基本信息
郭佳佳 女 中国科学院深圳先进技术研究院
电子邮件: jiajia.guo@siat.ac.cn
通信地址: 广东省深圳市南山区学苑大道1068号
邮政编码:
研究领域
纳米生物光学技术和单分子荧光技术的开发及其在重大疾病研究中的应用
招生信息
招生专业
070302-分析化学083100-生物医学工程0702J1-纳米科学与技术
招生方向
化学与生物传感、单分子荧光技术、体外诊断、新型纳米材料荧光共振能量转移技术蛋白质相互作用、分子机制
教育背景
2015-09--2019-07 巴黎萨克雷大学 博士2012-09--2015-06 吉林大学 硕士2008-09--2012-06 吉林大学 学士
工作经历
工作简历
2021-10~现在, 中国科学院深圳先进技术研究院, 副研究员2019-10~2021-09,麻省理工学院, 博士后
专利与奖励
奖励信息
(1) 吉林省科学技术奖, 二等奖, 省级, 2018(2) 吉林省自然科学学术成果奖, 二等奖, 省级, 2018(3) 吉林省自然科学学术成果奖, 二等奖, 省级, 2015(4) 吉林省自然科学学术成果奖, 一等奖, 省级, 2014
出版信息
发表论文
[1] Bhuckory, Shashi, Lahtinen, Satu, Hoysniemi, Niina, Guo, Jiajia, Qiu, Xue, Soukka, Tero, Hildebrandt, Niko. Understanding FRET in Upconversion Nanoparticle Nucleic Acid Biosensors. NANO LETTERS. 2023, http://dx.doi.org/10.1021/acs.nanolett.2c04899.[2] Hart, Stephanie M, Wang, Xiao, Guo, Jiajia, Bathe, Mark, SchlauCohen, Gabriela S. Tuning Optical Absorption and Emission Using Strongly Coupled Dimers in Programmable DNA Scaffolds. JOURNAL OF PHYSICAL CHEMISTRY LETTERS[J]. 2022, 13(7): 1863-1871, http://dx.doi.org/10.1021/acs.jpclett.1c03848.[3] Chen, Chi, Wei, Xingfei, Parsons, Molly F, Guo, Jiajia, Banal, James L, Zhao, Yinong, Scott, Madelyn N, SchlauCohen, Gabriela S, Hernandez, Rigoberto, Bathe, Mark. Nanoscale 3D spatial addressing and valence control of quantum dots using wireframe DNA origami. NATURE COMMUNICATIONS[J]. 2022, 13(1): http://dx.doi.org/10.1038/s41467-022-32662-w.[4] Li, Ying, Su, Ruifang, Li, Hongxia, Guo, Jiajia, Hildebrandt, Niko, Sun, Chunyan. Fluorescent Aptasensors: Design Strategies and Applications in Analyzing Chemical Contamination of Food. ANALYTICAL CHEMISTRYnull. 2022, 94(1): 193-224, http://dx.doi.org/10.1021/acs.analchem.1c04294.[5] Xu, Jingyue, Guo, Jiajia, GolobSchwarzl, Nicole, Haybaeck, Johannes, Qiu, Xue, Hildebrandt, Niko. Single-Measurement Multiplexed Quantification of MicroRNAs from Human Tissue Using Catalytic Hairpin Assembly and Forster Resonance Energy Transfer. ACS SENSORS[J]. 2020, 5(6): 1768-1776, https://www.webofscience.com/wos/woscc/full-record/WOS:000545694100033.[6] Guo, Jiajia, Mingoes, Carlos, Qiu, Xue, Hildebrandt, Niko. Simple, Amplified, and Multiplexed Detection of MicroRNAs Using Time-Gated FRET and Hybridization Chain Reaction. ANALYTICAL CHEMISTRY[J]. 2019, 91(4): 3101-3109, [7] Guo, Jiajia, Qiu, Xue, Mingoes, Carlos, Deschamps, Jeffrey R, Susumu, Kimihiro, Medintz, Igor L, Hildebrandt, Niko. Conformational Details of Quantum Dot-DNA Resolved by Forster Resonance Energy Transfer Lifetime Nanoruler. ACS NANO[J]. 2019, 13(1): 505-514, https://www.webofscience.com/wos/woscc/full-record/WOS:000456749900050.[8] Qiu, Xue, Xu, Jingyue, Guo, Jiajia, YahiaAmmar, Akram, Kapetanakis, NikiforosIoannis, DurouxRichard, Isabelle, Unterluggauer, Julia J, GolobSchwarzl, Nicole, Regeard, Christophe, Uzan, Catherine, Gouy, Sebastien, DuBow, Michael, Haybaeck, Johannes, Apparailly, Florence, Busson, Pierre, Hildebrandt, Niko. Advanced microRNA-based cancer diagnostics using amplified time-gated FRET. CHEMICALSCIENCE[J]. 2018, 9(42): 8046-8055, https://www.webofscience.com/wos/woscc/full-record/WOS:000451448000002.[9] Qiu, Xue, Guo, Jiajia, Xu, Jingyue, Hildebrandt, Niko. Three-Dimensional FRET Multiplexing for DNA Quantification with Attomolar Detection Limits. JOURNAL OF PHYSICAL CHEMISTRY LETTERS[J]. 2018, 9(15): 4379-4384, https://www.webofscience.com/wos/woscc/full-record/WOS:000440956500037.[10] Qiu, Xue, Guo, Jiajia, Jin, Zongwen, Petreto, Alexandra, Medintz, Igor L, Hildebrandt, Niko. Multiplexed Nucleic Acid Hybridization Assays Using Single-FRET-Pair Distance-Tuning. SMALL[J]. 2017, 13(25): https://www.webofscience.com/wos/woscc/full-record/WOS:000404553100010.[11] Zheng, Hongru, Li, Ying, Xu, Jingyue, Bie, Jiaxin, Liu, Xin, Guo, Jiajia, Luo, Yeli, Shen, Fei, Sun, Chunyan, Yu, Yali. Highly Sensitive Aptamer-Based Colorimetric Detection of Melamine in Raw Milk with Cysteamine-Stabilized Gold Nanoparticles. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY[J]. 2017, 17(2): 853-861, https://www.webofscience.com/wos/woscc/full-record/WOS:000397118700001.[12] Li, Ying, Xu, Jingyue, Wang, Luokai, Huang, Yanjun, Guo, Jiajia, Cao, Xianyi, Shen, Fei, Luo, Yeli, Sun, Chunyan. Aptamer-based fluorescent detection of bisphenol A using nonconjugated gold nanoparticles and CdTe quantum dots. SENSORS AND ACTUATORS B-CHEMICAL[J]. 2016, 222: 815-822, http://dx.doi.org/10.1016/j.snb.2015.08.130.[13] Guo, Jiajia, Li, Ying, Wang, Luokai, Xu, Jingyue, Huang, Yanjun, Luo, Yeli, Shen, Fei, Sun, Chunyan, Meng, Rizeng. Aptamer-based fluorescent screening assay for acetamiprid via inner filter effect of gold nanoparticles on the fluorescence of CdTe quantum dots. ANALYTICAL AND BIOANALYTICAL CHEMISTRY[J]. 2016, 408(2): 557-566, https://www.webofscience.com/wos/woscc/full-record/WOS:000368016400021.[14] Luo, Yeli, Xu, Jingyue, Li, Ying, Gao, Hanting, Guo, Jiajia, Shen, Fei, Sun, Chunyan. A novel colorimetric aptasensor using cysteamine-stabilized gold nanoparticles as probe for rapid and specific detection of tetracycline in raw milk. FOOD CONTROL[J]. 2015, 54: 7-15, https://www.webofscience.com/wos/woscc/full-record/WOS:000353008200002.[15] Li, Ying, Xu, Jingyue, Jia, Minmin, Yang, Zekun, Liang, Ziwei, Guo, Jiajia, Luo, Yeli, Shen, Fei, Sun, Chunyan. Colorimetric determination of 17 beta-estradiol based on the specific recognition of aptamer and the salt-induced aggregation of gold nanoparticles. MATERIALS LETTERS[J]. 2015, 159: 221-224, https://www.webofscience.com/wos/woscc/full-record/WOS:000362603000058.[16] Xu, Jingyue, Li, Ying, Bie, Jiaxin, Jiang, Wei, Guo, Jiajia, Luo, Yeli, Shen, Fei, Sun, Chunyan. Colorimetric method for determination of bisphenol A based on aptamer-mediated aggregation of positively charged gold nanoparticles. MICROCHIMICA ACTA[J]. 2015, 182(13-14): 2131-2138, https://www.webofscience.com/wos/woscc/full-record/WOS:000361394900005.[17] Guo, Jiajia, Zhang, Yan, Luo, Yeli, Shen, Fei, Sun, Chunyan. Efficient fluorescence resonance energy transfer between oppositely charged CdTe quantum dots and gold nanoparticles for turn-on fluorescence detection of glyphosate. TALANTA[J]. 2014, 125: 385-392, http://dx.doi.org/10.1016/j.talanta.2014.03.033.[18] Guo, Jiajia, Li, Hongkun, Xue, Meng, Zhang, Minwei, Cao, Xianyi, Luo, Yeli, Shen, Fei, Sun, Chunyan. Highly Sensitive Detection of Organophosphorus Pesticides Represented by Methamidophos via Inner Filter Effect of Au Nanoparticles on the Fluorescence of CdTe Quantum Dots. FOOD ANALYTICAL METHODS[J]. 2014, 7(6): 1247-1255, https://www.webofscience.com/wos/woscc/full-record/WOS:000336453400011.[19] Cao, Xianyi, Shen, Fei, Zhang, Minwei, Bie, Jiaxin, Liu, Xin, Luo, Yeli, Guo, Jiajia, Sun, Chunyan. Facile synthesis of chitosan-capped ZnS quantum dots as an eco-friendly fluorescence sensor for rapid determination of bisphenol A in water and plastic samples. RSC ADVANCES[J]. 2014, 4(32): 16597-16606, https://www.webofscience.com/wos/woscc/full-record/WOS:000335016400030.[20] Xu, Jingyue, Li, Ying, Guo, Jiajia, Shen, Fei, Luo, Yeli, Sun, Chunyan. Fluorescent detection of clenbuterol using fluorophore functionalized gold nanoparticles based on fluorescence resonance energy transfer. FOOD CONTROL[J]. 2014, 46: 67-74, https://www.webofscience.com/wos/woscc/full-record/WOS:000340300300010.[21] Cao, Xianyi, Shen, Fei, Zhang, Minwei, Guo, Jiajia, Luo, Ye Li, Xu, Jingyue, Li, Ying, Sun, Chunyan. Highly sensitive detection of melamine based on fluorescence resonance energy transfer between rhodamine B and gold nanoparticles. DYES AND PIGMENTS[J]. 2014, 111: 99-107, http://dx.doi.org/10.1016/j.dyepig.2014.06.001.[22] Guo, Jiajia, Liu, Xin, Gao, Hanting, Bie, Jiaxin, Zhang, Yan, Liu, Baofeng, Sun, Chunyan. Highly sensitive turn-on fluorescent detection of cartap via a nonconjugated gold nanoparticle-quantum dot pair mediated by inner filter effect. RSC ADVANCES[J]. 2014, 4(52): 27228-27235, https://www.webofscience.com/wos/woscc/full-record/WOS:000338643500017.[23] Cao, Xianyi, Shen, Fei, Zhang, Minwei, Guo, Jiajia, Luo, Yeli, Li, Xing, Liu, Han, Sun, Chunyan, Liu, Jingbo. Efficient inner filter effect of gold nanoparticles on the fluorescence of CdS quantum dots for sensitive detection of melamine in raw milk. FOOD CONTROL[J]. 2013, 34(1): 221-229, https://www.webofscience.com/wos/woscc/full-record/WOS:000320834000032.[24] Guo, Jiajia, Luo, Yeli, Li, Hongkun, Liu, Xin, Bie, Jiaxin, Zhang, Minwei, Cao, Xianyi, Shen, Fei, Sun, Chunyan, Liu, Jingbo. Sensitive fluorescent detection of carbamate pesticides represented by methomyl based on the inner filter effect of Au nanoparticles on the fluorescence of CdTe quantum dots. ANALYTICAL METHODS[J]. 2013, 5(23): 6830-6838, https://www.webofscience.com/wos/woscc/full-record/WOS:000326946700042.[25] Sun ChunYan, Zhang MinWei, Li HongKun, Li YanSong, Ping Hong, Guo JiaJia, Zhang TieHua. Gold Nanoparticles-based Colorimetric Sensing of Melamine in Milk and Eggs. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY[J]. 2012, 40(3): 386-390, https://www.webofscience.com/wos/woscc/full-record/WOS:000313797900005.[26] Zhang, Minwei, Cao, Xianyi, Li, Hongkun, Guan, Fengrui, Guo, Jiajia, Shen, Fei, Luo, Yeli, Sun, Chunyan, Zhang, Ligong. Sensitive fluorescent detection of melamine in raw milk based on the inner filter effect of Au nanoparticles on the fluorescence of CdTe quantum dots. FOOD CHEMISTRY[J]. 2012, 135(3): 1894-1900, http://dx.doi.org/10.1016/j.foodchem.2012.06.070.[27] Li, Hongkun, Guo, Jiajia, Ping, Hong, Liu, Lurui, Zhang, Minwei, Guan, Fengrui, Sun, Chunyan, Zhang, Qian. Visual detection of organophosphorus pesticides represented by mathamidophos using Au nanoparticles as colorimetric probe. TALANTA[J]. 2011, 87: 93-99, http://dx.doi.org/10.1016/j.talanta.2011.09.046.
发表著作
(1) Colloids for nanobiotechnology : synthesis, characterization and potential applications, Elsevier, 2020-01, 第 3 作者
科研活动
科研项目
( 1 ) 2021年度院优秀青年创新基金B档资助, 负责人, 地方任务, 2022-04--2024-03( 2 ) 抗疫专2022019高通量快速核酸检测系统集成开发, 参与, 地方任务, 2022-03--2023-03( 3 ) 中科院“****”B类专家人才项目, 负责人, 中国科学院计划, 2023-01--2025-12( 4 ) 2022广东省教育厅优秀青年人才创新项目, 负责人, 地方任务, 2022-10--2024-09( 5 ) 国家自然科学基金-青年项目, 负责人, 国家任务, 2024-01--2026-12
参与会议
(1)多路复用FRET生物传感技术与重大疾病精准诊疗 第二届生物医学光子学交叉融合学术论坛 2023-06-08(2)Time-resolved Multiplexed Förster Resonance Energy Transfer for Nucleic Acid Biosensing 2022-04-22(3)Temporal multiplexing FRET: using single Tb-to-quantum dot pair distance-tuning 2019-02-04(4)Temporal multiplexing of microRNA detection using Tb-dye FRET and amplifications 2018-09-04(5)Multiplexed Nucleic Acid Hybridization Assays Using Single Tb-to-Quantum Dot FRET Pair Distance-Tuning 2017-10-10(6)Lifetime-multiplexed microRNA detection based on distance-dependent FRET from Terbium-Quantum Dot 2016-07-08(7)One Quantum Dot Based Time-Gated Förster Resonance Energy Transfer for MicroRNA Duplexing 2016-04-03