基本信息
霍晓叶  女    中国科学院空天信息创新研究院
电子邮件: huoxy@aircas.ac.cn
通信地址: 北京市海淀区北四环西路19号
邮政编码: 100190

研究领域

生物传感技术
微流控技术
单细胞/外泌体分析

招生信息

每年招收硕士1名及联合培养博士若干
招生专业
0809Z1-生物电子学
080903-微电子学与固体电子学
招生方向
生物传感技术
微流控芯片系统
MEMS技术

教育背景

2011-09--2016-07   北京大学   博士

工作经历

   
工作简历
2022-09~现在, 中国科学院空天信息创新研究院, 副研究员
2019-06~2022-05,圣母大学, 博士后研究员
2016-09~2019-05,以色列理工学院, 博士后研究员

专利与奖励



人才与奖励

(1) 中国科学院BR计划, 2022 

(2) 以色列Aly Kaufman Fellowship , 研究所(学校), 2017

(3) 北京大学优秀毕业生 , 研究所(学校), 2016

出版信息

   
发表论文
[1] 高驰远, 范龙, 杨光, 王军波, 赵晓甦, 霍晓叶, 陈健. A Quantitative Microfluidic Flow Cytometer Based on Spaced Uniform Optical Fields. IEEE Sensors 2024. 2024, 第 6 作者null(null): 
[2] 李楠, 张渊越, 王会丽, 徐璕, 霍晓叶, 王军波, 徐友春. A chip-based universal strategy to realize multiplex PCR by using wax films for sealing and controllable release of primers. Biosensors and Bioelectronics[J]. 2024, 第 5 作者null(null): 
[3] 陈骁, 李益民, 王闵瑞虹, 秦绪珍, 王军波, 霍晓叶, 陈健. evelopment of Microfluidic Impedance Flow Cytometry Based on Three-Dimensional Hydrodynamic Focusing. IEEE Sensors 2024. 2024, 第 6 作者null(null): 
[4] Wang, Minruihong, Zhang, Jie, Chen, Xiao, Li, Yimin, Huang, Xukun, Wang, Junbo, Li, Yueying, Huo, Xiaoye, Chen, Jian. Microfluidic impedance flow cytometer leveraging virtual constriction microchannel and its application in leukocyte differential. MICROSYSTEMS & NANOENGINEERING[J]. 2024, 第 8 作者  通讯作者  10(1): http://dx.doi.org/10.1038/s41378-024-00833-y.
[5] 陈骁, 王闵瑞虹, 李益民, 黄旭琨, 王源, 王军波, 霍晓叶, 陈健. Leukocyte differential based on an impedance flow cytometry coupled with virtual constriction microchannels. MicroTAS 2024. 2024, 第 7 作者null(null): 
[6] 陈泳帆, 高驰远, 陈德勇, 王军波, 霍晓叶, 陈健. Development of Virtual Lock-in Amplifier For Fluorescent Flow Cytometry. IEEE Sensors 2024. 2024, 第 5 作者null(null): 
[7] 周天平, 李楠, 霍晓叶, 陈德勇, 王军波. A Magnetofluidic Nucleic Acid Cartridge for Multiplexed Detection of Respiratory Pathogens. IEEE Sensors 2024. 2024, 第 3 作者null(null): 
[8] Biomicrofluidics. 2023, 第 5 作者  通讯作者  
[9] Mateescu, Bogdan, Jones, Jennifer C, Alexander, Roger P, Alsop, Eric, An, Ji Yeong, Asghari, Mohammad, Boomgarden, Alex, Bouchareychas, Laura, Cayota, Alfonso, Chang, HsuehChia, Charest, Al, Chiu, Daniel T, Coffey, Robert J, Das, Saumya, De Hoff, Peter, de Mello, Andrew, DSouzaSchorey, Crislyn, Elashoff, David, Eliato, Kiarash R, Franklin, Jeffrey L, Galas, David J, Gerstein, Mark B, Ghiran, Ionita H, Go, David B, Gould, Stephen, Grogan, Tristan R, Higginbotham, James N, Hladik, Florian, Huang, Tony Jun, Huo, Xiaoye, Hutchins, Elizabeth, Jeppesen, Dennis K, JovanovicTalisman, Tijana, Kim, Betty Y S, Kim, Sung, Kim, KyoungMee, Kim, Yong, Kitchen, Robert R, Knouse, Vaughan, LaPlante, Emily L, Lebrilla, Carlito B, Lee, L James, Lennon, Kathleen M, Li, Guoping, Li, Feng, Li, Tieyi, Liu, Tao, Liu, Zirui, Maddox, Adam L, McCarthy, Kyle, Meechoovet, Bessie, Maniya, Nalin, Meng, Yingchao, Milosavljevic, Aleksandar, Min, ByoungHoon, Morey, Amber, Ng, Martin, Nolan, John, Junior, Getulio P De Oliveira, Paulaitis, Michael E, Tuan Anh Phu, Raffai, Robert L, Roth, Matthew E, Routenberg, David A, Rozowsky, Joel, Rufo, Joseph, Senapati, Satyajyoti, Shachar, Sigal, Sharma, Himani, Sood, Anil K, Stavrakis, Stavros, Sturchler, Alessandra, Tewari, Muneesh, Tosar, Juan P, TuckerSchwartz, Alexander K, Turchinovich, Andrey, Valkov, Nedyalka, Van KeurenJensen, Kendall, Vickers, Kasey C, Vojtech, Lucia, Vreeland, Wyatt N, Wang, Ceming, Wang, Kai, Wang, ZeYu, Welsh, Joshua A, Witwer, Kenneth W, Wong, David T W, Xia, Jianping, Xie, YaHong, Yang, Kaichun, Zaborowski, Mikolaj P, Zhang, Chenguang, Zhang, Qin, Zivkovic, Angela M, Laurent, Louise C. Phase 2 of extracellular RNA communication consortium charts next-generation approaches for extracellular RNA research. ISCIENCE[J]. 2022, 第 30 作者25(8): http://apps.webofknowledge.com/CitedFullRecord.do?product=UA&colName=WOS&SID=5CCFccWmJJRAuMzNPjj&search_mode=CitedFullRecord&isickref=WOS:000888517800001.
[10] Zhang, Chenguang, Huo, Xiaoye(共同一作), Zhu, Yini, Higginbotham, James N N, Cao, Zheng, Lu, Xin, Franklin, Jeffrey L L, Vickers, Kasey C C, Coffey, Robert J J, Senapati, Satyajyoti, Wang, Ceming, Chang, HsuehChia. Electrodeposited magnetic nanoporous membrane for high-yield and high-throughput immunocapture of extracellular vesicles and lipoproteins. COMMUNICATIONS BIOLOGY[J]. 2022, 5(1): http://dx.doi.org/10.1038/s42003-022-04321-9.
[11] Mateescu, Bogdan, Jones, Jennifer C, Alexander, Roger P, Alsop, Eric, An, Ji Yeong, Asghari, Mohammad, Boomgarden, Alex, Bouchareychas, Laura, Cayota, Alfonso, Chang, HsuehChia, Charest, Al, Chiu, Daniel T, Coffey, Robert J, Das, Saumya, De Hoff, Peter, de Mello, Andrew, DSouzaSchorey, Crislyn, Elashoff, David, Eliato, Kiarash R, Franklin, Jeffrey L, Galas, David J, Gerstein, Mark B, Ghiran, Ionita H, Go, David B, Gould, Stephen, Grogan, Tristan R, Higginbotham, James N, Hladik, Florian, Huang, Tony Jun, Huo, Xiaoye, Hutchins, Elizabeth, Jeppesen, Dennis K, JovanovicTalisman, Tijana, Kim, Betty Y S, Kim, Sung, Kim, KyoungMee, Kim, Yong, Kitchen, Robert R, Knouse, Vaughan, LaPlante, Emily L, Lebrilla, Carlito B, Lee, L James, Lennon, Kathleen M, Li, Guoping, Li, Feng, Li, Tieyi, Liu, Tao, Liu, Zirui, Maddox, Adam L, McCarthy, Kyle, Meechoovet, Bessie, Maniya, Nalin, Meng, Yingchao, Milosavljevic, Aleksandar, Min, ByoungHoon, Morey, Amber, Ng, Martin, Nolan, John, Junior, Getulio P De Oliveira, Paulaitis, Michael E, Tuan Anh Phu, Raffai, Robert L, Roth, Matthew E, Routenberg, David A, Rozowsky, Joel, Rufo, Joseph, Senapati, Satyajyoti, Shachar, Sigal, Sharma, Himani, Sood, Anil K, Stavrakis, Stavros, Sturchler, Alessandra, Tewari, Muneesh, Tosar, Juan P, TuckerSchwartz, Alexander K, Turchinovich, Andrey, Valkov, Nedyalka, Van KeurenJensen, Kendall, Vickers, Kasey C, Vojtech, Lucia, Vreeland, Wyatt N, Wang, Ceming, Wang, Kai, Wang, ZeYu, Welsh, Joshua A, Witwer, Kenneth W, Wong, David T W, Xia, Jianping, Xie, YaHong, Yang, Kaichun, Zaborowski, Mikolaj P, Zhang, Chenguang, Zhang, Qin, Zivkovic, Angela M, Laurent, Louise C. Phase 2 of extracellular RNA communication consortium charts next-generation approaches for extracellular RNA research. ISCIENCE[J]. 2022, 第 30 作者25(8): http://dx.doi.org/10.1016/j.isci.2022.104653.
[12] Zhang, Chenguang, Huo, Xiaoye(共同一作), Zhu, Yini, Higginbotham, James N N, Cao, Zheng, Lu, Xin, Franklin, Jeffrey L L, Vickers, Kasey C C, Coffey, Robert J J, Senapati, Satyajyoti, Wang, Ceming, Chang, HsuehChia. Electrodeposited magnetic nanoporous membrane for high-yield and high-throughput immunocapture of extracellular vesicles and lipoproteins. COMMUNICATIONS BIOLOGY[J]. 2022, 5(1): http://dx.doi.org/10.1038/s42003-022-04321-9.
[13] Chen, Liao, Yadav, Vivek, Zhang, Chenguang, Huo, Xiaoye, Wang, Ceming, Senapati, Satyajyoti, Chang, HsuehChia. Elliptical Pipette Generated Large Microdroplets for POC Visual ddPCR Quantification of Low Viral Load. ANALYTICAL CHEMISTRY[J]. 2021, 第 4 作者93(16): 6456-6462, http://dx.doi.org/10.1021/acs.analchem.1c00192.
[14] Chen, Liao, Yadav, Vivek, Zhang, Chenguang, Huo, Xiaoye, Wang, Ceming, Senapati, Satyajyoti, Chang, HsuehChia. Elliptical Pipette Generated Large Microdroplets for POC Visual ddPCR Quantification of Low Viral Load. ANALYTICAL CHEMISTRY[J]. 2021, 第 4 作者93(16): 6456-6462, http://dx.doi.org/10.1021/acs.analchem.1c00192.
[15] Bauerochs, Tobias, Huo, Xiaoye, Yossifon, Gilad, Ulrich, Stephan, Schneider, Steffen, Bruns, Rainer. Description and visualization of the highly dynamic behavior of the electrorheological effect. JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES[J]. 2020, 第 2 作者31(2): 308-317, https://www.webofscience.com/wos/woscc/full-record/WOS:000500907300001.
[16] Bauerochs, Tobias, Huo, Xiaoye, Yossifon, Gilad, Ulrich, Stephan, Schneider, Steffen, Bruns, Rainer. Alternating current response and visualization of electrorheological fluid. JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES[J]. 2020, 第 2 作者31(2): 288-296, https://www.webofscience.com/wos/woscc/full-record/WOS:000500131000001.
[17] Huo, Xiaoye, Wu, Yue, Boymelgreen, Alicia, Yossifon, Gilad. Analysis of Cargo Loading Modes and Capacity of an Electrically-Powered Active Carrier. LANGMUIR[J]. 2020, 第 1 作者36(25): 6963-6970, http://dx.doi.org/10.1021/acs.langmuir.9b03036.
[18] Bauerochs, Tobias, Huo, Xiaoye, Yossifon, Gilad, Ulrich, Stephan, Schneider, Steffen, Bruns, Rainer. Alternating current response and visualization of electrorheological fluid. JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES[J]. 2020, 第 2 作者31(2): 288-296, https://www.webofscience.com/wos/woscc/full-record/WOS:000500131000001.
[19] Bauerochs, Tobias, Huo, Xiaoye, Yossifon, Gilad, Ulrich, Stephan, Schneider, Steffen, Bruns, Rainer. Description and visualization of the highly dynamic behavior of the electrorheological effect. JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES[J]. 2020, 第 2 作者31(2): 308-317, https://www.webofscience.com/wos/woscc/full-record/WOS:000500907300001.
[20] Huo, Xiaoye, Wu, Yue, Boymelgreen, Alicia, Yossifon, Gilad. Analysis of Cargo Loading Modes and Capacity of an Electrically-Powered Active Carrier. LANGMUIR[J]. 2020, 第 1 作者36(25): 6963-6970, http://dx.doi.org/10.1021/acs.langmuir.9b03036.
[21] Huo, X, Yossifon, G. Significant enhancement of the electrorheological effect by non-straight electrode geometry. SOFT MATTER[J]. 2019, 15(32): 6455-6460, https://www.webofscience.com/wos/woscc/full-record/WOS:000481424100017.
[22] Huo, X, Yossifon, G. Tunable Electrorheological Fluid Microfluidic Rectifier: Irreversibility of Viscous Flow Due to Spatial Asymmetry Induced Memory Effects. PHYSICAL REVIEW LETTERS[J]. 2019, 123(19): https://www.webofscience.com/wos/woscc/full-record/WOS:000495073200006.
[23] Huo, X, Yossifon, G. Significant enhancement of the electrorheological effect by non-straight electrode geometry. SOFT MATTER[J]. 2019, 15(32): 6455-6460, https://www.webofscience.com/wos/woscc/full-record/WOS:000481424100017.
[24] Huo, X, Yossifon, G. Tunable Electrorheological Fluid Microfluidic Rectifier: Irreversibility of Viscous Flow Due to Spatial Asymmetry Induced Memory Effects. PHYSICAL REVIEW LETTERS[J]. 2019, 123(19): https://www.webofscience.com/wos/woscc/full-record/WOS:000495073200006.
[25] Yang, Fan, Yang, Nana, Huo, Xiaoye, Xu, Shengyong. Thermal sensing in fluid at the micro-nano-scales. BIOMICROFLUIDICS. 2018, 第 11 作者12(4): http://dx.doi.org/10.1063/1.5037421.
[26] Yang, Fan, Yang, Nana, Huo, Xiaoye, Xu, Shengyong. Thermal sensing in fluid at the micro-nano-scales. BIOMICROFLUIDICS. 2018, 第 3 作者  通讯作者  12(4): http://dx.doi.org/10.1063/1.5037421.
[27] Li, Gang, Su, Xiaohui, Yang, Fan, Huo, Xiaoye, Zhang, Gengmin, Xu, Shengyong. Geometric Shape Induced Small Change of Seebeck Coefficient in Bulky Metallic Wires. SENSORS[J]. 2017, 第 4 作者17(2): https://www.webofscience.com/wos/woscc/full-record/WOS:000395482700115.
[28] Li, Gang, Su, Xiaohui, Yang, Fan, Huo, Xiaoye, Zhang, Gengmin, Xu, Shengyong. Geometric Shape Induced Small Change of Seebeck Coefficient in Bulky Metallic Wires. SENSORS[J]. 2017, 第 4 作者17(2): https://www.webofscience.com/wos/woscc/full-record/WOS:000395482700115.
[29] Li, Gang, Wang, Zhenhai, Mao, Xinyu, Zhang, Yinghuang, Huo, Xiaoye, Liu, Haixiao, Xu, Shengyong. Real-Time Two-Dimensional Mapping of Relative Local Surface Temperatures with a Thin-Film Sensor Array. SENSORS[J]. 2016, 第 5 作者16(7): https://doaj.org/article/85d498dedc4a4f48941d5e059c74d1ed.
[30] Huo, Xiaoye, Wang, Zhenhai, Fu, Mengqi, Xia, Jiye, Xu, Shengyong. A sub-200 nanometer wide 3D stacking thin-film temperature sensor. RSC ADVANCES[J]. 2016, 第 1 作者6(46): 40185-40191, http://dx.doi.org/10.1039/c6ra06353e.
[31] Huo, Xiaoye, Xu, Jingjing, Wang, Zhenhai, Yang, Fan, Xu, Shengyong. Performance of Nano-Submicron-Stripe Pd Thin-Film Temperature Sensors. NANOSCALE RESEARCH LETTERS[J]. 2016, 第 1 作者11(1): http://dx.doi.org/10.1186/s11671-016-1565-8.
[32] Li, Gang, Wang, Zhenhai, Mao, Xinyu, Zhang, Yinghuang, Huo, Xiaoye, Liu, Haixiao, Xu, Shengyong. Real-Time Two-Dimensional Mapping of Relative Local Surface Temperatures with a Thin-Film Sensor Array. SENSORS[J]. 2016, 第 5 作者16(7): https://doaj.org/article/85d498dedc4a4f48941d5e059c74d1ed.
[33] Huo, Xiaoye, Wang, Zhenhai, Fu, Mengqi, Xia, Jiye, Xu, Shengyong. A sub-200 nanometer wide 3D stacking thin-film temperature sensor. RSC ADVANCES[J]. 2016, 第 1 作者6(46): 40185-40191, http://dx.doi.org/10.1039/c6ra06353e.
[34] Huo, Xiaoye, Xu, Jingjing, Wang, Zhenhai, Yang, Fan, Xu, Shengyong. Performance of Nano-Submicron-Stripe Pd Thin-Film Temperature Sensors. NANOSCALE RESEARCH LETTERS[J]. 2016, 第 1 作者11(1): http://dx.doi.org/10.1186/s11671-016-1565-8.
[35] Liang, Yiran, Liang, Xuelei, Zhang, Zhiyong, Li, Wei, Huo, Xiaoye, Peng, Lianmao. High mobility flexible graphene field-effect transistors and ambipolar radio-frequency circuits. NANOSCALE[J]. 2015, 第 5 作者7(25): 10954-10962, http://dx.doi.org/10.1039/c5nr02292d.
[36] Liang, Yiran, Liang, Xuelei, Zhang, Zhiyong, Li, Wei, Huo, Xiaoye, Peng, Lianmao. High mobility flexible graphene field-effect transistors and ambipolar radio-frequency circuits. NANOSCALE[J]. 2015, 第 5 作者7(25): 10954-10962, http://dx.doi.org/10.1039/c5nr02292d.
[37] Huo, Xiaoye, Sun, Weiqiang, Liu, Haixiao, Peng, Lianmao, Xu, Shengyong. Response to "Comment on 'Unexpected size effect in the thermopower of thin-film stripes'" J. Appl. Phys. 115, 236101 ( 2014). JOURNAL OF APPLIED PHYSICS. 2014, 第 11 作者115(23): https://www.webofscience.com/wos/woscc/full-record/WOS:000338106000088.
[38] Huo, Xiaoye, Liu, Haixiao, Liang, Yiran, Fu, Mengqi, Sun, Weiqiang, Chen, Qing, Xu, Shengyong. A Nano-Stripe Based Sensor for Temperature Measurement at the Submicrometer and Nano Scales. SMALL[J]. 2014, 第 1 作者10(19): 3869-3875, http://dx.doi.org/10.1002/smll.201303942.
[39] Huo, Xiaoye, Sun, Weiqiang, Liu, Haixiao, Peng, Lianmao, Xu, Shengyong. Response to "Comment on 'Unexpected size effect in the thermopower of thin-film stripes'" J. Appl. Phys. 115, 236101 ( 2014). JOURNAL OF APPLIED PHYSICS. 2014, 第 1 作者  通讯作者  115(23): https://www.webofscience.com/wos/woscc/full-record/WOS:000338106000088.
[40] Huo, Xiaoye, Liu, Haixiao, Liang, Yiran, Fu, Mengqi, Sun, Weiqiang, Chen, Qing, Xu, Shengyong. A Nano-Stripe Based Sensor for Temperature Measurement at the Submicrometer and Nano Scales. SMALL[J]. 2014, 第 1 作者10(19): 3869-3875, http://dx.doi.org/10.1002/smll.201303942.

科研活动

   
科研项目
( 1 ) ****, 负责人, 研究所自选, 2022-10--2025-09
( 2 ) MEMS压力传感器芯片加工, 负责人, 企业委托, 2022-12--2023-12
( 3 ) 硅谐振驱动电路开发, 负责人, 企业委托, 2022-12--2023-12
( 4 ) 微纳结构化的凝胶基柔性多功能电子皮肤研究, 负责人, 研究所自选, 2022-12--2024-11
参与会议
(1)Electrorheological diode-like effect in funnel-shaped microchannel device   2018-07-22
(2)The role of electrophoresis on the low frequency dispersion of the electrorheological effect   2018-07-16
(3)Two types of sub-micron temperature sensors and their application in microfluidic systems   2016-07-25
(4)Temperature sensing and real-time two-dimensional mapping at the micro-scale   2016-03-14
(5)Study of the response time for the microfluidic temperature measurement   2015-08-18
(6)Single-metal dual-stripe sensor and its application in 3D temperature sensing   2014-10-28
(7)A promising submicron sensor for in situ temperature sensing in lab-on-a-chip systems   2014-04-25

合作情况

   
项目协作单位

北京大学

美国圣母大学

以色列理工学院

积水潭医院

首都医科大学

中国医学科学院基础医学研究所

大连理工大学