
电子邮件: tmhuang@mail.iggcas.ac.cn
通信地址: 北京市朝阳区北土城西路19号
邮政编码: 100029
研究领域
- 地下水补给与演化
- 水岩相互作用
- 同位素示踪与年代学
招生信息
招生专业
招生方向
教育背景
2004-09--2007-06 兰州大学 硕士
2000-09--2004-06 兰州大学 学士
工作经历
2021-12~现在, 中国科学院地质与地球物理研究所, 研究员
2013-01~2021-12, 中国科学院地质与地球物理研究所, 副研究员
2019-08~2020-08, University of Calgary, 访问学者
2010-11~2012-12, 中国科学院地质与地球物理研究所, 博士后
教授课程
同位素水文学
专利与奖励
(1)自然资源科学技术奖(科技进步二等奖), 2023
(2)中国科学院朱李月华优秀教师奖, 2023
(3)首届优秀共享开放遥感数据集, 2022
(4)入选中国科学院青年创新促进会, 2018
(5)中国自然资源学会青年科技奖, 2015
(6)国际水岩相互作用GMZ Scholarship, 2013
(7)石羊河流域水资源与水环境研究, 一等奖, 2005
(8)石羊河流域民勤盆地绿洲沙漠化防治与生态扶贫开发研究, 一等奖, 2005
出版信息
第一/通讯作者SCI论文
[40] Huang T* (2025) Comment on “Tracking nitrate and sulfate sources in groundwater of an urbanized valley using a multi-tracer approach combined with a Bayesian isotope mixing model by Torres-Martínez et al. [Water Research 182 (2020) 115962]”. Water Research 276, 123271, https://doi.org/10.1016/j.watres.2025.123271
[39] Zhang Y, Yang Q-Y, Manga M*, Fu L-Y, Zhang H, Chu B, Chen G, Huang T*, Han T, Qi S* (2025) Using water level responses to atmospheric pressure variations to measure and monitor vertical leakage through confining units, with application to the Jurassic Shaximiao crust, China. Water Resources Research 61, e2024WR037767. https://doi.org/10.1029/2024WR037767
[38] Zhao Y, Li Z, Zan C, Li Y, Zhang Y, Huang T* (2024) Experimental study on the impact of sorption-desorption on nitrate isotopes. Water 16, 2807, https://doi.org/10.3390/w16192807
[37] Zhang Y, Manga M*, Fu L-Y, Zhang H, Huang T*, Yang Q, Cui Z-D, Qi S*, Huang Y (2024) Long‐ and short‐term effects of seismic waves and coseismic pressure changes on fractured aquifers. Journal of Geophysical Research: Solid Earth 129, e2023JB027970, https://doi.org/10.1029/2023JB027970
[36] Li Y, Zhou X*, Huang T*, Tian J, He M, Zhu X, Li J, Zhang Y, Wu Z, Li B, Yan Y, Wang Y, Yao B, Zeng Z, Xing G, Cui S (2024) Origins of volatiles and helium fluxes from hydrothermal systems in the Eastern Himalayan Syntaxis and constraints on regional heat and tectonic activities. Journal of Hydrology 631, 130776, https://doi.org/10.1016/j.jhydrol.2024.130776
[35] Zhang Y, Chu B, Huang T*, Qi S, Manga M*, Zhang H, Zheng B, Zhou Y (2024) Using the tidal response of groundwater to assess and monitor caprock confinement in CO2 geological sequestration. Water 16, 868, https://doi.org/10.3390/w16060868
[34] Huang T*, Li Z, Long Y, Zhang F, Pang Z (2022) Role of desorption-adsorption and ion exchange in isotopic and chemical (Li, B, and Sr) evolution of water following water–rock interaction. Journal of Hydrology 610, 127800, https://doi.org/10.1016/j.jhydrol.2022.127800
[33] Long Y, Huang T*, Zhang F, Zhao Y (2022) Soil column experimental study on the effect of soil structure disturbance on water chemistry. International Journal of Environmental Research and Public Health 19(23), 15673, https://doi.org/10.3390/ijerph192315673
[32] Li Z, Huang T*, Wang G*, Long Y, Zhang F, Pang Z (2022) A conceptual model for correcting groundwater 14C age. Applied Geochemistry 143, 105360, https://doi.org/10.1016/j.apgeochem.2022.105360
[31] Zhang Y*, Huang T* (2022) DNA-based tracers for the characterization of hydrogeological systems—recent advances and new frontiers. Water 14(21), 3545, https://doi.org/10.3390/w14213545
[30] Zhang Y*, Sun X, Huang T*, Qi S, Fu L-Y, Yang Q-Y, Hu J, Zheng B, Zhang W (2022) Possible continuous vertical water leakage of deep aquifer: Records from a deep well in Tianjin Province, North China. Geofluids 2022, 4419310, https://doi.org/10.1155/2022/4419310
[29] Zhang F, Huang T*, Man W, Hu H, Long Y, Li Z, Pang Z (2021) Contribution of recycled moisture to precipitation: A modified d-excess-based model. Geophysical Research Letters 48(21), e2021GL095909, https://doi.org/10.1029/2021GL095909
[28] Long Y, Huang T*, Zhang F, Li Z, Ma B, Li Y, Pang Z (2021) Origin of sulfate in the unsaturated zone and groundwater of a loess aquifer. Hydrological Processes 35(4), e14166, https://doi.org/10.1002/hyp.14166
[27] Ma B, Huang T*, Li J, Li Z, Long Y, Zhang F, Pang Z (2021) Tracing nitrate source and transformation in a semiarid loess aquifer with the thick unsaturated zone. Catena 198, 105045, https://doi.org/10.1016/j.catena.2020.105045
[26] Huang T*, Li Z, Mayer B*, Nightingale M, Li X, Li G, Long Y, Pang Z (2020) Identification of geochemical processes during hydraulic fracturing of a shale gas reservoir: a controlled field and laboratory water-rock interaction experiment. Geophysical Research Letters 47(20), e2020GL090420, https://doi.org/10.1029/2020GL090420
[25] Huang T*, Pang Z*, Yang S, Yin L (2020) Impact of afforestation on atmospheric recharge to groundwater in a semiarid area. Journal of Geophysical Research: Atmospheres 125(9), e2019JD032185, https://doi.org/10.1029/2019JD032185
[24] Huang T, Ma B, Pang Z*, Li Z, Li Z, Long Y (2020) How does precipitation recharge groundwater in loess aquifers? Evidence from multiple environmental tracers. Journal of Hydrology 583, 124532, https://doi.org/10.1016/j.jhydrol.2019.124532
[23] Huang T, Pang Z*, Li Z, Li Y, Hao Y (2020) A framework to determine sensitive inorganic monitoring indicators for tracing groundwater contamination by produced formation water from shale gas development in the Fuling Gasfield, SW China. Journal of Hydrology 581, 124403, https://doi.org/10.1016/j.jhydrol.2019.124403
[22] Li Z, Huang T*, Ma B, Long Y, Zhang F, Tian J, Li Y, Pang Z (2020) Baseline groundwater quality before shale gas development in Xishui, Southwest China: Analyses of hydrochemistry and multiple environmental isotopes (2H, 18O, 13C, 87Sr/86Sr, 11B, and noble gas isotopes). Water 12(6), 1741, https://doi.org/10.3390/w12061741
[21] Long Y, Liu J, Huang T* (2020) Impact of afforestation on soil hydraulic conductivity and repellency index based on microdisk infiltration experiment. Fresenius Environmental Bulletin 29(7A): 5855–5859, https://www.prt-parlar.de/download_feb_2020/
[20] Huang T*, Fan Y, Long Y, Pang Z (2019) Quantitative calculation for the contribution of acid rain to carbonate weathering. Journal of Hydrology 568: 360–371, https://doi.org/10.1016/j.jhydrol.2018.11.003
[19] Huang T*, Li Z, Ma B, Long Y (2019) Tracing the origin of groundwater nitrate in an area affected by acid rain using dual isotopic composition of nitrate. Geofluids 2019, 8964182, https://doi.org/10.1155/2019/8964182
[18] Huang T*, Ma B (2019) The origin of major ions of groundwater in a loess aquifer. Water 11(12), 2464, https://doi.org/10.3390/w11122464
[17] Huang T, Pang Z*, Liu J, Ma J, Gates J (2017) Groundwater recharge mechanism in an integrated tableland of the Loess Plateau, northern China: insights from environmental tracers. Hydrogeology Journal 25(7): 2049–2065, http://dx.doi.org/10.1007/s10040-017-1599-8
[16] Huang T, Pang Z*, Liu J, Yin L, Edmunds WM (2017) Groundwater recharge in an arid grassland as indicated by soil chloride profile and multiple tracers. Hydrological Processes 31(5): 1047–1057, http://dx.doi.org/10.1002/hyp.11089
[15] Huang T, Pang Z*, Li J, Xiang Y, Zhao Z (2017) Mapping groundwater renewability using age data in the Baiyang alluvial fan, NW China. Hydrogeology Journal 25(3): 743–755, http://dx.doi.org/10.1007/s10040-017-1534-z
[14] Huang T*, Pang Z, Tian J, Li Y, Yang S, Luo L (2017) Methane content and isotopic composition of shallow groundwater: implications for environmental monitoring related to shale gas exploitation. Journal of Radioanalytical and Nuclear Chemistry 312(3):577–585, http://dx.doi.org/10.1007/s10967-017-5243-9
[13] Huang T*, Yang S, Pang Z (2017) Hydrogeochemistry evolution and fluoride accumulation in an arid piedmont alluvial-proluvial plain. Fresenius Environmental Bulletin 26(5): 3569–3576, http://www.prt-parlar.de/download_feb_2017/
[12] Huang T*, Hao Y, Pang Z, Li Z, Yang S (2017) Radioactivity of soil, rock and water in a shale gas exploitation area, SW China. Water 9(5), 299, https://doi.org/10.3390/w9050299
[11] Li Y, Huang T*, Pang Z, Jin C (2017) Geochemical processes during hydraulic fracturing: a water-rock interaction experiment and field test study. Geosciences Journal 21(5): 753–763, https://doi.org/10.1007/s12303-017-0114-5
[10] Huang T*, Yang S, Liu J, Li Z (2016) How much information can soil solute profiles reveal about groundwater recharge. Geosciences Journal 20(4): 495–502, http://dx.doi.org/10.1007/s12303-015-0069-3
[9] Huang T*, Yang S, Liu J (2016) Using soil profile to assess groundwater recharge and effect of land-use change in a rain-fed agricultural area. Fresenius Environmental Bulletin 25(3): 862–873, http://www.prt-parlar.de/download_feb_2016/
[8] Li Y, Huang T*, Pang Z*, Wang Y, Jin C (2016) Geochemical characteristics of shallow groundwater in Jiaoshiba shale gas production area: implications for environmental concerns. Water 8(12), 552, https://doi.org/10.3390/w8120552
[7] Huang T, Pang Z*, Edmunds WM (2013) Soil profile evolution following land-use change: Implications for groundwater quantity and quality. Hydrological Processes 27: 1238–1252, http://dx.doi.org/10.1002/hyp.9302
[6] Huang T, Pang Z*, Chen Y, Kong Y (2013) Groundwater circulation relative to water quality and vegetation in an arid transitional zone linking oasis, desert and river. Chinese Science Bulletin 58: 3088–3097, http://dx.doi.org/10.1007/s11434-013-5948-2
[5] Huang T, Pang Z*, Yuan L (2013) Nitrate in groundwater and the unsaturated zone in (semi)arid northern China: baseline and factors controlling its transport and fate. Environmental Earth Sciences 70: 145–156, http://dx.doi.org/10.1007/s11434-013-5948-2
[4] Liu J, Huang T*, Yuan L (2013) Fluoride content in groundwater and the unsaturated zone in three large basins in (semi)arid northern China. Fresenius Environmental Bulletin 22(8A): 2393–2401, https://www.prt-parlar.de/download_feb_2013/
[3] Huang T, Pang Z* (2012) The role of deuterium excess in determining the water salinisation mechanism: a case study of the arid Tarim River Basin, NW China. Applied Geochemistry 27: 2382–2388, http://dx.doi.org/10.1016/j.apgeochem.2012.08.015
[2] Huang T, Pang Z* (2011) Estimating groundwater recharge following land-use change using chloride mass balance of soil profiles: A case study at Guyuan and Xifeng in the Loess Plateau of China. Hydrogeology Journal 19: 177–186, http://dx.doi.org/10.1007/s10040-010-0643-8
[1] Huang T, Pang Z* (2010) Changes in groundwater induced by water diversion in the Lower Tarim River, Xinjiang Uygur, NW China: evidence from environmental isotopes and water chemistry. Journal of Hydrology 387: 188–201, http://dx.doi.org/10.1016/j.jhydrol.2010.04.007
共同作者SCI论文
[28] Yang Q, Zhang Y*, Suwen J, Sun X-L, Huang T, Hu J, Qi S, Fu L-Y (2025) The Inversion of Seepage Parameters by Tidal and Barometric Response Methods: A Case Study of Shizhu Well with the Thick Aquifer Mixed with Mudstones. Pure and Applied Geophysics 182, 511–525, https://doi.org/10.1007/s00024-024-03633-7
[27] Shen J, Huang T, Zhang H, Lin W* (2024) Hydrochemical and isotopic characteristics of water sources for biological activity across a massive evaporite basin on the Tibetan Plateau: Implications for aquatic environments on early Mars. Science of The Total Environment 935, 173442, https://doi.org/10.1016/j.scitotenv.2024.173442
[26] Gao B, Li Y*, Pang Z, Huang T, Kong Y, Li B, Zhang F (2024) Geochemical mechanisms of water/CO2-rock interactions in EGS and its impacts on reservoir properties: A review. Geothermics 118, 102923, https://doi.org/10.1016/j.geothermics.2024.102923
[25] Dong Y, Gao J*, Liu Y, Tao L, Wu J, Zhu P, Huang H, Zheng H, Huang T (2024) Salinization of groundwater in shale gas extraction area in the Sichuan Basin, China: Implications for water protection in shale regions with well-developed faults. Science of The Total Environment 915, 170065, https://doi.org/10.1016/j.scitotenv.2024.170065
[24] Zhang F, Li Y*, Zhou X*, Huang T, Tian J, Cheng Y, Zhao Y (2023) Geochemical behaviors of rare earth elements in granite-hosted geothermal systems in SE China. Geothermics 115, 102826, https://doi.org/10.1016/j.geothermics.2023.102826
[23] Chu B, Feng G, Zhang Y*, Qi S, Li P, Huang T (2023) Residual saturation effects on CO2 migration and caprock sealing: a study of permeability and capillary pressure models. Water 15(18), 3316, https://doi.org/10.3390/w15183316
[22] Qi S*, Zheng B, Wang Z, Zhao H, Cui Z, Huang T, Guo S, Fu L, Dong P (2023) Geological evaluation for the carbon dioxide geological utilization and storage (CGUS) site: A review. Science China Earth Sciences 66(9): 1917–1936, https://doi.org/10.1007/s11430-022-1107-x
[21] Zhang Y, Fu L-Y*, Zhu A*, Zhao L, Qi S, Huang T, Ma Y, Zhang W (2023) Anisotropy and heterogeneity induced by shale in aquifer lithology — influence of aquifer shale on the leaky model with tidal response analysis. Water Resources Research 59(2), e2021WR031451, https://doi.org/10.1029/2021WR031451
[20] Li Y*, Luo J, Tian J, Cheng Y, Pang Z, Huang T, Fan Y (2023) Formation of the hydrothermal system from granite reservoir for power generation in igneous rock areas of South China. Geothermics 110, 102673, https://doi.org/10.1016/j.geothermics.2023.102673
[19] Tian J, Zhou X*, Yan Y, He M, Li J, Dong J, Liu F, Ouyang S, Li Y, Tian L, Wang Y, Huang T, Pang Z (2023) Earthquake-induced impulsive release of water in the fractured aquifer system: Insights from the long-term hydrochemical monitoring of hot springs in the Southeast Tibetan Plateau. Applied Geochemistry 148, 105553, https://doi.org/10.1016/j.apgeochem.2022.105553
[18] Bao Y, Pang Z*, Huang T, Li Y, Tian J, Luo J, Qian T (2022) Chemical and isotopic evidences on evaporite dissolution as the origin of high sulfate water in a karst geothermal reservoir. Applied Geochemistry 145, 105419, https://doi.org/10.1016/j.apgeochem.2022.105419
[17] Fan Y, Pang Z*, Liao D, Tian J, Hao Y, Huang T, Li Y (2019) Hydrogeochemical characteristics and genesis of geothermal water from the Ganzi geothermal field, eastern Tibetan Plateau. Water 11(8), 1631, https://doi.org/10.3390/w11081631
[16] Lyu M, Pang Z*, Huang T, Yin L (2019) Chemical and isotopic evidence on hydrogeochemical evolution and groundwater quality assessment in the Dake Lake Basin, Northwest China. Journal of Radioanalytical and Nuclear Chemistry 320(3): 865–883, https://doi.org/10.1007/s10967-019-06515-8
[15] Lyu M, Pang Z*, Yin L, Zhang J, Huang T, Yang S, Li Z, Wang X, Gulbostan T (2019) The control of groundwater flow systems and geochemical processes on groundwater chemistry: a case study in Wushenzhao Basin, NW China. Water 11(4), 790, https://doi.org/10.3390/w11040790
[14] Tian J, Pang Z*, Guo Q, Wang Y, Li J, Huang T, Kong Y (2018) Geochemistry of geothermal fluids with implications on the sources of water and heat recharge to the Rekeng high-temperature geothermal system in the Eastern Himalayan Syntax. Geothermics 74: 92–105, http://dx.doi.org/10.1016/j.geothermics.2018.02.006
[13] Li Z*, Lin X, Xiang W, Chen X, Huang T (2017) Stable isotope tracing of headwater sources in a river on China’s Loess Plateau. Hydrological Sciences Journal 62(13): 2150–2159, http://dx.doi.org/10.1080/02626667.2017.1368519
[12] Hou X, Zhang J, Liu J*, Huang T (2016) Rational exploitation of large wellfields based on ecological water demand in arid inland basins. Fresenius Environmental Bulletin 25(8): 3003–3011.
[11] Li J, Pang Z*, Froehlich K, Huang T, Kong Y, Song W, Yun H (2015) Paleo-environment from isotopes and hydrochemistry of groundwater in East Junggar Basin, Northwest China. Journal of Hydrology 529: 650–661, http://dx.doi.org/10.1016/j.jhydrol.2015.02.019
[10] Kong Y, Pang Z*, Li J, Huang T (2014) Seasonal variations of water isotopes in the Kumalak river catchments, western Tianshan mountains, central Asia. Fresenius Environmental Bulletin 23(1A): 169–174.
[9] Li J, Pang Z*, Kong Y, Zhou M, Huang T (2014) Contrasting seasonal distribution of stable isotopes and deuterium excess in precipitation over China. Fresenius Environmental Bulletin 23(9): 2074–2085.
[8] Pang Z*, Yuan L, Huang T, Kong Y, Liu J, Li Y (2013) Impacts of human activities on the occurrence of groundwater nitrate in an alluvial plain: A multiple isotopic tracers approach. Journal of Earth Science 24(1): 111–124, http://dx.doi.org/10.1007/s12583-013-0310-9
[7] Yuan L, Pang Z*, Huang T (2012) Integrated assessment on groundwater nitrate by unsaturated zone probing and aquifer sampling with environmental tracers. Environmental Pollution 171: 226–233, http://dx.doi.org/10.1016/j.envpol.2012.07.027
[6] Pang Z*, Kong Y, Froehlich K, Huang T, Yuan L, Li Z, Wang F (2011) Processes affecting isotopes in precipitation of an arid region. Tellus B 63: 352–359, http://dx.doi.org/10.1111/j.1600-0889.2011.00532.x
[5] Pang Z*, Huang T, Chen Y (2010) Diminished groundwater recharge and circulation relative to degrading riparian vegetation in the middle Tarim River, Xinjiang Uygur, Western China. Hydrological Processes 24: 147–159, http://dx.doi.org/10.1002/hyp.7438
[4] Ma J*, Pan F, Chen L, Edmunds WM, Ding Z, He J, Zhou K, Huang T (2010) Isotopic and geochemical evidence of recharge sources and water quality in the Quaternary aquifer beneath Jinchang city, NW China. Applied Geochemistry 25: 996–1007, http://doi.org/10.1016/j.apgeochem.2010.04.006
[3] Ma J*, Ding Z, Edmunds WM, Gates JB, Huang T (2009) Limits to recharge of groundwater from Tibetan Plateau to the Gobi desert, implications for water management in the Mountain front. Journal of Hydrology 364: 128–141, http://doi.org/10.1016/j.jhydrol.2008.10.010
[2] Ma J*, Ding Z, Wei G, Zhao H, Huang T (2009) Sources of water pollution and evolution of water quality in the Wuwei basin of Shiyang river, Northwest China. Journal of Environmental Management 90: 1168–1177, http://dx.doi.org/10.1016/j.jenvman.2008.05.007
[1] Chen Y, Pang Z*, Chen Y, Li W, Xu C, Hao X, Huang X, Huang T, Ye Z (2008) Response of riparian vegetation to water-table changes in the lower reaches of Tarim River, Xinjiang Uygur, China. Hydrogeology Journal 16: 1371–1379, http://dx.doi.org/10.1007/s10040-008-0306-1
科研活动
承担的科研项目
深地国家科技重大专项专题,深地挥发分物质循环与资环效应
中国科学院战略性先导科技专项(A)任务,高山峡谷工程岩体多物理场演化规律与特征判识技术
中国科学院地质与地球物理研究所重点部署项目课题,挥发分浅表过程及资源环境效应
国家自然科学基金碳中和专项项目课题,多尺度三维水文地质结构的透明化表征方法(42141009)
国家自然科学基金面上项目,阳离子交换过程中钙同位素分馏效应研究(42172277)
国家自然科学基金面上项目,页岩气开发中返排液/产出水的水质演化机理(41877207)
国家自然科学基金面上项目,基于包气带-饱和带多种环境示踪技术的黄土塬区地下水补给机制研究(41672254)
国家自然科学基金青年基金,黄土塬包气带水化学、同位素特征与地下水补给机制研究(41202183)
中国科学院战略性先导科技专项(B)子课题,页岩气开发的地下水特征污染物及来源(XDB10030603)
中国科学院青年创新促进会(2018087)
国家重点实验室开放基金
部委重点实验室开放基金
中国博士后科学基金特别资助项目(2012T50136)
中国博士后科学基金特别资助项目和面上项目(20110490581)
社会任职
国际水文科学协会(IAHS)中国委员会同位素委员会委员兼秘书长
中国水利学会地下水科学与工程专委会副主任
中国自然资源学会干旱半干旱区资源研究专委会副主任
中国矿物岩石地球化学学会水文地球化学专委会委员
中国岩石力学与工程学会工程地质力学分会常务理事
中国地质学会环境地质专业委员会委员
中国地质学会勘查地球化学专业委员会委员
《Journal of Hydrology》副主编
《Frontiers in Earth Science》副主编
《Journal of Groundwater Science and Engineering》编委
《Water》编委
《工程地质学报》编委
《鲁东大学学报(自然科学版)》编委
《地球环境学报》青年编委
《西北地质》青年编委
指导学生
已指导学生
杨硕 硕士研究生 081803-地质工程
利振彬 博士研究生 081803-地质工程
龙吟 博士研究生 081803-地质工程
现指导学生
张芬 博士研究生 081803-地质工程
赵雅静 博士研究生 081803-地质工程
昝朝耀 硕士研究生 081803-地质工程
楚炳菲 博士研究生 081803-地质工程
叶竞繁 博士研究生 081803-地质工程
高彬彬 博士研究生 081803-地质工程