Conditions: 

An experimental and Theoretical Study.

A. T. Landers, M. Fields, D. A. Torelli, J. Xiao, T. R. Hellstern, S. A. Francis, C. Tsai, J. Kibsgaard, N. S. Lewis*, K. Chan*, C. Hahn*, T. F. Jaramillo*,

ACS Energy Lett., 2018, 3, 1450-1457.

DOI: 10.1021/acsenergylett.8b00237

36. Robust and Conductive Two-Dimensional Metal−Organic Frameworks with Exceptionally High Volumetric and Areal Capacitance.

D. Feng, T. Lei, M.R. Lukatskaya, J. Park, Z. Huang, M. Lee, L. Shaw, S. Chen, A.A. Yakovenko, A. Kulkarni, J. Xiao, K. Fredrickson, J. B. Tok, 

X. Zou, Y. Cui, Z. Bao*,

Nature Energy, 2018, 3, 30-36.

DOI: https://doi.org/10.1038/s41560-017-0044-5

35. Room-Temperature Methane Conversion by Graphene-Confined Single Iron Atoms.

X. Cui, H. Li, Y. Wang, Y. Hu, L. Hua, H. Li, X. Han, Q. Liu, F. Yang, L, He, X. Chen, Q. Li, J. Xiao, D. Deng*, X. Bao*,

Chem, 4, 1902-1910, 2018.

DOI: https://doi.org/10.1016/j.chempr.2018.05.006

34. Reaction Mechanisms of Well-defined Metal-N4 Sites in Electrocatalytic CO2 Reduction

[Z. Zhang#, J. Xiao#,] X. Chen, S. Yu, L. Yu, R. Si, Y. Wang, S. Wang, X. Meng, Z. Tian, D. Deng*,

Angew. Chem. Int. Ed. 2018, 2018, 57, 16339-16342. (IF=12.0).

(theory + experiment collaboration)

DOI: https://doi.org/10.1002/anie.201808593


2017

33. Structure and Electronic Properties of Interface-Confined Oxide Nanostructures.

Y. Liu, Y. Ning, L. Yu, Z. Zhou, Q. Liu, Y. Zhang, H. Chen, J. Xiao, P. Liu, F. Yang*, X. Bao*,

ACS Nano, 2017, 11, 11449-11458. (IF = 13.9).

DOI: 10.1021/acsnano.7b06164

32. Machine-Learning Methods Enable Exhaustive Searches for Active Bimetallic Facets and Reveal New Active Motifs for CO2 reduction.

Z. W. Ulissi, M. T. Tang, J. Xiao, X. Liu, D. A. Torelli, M. Karamad, K. Cummins, C. Hahn, N.S. Lewis, T. F. Jaramillo, K. Chan*, J. K. Nørskov*,

ACS catalysis, 7, 6600-6608, 2017 (IF = 10.6).

DOI: 10.1021/acscatal.7b01648

31. Highly Doped and Exposed Cu(I)-N Active Sites within Graphene Towards Efficient Oxygen Reduction for Zinc-air Battery.

H. Wu, H. Li, X. Zhao, Q. Liu, J. Wang, J. Xiao, S. Xie, R. Si, F. Yang, S. Miao, X. Guo, G. Wang* and X. Bao*,

Energy Environ. Sci., 9, 3736-3745, 2017. (IF = 29.5).

DOI: 10.1039/C6EE01867J

30. Enhanced Oxidation Resistance of Active Nanostructures via Dynamic Size Effect.

Y. Liu, F. Yang,* Y. Zhang, J. Xiao, L. Yu, Q. Liu, Y. Ning, Z. Zhou, H. Chen, W. Huang, P. Liu, X. Bao*,

Nature Commun., 8, 14459, 2017. (IF = 12.1).

DOI: https://doi.org/10.1038/ncomms14459

29. Confined Catalysis under Two-dimensional Materials,

H. Li, J. Xiao, Q. Fu*, X. Bao,

Proc. Natl. Acad. Sci. U.S.A., 2017, 114, 5930-5934. (IF = 9.7).

DOI: https://doi.org/10.1073/pnas.1701280114

28. Size-dependence of Carbon Nanotube Confinement in Catalysis,

J. Xiao, X. Pan*, F. Zhang, H. Li, X. Bao*,

Chem. Sci., 8, 278-283, 2017 (IF = 8.7).

DOI: 10.1039/c6sc02298g

27. Understanding Trends in Electrochemical Carbon Dioxide Reduction Rates.

[X. Liu#, J. Xiao#], H. Peng, X. Hong, K. Chan, J.K. Nørskov*.

Nat. Commun., 8, 15438, 2017. (IF = 12.1) (collection in Nature Catalysis)

(theory + theory collaboration)

DOI: 10.1038/ncomms15438


2016

26. Low Charge Overpotential of Lithium-Oxygen Batteries with Metallic Co Encapsulated in Single-Layer Graphene Shell as the Catalyst,

Y. Tu, H. Li, D. Deng, J. Xiao, X. Cui, D. Ding, M. Chen, X. Bao,

Nano Energy, 30, 877-884, 2016. (IF = 12.3)

DOI: https://doi.org/10.1016/j.nanoen.2016.08.066

25. Selective Conversion of Syngas to Light Olefins.

F. Jiao, J. Li, X. Pan,* J. Xiao, H. Li, H. Ma, M. Wei, Y. Pan, Z. Zhou, M. Li, S. Miao, J. Li, Y. Zhu, D. Xiao, T. He, F. Qi, Q. Fu, X. Bao*,

Science, 351 (6277), 2016, 1065-1068.

DOI: 10.1126/science.aaf1835

24. A Graphene Composite Material with Single Cobalt Active Sites: A Highly Efficient Counter Electrode for Dye-Sensitized Solar Cells.

[X. Cui#, J. Xiao#,] Y. Wu, P. Du, R. Si, H. Yang, H. Tian, J. Li, W. Zhang*, D. Deng*, X. Bao,

Angew. Chem. Int. Ed. 2016, 55, 6708-6712. (IF=12.0) (Inside Back Cover)

(experiment + theory collaboration)

DOI: https://doi.org/10.1002/ange.201602097


2015

23. A Single Iron Site Confined in Graphene Matrix for Catalytic Oxidation of Benzene at Room Temperature.

D.Deng, X.Chen, L.Yu, X.Wu, Q.Liu, Y.Liu, H.Yang, H.Tian, Y.Hu, P.Du, R.Si, J.Wang, X.Cui, H.Li, J. Xiao, T.Xu, J.Deng, F.Yang, J.Zhou, 

L.Sun, J.Li, X.Pan, X.Bao*,

Science Advances 2015, 1 (11), e1500462.

DOI: 10.1126/sciadv.1500462

22. Exploring the Ring Current of Carbon Nanotubes by First-Principles Calculations.

P. Ren, A. Zheng, J. Xiao, X. Pan, X. Bao*,

Chem. Sci., 2015, 6, 902-908 (IF = 8.7).

DOI: 10.1039/C4SC01996B

21. Tailoring the Oxidation Activity of Pt Nanoclusters via Encapsulation.

F. Zhang, F. Jiao, X. Pan,* K. Gao, J. Xiao, S. Zhang, X. Bao*,

ACS catalysis, 2015, (5), 13811385 (IF = 12.7).

DOI: 10.1021/cs501763k

20. Hexagonal Boron Nitride Cover on Pt(111):A New Route to Tune Molecule-Metal Interaction and Metal-Catalyzed Reactions.

Y. Zhang, X. Weng, H. Li, H. Li, M. Wei, J. Xiao, Z. Liu, M. Chen,* Q. Fu,* X. Bao,

Nano Lett., 2015, 15, 3616−3623 (IF = 12.7).

DOI: 10.1021/acs.nanolett.5b01205

19. Creating Nano-Space under h-BN Cover for Adlayer Growth on Ni(111).

Y. Yang, Q, Fu,* H. Li, M. Wei, J. Xiao, W. Wei, X. Bao,

ACS Nano, 2015, 9 (12), 11589–11598. (IF = 13.9)

DOI: 10.1021/acsnano.5b05509

18. Triggering the Catalytic Activity of Inert Two-dimensional MoS2 Surface via Single-Atom Metal Doping.

J. Deng, H. Li, J. Xiao, Y. Tu, D. Deng*, H. Yang, H. Tian, J. Li, X. Bao* ,

Energy Environ. Sci., 2015, 8, 1594 −1601. (IF = 29.5).

DOI: 10.1039/C5EE00751H

17. Visualizing Electronic Interactions Between Iron and Carbon by X-ray Chemical Imaging and Spectroscopy,

[X. Chen#, J. Xiao#], J. Wang, D. Deng*, Y. Hu, J. Zhou, L. Yu, T. Heine, X. Pan, X. Bao*,

Chem. Sci., 2015, 6, 3262-3267. (IF = 8.7)

(experiment + theory collaboration)

DOI: 10.1039/c5sc00353a

16. Towards Rational Design of Catalysts Supported on a Topological Insulator Substrate.

J. Xiao*, L. Kou, C. Y. Yam, T. Frauenheim, B. Yan,

ACS catalysis, 2015, 5 (12), 7063-7067 (IF = 10.6).

DOI: 10.1021/acscatal.5b01966

15. Toward Fundamentals of Confined Catalysis in Carbon Nanotubes.

J. Xiao, X. Pan*, S. Guo, P. Ren, X. Bao*,

J. Am. Chem. Soc., 2015, 137, 477-482. (IF = 13.9) (spotlight).

DOI: 10.1021/ja511498s

(ACS collection for nanoreactors: small spaces, big implications in chemistry)


2014

14. Oxygen Vacancy Diffusion in Bare ZnO Nanowire.

B. Dei, A. L. Rosa, T. Frauenheim, J. Xiao, X. Q. Shi, R. Q. Zhang*, M. A. Hove,

Nanoscale, 2014 (6), 11882-11886 (IF = 7.8).

DOI: 10.1039/C4NR03582H

13. Theoretical Prediction of Carbon Dioxide Reduction to Methane at Coordinatively Unsaturated Ferric Sites in the Presence of Cu Impurities,

J. Xiao*, and T. Frauenheim,

Phys. Chem. Chem. Phys., 2014, 16 (8), 3515 – 3519 (IF = 4.1).

DOI: 10.1039/c3cp54901a

12. Structural Evolution of Active Sites of Cu/ZnO Catalysts: From Reactive Environments to Ultrahigh Vacuum Condition.

J. Xiao*, A. L. Rosa, R. Zhang, W. Y. Teoh, T. Frauenheim,

ChemCatChem, 2014 (6) 2322-2326 (IF = 4.8).

DOI: 10.1002/cctc.201402215

11. CO2 Reduction at Low Overpotential on Cu Electrodes in the Presence of Impurities at Subsurface.

J. Xiao*, A. Kuc, T. Frauenheim, T. Heine,

J. Mater. Chem. A, 2014, 2, 4885-4889 (IF = 9.9).

DOI: 10.1039/c3ta14755j

10. Stabilization Mechanism of ZnO Nanoparticles by Fe Doping

J. Xiao, A. Kuc, T. Frauenheim, T. Heine*,

Phys. Rev. Lett., 2014, 112, 106102/1-106102/5. (IF = 8.5).

DOI: 10.1103/PhysRevLett.112.106102


2013

9. Theoretical Characterizations of Spinels Containing Iron and Vanadium via ab initio Calculations.

J. Xiao*, B. Xie and Y. Wang,

ISIJ International, 2013 (53) 245-249. (IF = 1.0).

DOI: https://doi.org/10.2355/isijinternational.53.245

8. Theoretical Insights into CO2 Activation and Reduction on the Ag(111) Monolayer Supported on a ZnO(0001) Substrate.

J. Xiao* and T. Frauenheim,

J. Phys. Chem. C, 2013 (117) 1804-1808. (IF = 3.4).

DOI: 10.1021/jp3115868

7. Temperature Mediated Magnetism in Fe-doped ZnO Semiconductors.

J. Xiao, T. Frauenheim, T. Heine, A. Kuc*,

J. Phys. Chem. C, 2013 (117) 5338-5342. (IF = 4.5)

DOI: 10.1021/jp400429s

6. Fe-Doped ZnO Nanoparticles: The Oxidation Number and Local Charge on Iron, Studied by 57Fe Möβbauer Spectroscopy and DFT calculations,

J. Xiao, A. Kuc, S. Pokhrel, L. Mädler, R. Pöttgen, F. Winter, T. Frauenheim, T. Heine*,

Chem. Eur. J., 2013 (19) 3287-3291 (IF = 5.3) (Front Cover).

(spotlights in Angew. Chem. Int. Ed. 2013 (52) 2640-2642).

DOI: https://doi.org/10.1002/chem.201204308


2012

5. Activation Mechanism of Carbon Monoxide on α-Fe2O3 (0001) Surface Studied by Using First Principle Calculations,

J. Xiao* and T. Frauenheim, 

Appl. Phys. Lett., 2012 (101) 041603/1-3. (IF =3.1)

DOI: https://doi.org/10.1063/1.4739935

4. Activity and Synergy Effects on a Cu/ZnO(0001) Surface Studied Using First-Principle Thermodynamics.

J. Xiao* and T. Frauenheim,

J. Phys. Chem. Lett., 2012 (3) 2638−2642. (IF = 9.4).

DOI: 10.1021/jz301119k


2011

3. Evidence for Fe2+ in Wurtzite Coordination: Iron Doping Stabilizes ZnO Nanoparticles.

J. Xiao, A. Kuc, S. Pokhrel, M. Schowalter, S. Porlapalli, A. Rosenauer, T. Frauenheim, L. Mädler, L. G.M. Pettersson, T. Heine*,

Small, 2011(7) 2879-2886. (IF = 9.6) (Frontispiece).

DOI: https://doi.org/10.1002/smll.201100963


2009

2. Radiative Heat Transfer in Transition Metal Oxides Contained in Mold Fluxes.

J. Diao, B. Xie*, J. Xiao, C. Ji,

ISIJ International, 2009 (49) 1710-1714. (IF = 1.1).

DOI: https://doi.org/10.2355/isijinternational.49.1710

1. Experimental Investigation into Radiative Heat Transfer Characteristics for Mould Fluxes Containing Transition Oxides.

J. Diao, B.Xie*, J. Xiao,

Ironmaking & Steelmaking, 2009 (36) 610-614. (IF = 0.8).

DOI: https://doi.org/10.1179/030192309X12492910938096

Research Interests

Construction of heterogeneous catalysis reaction phase diagram;

Development of self-consistent micro reaction kinetics model; 

Exploration of synergistic reaction mechanism; 

Application of machine learning in catalyst design.


Conferences

2018, [Sydney, Australia] Invited from Prof. Sean Smith (ACEMD18) (oral) 

2018, [Sydney, Australia] Invited from Prof. Jun Huang (CatalSymp2018) (oral) 

2018, [Hangzhou, China] Invited from Prof. Xin Xu (31th CCS annual meeting) (oral)

2018, [Lanzhou, China] Invited talk from Prof. Fuwei Li (Chem, LICP) (oral)  

2018, [Suzhou, China] Invited talk from Prof. Fuwei Li (Chem, LICP) (oral) 

2018, [Shenzhen, China] Invited from Prof. Xianzhu Fu (MSE, SZU) (oral)  

2018, [Shenzhen, China] Invited from Prof. Lele Duan (Chem, Sustech) (oral)  

2018, [Guangzhou, China] Invited from Prof. Kai Yan (ES, SunYatSen) (oral)  

2017, [Hangzhou, China] Invited from Prof. Jianguo Wang (ChemE, ZJUT) (oral) 

 2017, [Hangzhou, China] Invited from Prof. Xinhui Xia (MSE, Zhejing Univ.) (oral) 

 2017, [Chengdu, China] Invited from Prof. Wei Chu (ChemE, Sichuan Univ.) (oral) 

 2017, [Chongqing, China] Invited from Prof. Xuewei Lv (MSE, Chongqing Univ.) (oral)  

2017, [Chongqing, China] Invited from Prof. Zhidong Wei (ChemE, CQU) (oral)  

2017, [Hong Kong, China] Invited from City University of Hong Kong (oral)  

2017, [Hangzhou, China] Invited from Westlake Institute of Advanced Study (oral) 

Honors & Distinctions

2022: Lu Jiaxi Outstanding Mentor Award

2021: The funding for the Mercator Fellowship

2020: The support of the Hundreds of Thousands of Talents Project

2019: The top-notch young talents in Liaoning Province

2019.04: Youth Scholar of Da-Yu Zhang(Dalian Institute of Chemical Physics);

2018:ACS Catalysis Award for Early Career Researcher

2009.10-2013.09: PhD Candidate Scholarship (China Scholarship Council);  

2013.10-2014.10: Excellent Postdoctoral Fellow in 2014 (Dalian Institute of Chemical Physics);

2013.10-2014.10: Excellent Presentation Award in 2014 (Dalian Institute of Chemical Physics); 

2015.06: Best Poster Award in 15th ICQC, Peking, China; 

2013.10-2015.10: Outstanding Postdoctoral Award (Dalian Institute of Chemical Physics);  2014.04-2015.10: Postdoctoral Grant (China Postdoctoral Science Foundation).