基本信息

江杰 男 硕导 中国科学院精密测量科学与技术创新研究院
电子邮件: jiang@apm.ac.cn
通信地址: 武汉市小洪山西30号
邮政编码: 430071
电子邮件: jiang@apm.ac.cn
通信地址: 武汉市小洪山西30号
邮政编码: 430071
招生信息
招生专业
070104-应用数学070101-基础数学
招生方向
非线性发展方程
教育背景
2004-09--2009-06 复旦大学数学科学学院 博士2000-09--2004-06 山东大学数学与系统科学学院 学士
工作经历
工作简历
2009-09~2011-12,北京应用物理与计算数学研究所, 博士后
专利与奖励
奖励信息
(1) 2021年度精密测量院突出科技成果, 研究所(学校), 2021(2) 上海市优秀博士学位论文, 省级, 2011
出版信息
发表论文
(1) Global existence and uniform boundedness in a chemotaxis model with signal-dependent motility, JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 第 1 作者(2) Global existence of weak solutions to a signal-dependent Keller–Segel model for local sensing chemotaxis, NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2021, 第 2 作者(3) Comparison methods for a Keller-Segel-type model of pattern formations with density-suppressed motilities, CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2021, 第 2 作者(4) Global existence for a kinetic model of pattern formation with density-suppressed motilities, JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 第 2 作者(5) GLOBAL STABILITY OF KELLER-SEGEL SYSTEMS IN CRITICAL LEBESGUE SPACES, DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2020, 第 1 作者(6) EVENTUAL SMOOTHNESS AND EXPONENTIAL STABILIZATION OF GLOBAL WEAK SOLUTIONS TO SOME CHEMOTAXIS SYSTEMS, SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2019, 第 1 作者(7) Convergence to equilibria of global solutions to a degenerate quasilinear Keller-Segel system, ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2018, 第 1 作者(8) Convergence to equilibria of global solutions to a degenerate quasilinear Keller-Segel system, ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2018, 第 1 作者(9) Blow-up for a three dimensional Keller-Segel model with consumption of chemoattractant, JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 第 1 作者(10) TWO-PHASE INCOMPRESSIBLE FLOWS WITH VARIABLE DENSITY: AN ENERGETIC VARIATIONAL APPROACH, DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2017, 第 1 作者(11) Well-posedness and long-time behavior of a non-autonomous Cahn–Hilliard–Darcy system with mass source modeling tumor growth, JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 第 1 作者(12) Global existence and asymptotic behavior of solutions to a chemotaxis-fluid system on general bounded domains, ASYMPTOTIC ANALYSIS, 2015, 第 1 作者(13) Global well-posedness and exponential stability of solutions for the viscous radiative and reactive gas, ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2014, 第 1 作者(14) Global solution to the drift-diffusion-Poisson system for semiconductors with nonlinear recombination-generation rate, ASYMPTOTIC ANALYSIS, 2013, 第 2 作者(15) Global solvability and asymptotic behavior of a free boundary problem for the one-dimensional viscous radiative and reactive gas, JOURNAL OF MATHEMATICAL PHYSICS, 2012, 第 1 作者(16) Long-time behaviour of solutions to a one-dimensional strongly nonlinear model for phase transitions with micro-movements, PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2012, 第 1 作者(17) COUNTING THE SET OF EQUILIBRIA FOR A ONE-DIMENSIONAL FULL MODEL FOR PHASE TRANSITIONS WITH MICROSCOPIC MOVEMENTS, QUARTERLY OF APPLIED MATHEMATICS, 2012, 第 1 作者(18) ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO A ONE-DIMENSIONAL FULL MODEL FOR PHASE TRANSITIONS WITH MICROSCOPIC MOVEMENTS, DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2012, 第 1 作者(19) Finite dimensional global and exponential attractors for a class of coupled time-dependent Ginzburg-Landau equations, SCIENCE CHINA-MATHEMATICS, 2012, 第 1 作者(20) On convergence to equilibria for a chemotaxis model with volume-filling effect, ASYMPTOTIC ANALYSIS, 2009, 第 1 作者(21) Convergence to equilibrium for a parabolic–hyperbolic phase field model with Cattaneo heat flux law, JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 第 1 作者
科研活动
科研项目
( 1 ) Frémond相变热力学模型发展方程组整体解及其渐近性态, 主持, 国家级, 2013-01--2015-12( 2 ) 复杂流体中几类非线性发展方程组的适定性与渐近性态, 参与, 国家级, 2014-01--2017-12( 3 ) 一类退化型生物趋化方程的数学研究, 主持, 省级, 2020-03--2022-03( 4 ) 具有动力边界条件的Cahn-Hilliard方程及其与流体耦合系统的数学分析, 参与, 国家级, 2021-01--2024-12( 5 ) 传染病时空传播动力学建模与分析, 主持, 市地级, 2021-12--2024-11
参与会议
(1)On a Keller–Segel System of Chemotaxis with Density-suppressed Motility 2022-03-07(2)Well-posedness and long-time behavior of a non- autonomous Cahn-Hilliard-Darcy system with mass source modeling tumor growth 2015-12-19
指导学生
已指导学生
李海霞 硕士研究生 070101-基础数学