基本信息
黄庆国  男  博导  中国科学院理论物理研究所
电子邮件: huangqg@itp.ac.cn
通信地址: 北京市海淀区中关村东路55号
邮政编码: 100190

研究领域

引力理论,引力波和宇宙学

招生信息

招生专业
070201-理论物理
招生方向
引力波,早期宇宙物理,暗能量,量子引力理论

教育背景

2000-09--2004-07   中国科学院理论物理研究所   博士
学历
-- 研究生
学位
-- 博士

工作经历

   
工作简历
2010-03~现在, 中国科学院理论物理研究所, 研究员
2006-05~2010-03,韩国高等研究院, research fellow
2004-08~2006-05,中国科学院理论交叉研究中心, 博士后

教授课程

现代物理学概述
广义相对论
宇宙学
科研实践Ⅱ-前沿物理研究******
科研实践Ⅰ-综合物理实验******
宇宙学前沿系列讲座

专利与奖励

   
奖励信息
(1) 中国科学院卢嘉锡青年人才奖, , 院级, 2011

出版信息

   
发表论文
[1] Yuan, Chen, Huang, QingGuo. Gravitational waves induced by the local-type non-Gaussian curvature perturbations. 2021, [2] Li, Jun, Chen, ZuCheng, Huang, QingGuo. Measuring the tilt of primordial gravitational-wave power spectrum from observations (vol 62, 110421, 2019). SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMYnull. 2021, 64(5): http://dx.doi.org/10.1007/s11433-021-1663-3.
[3] Zhang, Xue, Huang, QingGuo. Hubble constant and sound horizon from the late-time Universe. 2021, http://arxiv.org/abs/2006.16692.
[4] Chen, ZuCheng, Yuan, Chen, Huang, QingGuo. Non-tensorial gravitational wave background in NANOGrav 12.5-year data set. SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY[J]. 2021, 64(12): [5] Yuan, Chen, Huang, QingGuo. A topic review on probing primordial black hole dark matter with scalar induced gravitational waves. ISCIENCEnull. 2021, 24(8): http://dx.doi.org/10.1016/j.isci.2021.102860.
[6] Fang, Yun, Guo, RongZhen, Huang, QingGuo. Tests for the existence of horizon through gravitational waves from a small binary in the vicinity of a massive object. PHYSICS LETTERS B[J]. 2021, 822: http://dx.doi.org/10.1016/j.physletb.2021.136654.
[7] Zhang, Xue, Huang, QingGuo. Hubble constant and sound horizon from the late-time Universe. PHYSICAL REVIEW D[J]. 2021, 103(4): http://apps.webofknowledge.com/CitedFullRecord.do?product=UA&colName=WOS&SID=5CCFccWmJJRAuMzNPjj&search_mode=CitedFullRecord&isickref=WOS:000616271900007.
[8] Wu, YuMei, Huang, QingGuo. Parametrized second post-Newtonian framework with conservation laws. PHYSICAL REVIEW D[J]. 2021, 104(6): http://dx.doi.org/10.1103/PhysRevD.104.064050.
[9] Wang, Ke, Huang, QingGuo. Implications for cosmology from ground-based Cosmic Microwave Background observations. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS[J]. 2020, http://dx.doi.org/10.1088/1475-7516/2020/06/045.
[10] Zhang, Xue, Huang, QingGuo. Measuring H-0 from low-z datasets. SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY[J]. 2020, 63(9): 2-6, http://lib.cqvip.com/Qikan/Article/Detail?id=7102514447.
[11] Wang, Ke, Huang, QingGuo. Implications for cosmology from Ground-based Cosmic Microwave Background observations. 2020, http://arxiv.org/abs/1912.05491.
[12] Yuan, Chen, Chen, ZuCheng, Huang, QingGuo. Scalar induced gravitational waves in different gauges. PHYSICAL REVIEW D[J]. 2020, 101(6): https://www.webofscience.com/wos/woscc/full-record/WOS:000519703200003.
[13] Chen, ZuCheng, Yuan, Chen, Huang, QingGuo. Pulsar Timing Array Constraints on Primordial Black Holes with NANOGrav 11-Year Dataset. PHYSICAL REVIEW LETTERS[J]. 2020, 124(25): https://www.webofscience.com/wos/woscc/full-record/WOS:000541706800005.
[14] Chen, ZuCheng, Huang, QingGuo. Distinguishing primordial black holes from astrophysical black holes by Einstein Telescope and Cosmic Explorer. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS[J]. 2020, https://www.webofscience.com/wos/woscc/full-record/WOS:000590146600023.
[15] Yuan Chen, Chen ZuCheng, Huang QingGuo. Log-dependent slope of scalar induced gravitational waves in the infrared regions. 2020, http://arxiv.org/abs/1910.09099.
[16] Yuan, Chen, Chen, ZuCheng, Huang, QingGuo. Log-dependent slope of scalar induced gravitational waves in the infrared regions. PHYSICAL REVIEW D[J]. 2020, 101(4): https://www.webofscience.com/wos/woscc/full-record/WOS:000515692300002.
[17] Wang, YiFan, Huang, QingGuo, Li, Tjonnie G F, Liao, Shihong. Searching for primordial black holes with stochastic gravitational-wave background in the space-based detector frequency band. PHYSICAL REVIEW D[J]. 2020, 101(6): https://www.webofscience.com/wos/woscc/full-record/WOS:000519703500003.
[18] Chen, ZuCheng, Yuan, Chen, Huang, QingGuo. Pulsar Timing Array Constraints on Primordial Black Holes with NANOGrav 11-Year Data Set. 2020, http://arxiv.org/abs/1910.12239.
[19] Luo, HuaMei, Lin, Wenbin, Chen, ZuCheng, Huang, QingGuo. Extraction of gravitational wave signals with optimized convolutional neural network. FRONTIERS OF PHYSICS[J]. 2020, 15(1): 135-140, http://lib.cqvip.com/Qikan/Article/Detail?id=7101615520.
[20] Fang, Yun, Huang, QingGuo. Three body first post-Newtonian effects on the secular dynamics of a compact binary near a spinning supermassive black hole. PHYSICAL REVIEW D[J]. 2020, 102(10): https://www.webofscience.com/wos/woscc/full-record/WOS:000584364000008.
[21] Li XiaoDong, Miao Haitao, Wang Xin, Zhang Xue, Fang Feng, Luo Xiaolin, Huang QingGuo, Li Miao. The redshift dependence of Alcock-Paczynski effect: cosmological constraints from the current and next generation observations. 2019, http://arxiv.org/abs/1903.04757.
[22] Li, Jun, Che, ZuCheng, Huang, QingGuo. Measuring the tilt of primordial gravitational-wave power spectrum from observations. SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY[J]. 2019, 62(11): http://lib.cqvip.com/Qikan/Article/Detail?id=74718871504849574949484954.
[23] Sang Yu, Huang QingGuo. Stochastic Gravitational-Wave Background from Axion-Monodromy Oscillons in String Theory During Preheating. 2019, http://arxiv.org/abs/1905.00371.
[24] Jun Li, ZuCheng Che, QingGuo Huang. Measuring the tilt of primordial gravitational-wave power spectrum from observations. 中国科学:物理学、力学、天文学英文版null. 2019, 135-137, http://lib.cqvip.com/Qikan/Article/Detail?id=74718871504849574949484954.
[25] Li, XiaoDong, Miao, Haitao, Wang, Xin, Zhang, Xue, Fang, Feng, Luo, Xiaolin, Huang, QingGuo, Li, Miao. The Redshift Dependence of the Alcock-Paczynski Effect: Cosmological Constraints from the Current and Next Generation Observations. ASTROPHYSICAL JOURNAL[J]. 2019, 875(2): [26] Chen, ZuCheng, Huang, Fan, Huang, QingGuo. Stochastic Gravitational-wave Background from Binary Black Holes and Binary Neutron Stars and Implications for LISA. ASTROPHYSICAL JOURNAL[J]. 2019, 871(1): [27] 张雪, 黄庆国. Constraints on H0 from WMAP and BAO Measurements. 理论物理通讯:英文版[J]. 2019, 71(7): 826-830, https://www.webofscience.com/wos/woscc/full-record/WOS:000475775800008.
[28] Fang, Yun, Huang, QingGuo. Secular evolution of compact binaries revolving around a spinning massive black hole. PHYSICAL REVIEW D[J]. 2019, 99(10): https://www.webofscience.com/wos/woscc/full-record/WOS:000468222000003.
[29] Sang, Yu, Huang, QingGuo. Stochastic gravitational-wave background from axion-monodromy oscillons in string theory during preheating. PHYSICAL REVIEW D[J]. 2019, 100(6): [30] Fang, Yun, Chen, Xian, Huang, QingGuo. Impact of a Spinning Supermassive Black Hole on the Orbit and Gravitational Waves of a Nearby Compact Binary. ASTROPHYSICAL JOURNAL[J]. 2019, 887(2): http://dx.doi.org/10.3847/1538-4357/ab510e.
[31] Chang, Zhe, Huang, QingGuo, Wang, Sai, Zhao, ZhiChao. Low-redshift constraints on the Hubble constant from the baryon acoustic oscillation "standard rulers" and the gravitational wave "standard sirens". EUROPEAN PHYSICAL JOURNAL C[J]. 2019, 79(2): https://doaj.org/article/0d78b9c426514e69b2ee8d8e1a093c9a.
[32] Zhang, Xue, Huang, QingGuo. Constraints on H-0 from WMAP and BAO Measurements. COMMUNICATIONS IN THEORETICAL PHYSICS[J]. 2019, 71(7): 826-830, [33] Zhang, Xue, Huang, QingGuo, Li, XiaoDong. Tight H-0 constraint from galaxy redshift surveys: combining baryon acoustic oscillation measurements and Alcock-Paczynski test with a CMB prior. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY[J]. 2019, 483(2): 1655-1662, [34] Li, Jun, Huang, QingGuo. Inflation model selection revisited. SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY[J]. 2019, 62(12): http://lib.cqvip.com/Qikan/Article/Detail?id=7100270247.
[35] Chen, Lu, Huang, QingGuo, Wang, Ke. Distance priors from Planck final release. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS[J]. 2019, [36] Yuan, Chen, Chen, ZuCheng, Huang, QingGuo. Probing primordial-black-hole dark matter with scalar induced gravitational waves. PHYSICAL REVIEW D[J]. 2019, 100(8): [37] Jun Li, QingGuo Huang. Inflation model selection revisited. 中国科学:物理学、力学、天文学英文版[J]. 2019, 62(12): 28-33, http://lib.cqvip.com/Qikan/Article/Detail?id=7100270247.
[38] Yuan Chen, Chen ZuCheng, Huang QingGuo. Probing Primordial-Black-Hole Dark Matter with Scalar Induced Gravitational Waves. 2019, http://arxiv.org/abs/1906.11549.
[39] Huang, QingGuo, Wang, Sai. Optimistic estimation on probing primordial gravitational waves with CMB B-mode polarization. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY[J]. 2019, 483(2): 2177-2184, https://www.webofscience.com/wos/woscc/full-record/WOS:000462258200057.
[40] Zhe Chang, QingGuo Huang, Sai Wang, ZhiChao Zhao. Low-redshift constraints on the Hubble constant from the baryon acoustic oscillation "standard rulers" and the gravitational wave "standard sirens". European Physical Journal C: Particles and Fields[J]. 2019, 79(2): 1-13, https://doaj.org/article/0d78b9c426514e69b2ee8d8e1a093c9a.
[41] Jun Li, QingGuo Huang. Measuring the spectral running from cosmic microwave background and primordial black holes. European Physical Journal C: Particles and Fields[J]. 2018, 78(11): 1-6, http://ir.itp.ac.cn/handle/311006/22777.
[42] Wang, Sai, Wang, YiFan, Huang, QingGuo, Li, Tjonnie G F. Constraints on the Primordial Black Hole Abundance from the First Advanced LIGO Observation Run Using the Stochastic Gravitational-Wave Background. PHYSICAL REVIEW LETTERS[J]. 2018, 120(19): http://ir.itp.ac.cn/handle/311006/22902.
[43] Li, Jun, Huang, QingGuo. Signatures of modified dispersion relation of graviton in the cosmic microwave background. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS[J]. 2018, http://ir.itp.ac.cn/handle/311006/22748.
[44] Xu, LiXin, Huang, QingGuo. Detecting the neutrinos mass hierarchy from cosmological data. SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMYnull. 2018, 61(3): http://ir.itp.ac.cn/handle/311006/22951.
[45] RongGen Cai, ZongKuan Guo, QingGuo Huang, Tao Yang. Super-Eddington accreting massive black holes explore high-z cosmology: Monte-Carlo simulations. arXivnull. 2018, 97(12): https://arxiv.org/abs/1801.00604.
[46] Li, Jun, Huang, QingGuo. Measuring the spectral running from cosmic microwave background and primordial black holes. EUROPEAN PHYSICAL JOURNAL C[J]. 2018, 78(11): http://ir.itp.ac.cn/handle/311006/22777.
[47] 黄庆国, 朴云松. 宇宙如何起源?. 科学通报[J]. 2018, 63(24): 2509-2517, http://lib.cqvip.com/Qikan/Article/Detail?id=676354827.
[48] Chen, ZuCheng, Huang, QingGuo. Merger Rate Distribution of Primordial Black Hole Binaries. ASTROPHYSICAL JOURNAL[J]. 2018, 864(1): http://ir.itp.ac.cn/handle/311006/22828.
[49] Pi, Shi, Zhang, Yingli, Huang, QingGuo, Sasaki, Misao. Scalaron from R-2-gravity as a heavy field. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS[J]. 2018, http://ir.itp.ac.cn/handle/311006/22912.
[50] 黄庆国. Detecting the neutrino mass hierarchy from cosmological data. Sci.China Phys.Mech.Astron. 2018, [51] Huang, QingGuo, Pi, Shi. Power-law modulation of the scalar power spectrum from a heavy field with a monomial potential. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS[J]. 2018, http://ir.itp.ac.cn/handle/311006/22930.
[52] 郭宗宽, 黄庆国. 来自宇宙的微弱声音——2017年度诺贝尔物理学奖成果简析. 科技导报[J]. 2017, 35(23): 12-15, http://lib.cqvip.com/Qikan/Article/Detail?id=674125895.
[53] Chen, Lu, Huang, QingGuo, Wang, Ke. New cosmological constraints with extended-Baryon Oscillation Spectroscopic Survey DR14 quasar sample. EUROPEAN PHYSICAL JOURNAL C[J]. 2017, 77(11): http://ir.itp.ac.cn/handle/311006/22182.
[54] 郭宗宽, 黄庆国. 来自宇宙的微弱声音——2017年度诺贝尔物理学奖成果简析. 科技导报. 2017, 35(23): 12-15, http://lib.cqvip.com/Qikan/Article/Detail?id=674125895.
[55] Huang, QingGuo, Wang, Ke. Effect of the early reionization on the cosmic microwave background and cosmological parameter estimates. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS[J]. 2017, 2017(7): http://ir.itp.ac.cn/handle/311006/22186.
[56] ZongKuan Guo, QingGuo Huang, RongGen Cai,, YuanZhong Zhang. Cosmological constraints on Lorentz invariance violation in the neutrino sector. 2017, http://www.chinaxiv.org/abs/201709.00166.
[57] Huang, QingGuo. Physics in the early universe. INTERNATIONAL JOURNAL OF MODERN PHYSICS D[J]. 2017, 26(1): https://www.webofscience.com/wos/woscc/full-record/WOS:000395371800002.
[58] ZongKuan Guo, QingGuo Huang, RongGen Cai, YuanZhong Zhang. Cosmological constraints on Lorentz invariance violation in the neutrino sector. chinaXivnull. 2017, 86(6): 65004-, http://www.chinaxiv.org/abs/201709.00166.
[59] 黄庆国. New cosmological constraints with extended Bayon Oscillation Spectroscopic Survey DR14 quasar sample. EPJC. 2017, [60] 黄庆国. 是什么驱动宇宙暴胀?. 科学通报[J]. 2017, 62(36): 4216-4219, http://lib.cqvip.com/Qikan/Article/Detail?id=75888466504849555154484853.
[61] Huang, QingGuo, Wang, Ke, Wang, Sai. Inflation model constraints from data released in 2015. PHYSICAL REVIEW D[J]. 2016, 93(10): http://ir.itp.ac.cn/handle/311006/21236.
[62] Huang, QingGuo, Wang, Ke, Wang, Sai. Constraints on the neutrino mass and mass hierarchy from cosmological observations. EUROPEAN PHYSICAL JOURNAL C[J]. 2016, 76(9): http://ir.itp.ac.cn/handle/311006/21232.
[63] Qing-Guo Huang, Ke Wang. How the dark energy can reconcile Planck with local determination of the Hubble constant. The European Physical Journal C. 2016, 76(9): http://dx.doi.org/10.1140/epjc/s10052-016-4352-x.
[64] Qing-Guo Huang, Ke Wang, Sai Wang. Constraints on the neutrino mass and mass hierarchy from cosmological observations. The European Physical Journal C. 2016, 76(9): http://dx.doi.org/10.1140/epjc/s10052-016-4334-z.
[65] 黄庆国. 自洽的大统一理论必须要求多维时空. 科学世界. 2016, 1-1, http://lib.cqvip.com/Qikan/Article/Detail?id=668738824.
[66] Huang, QingGuo, Wang, Ke. How the dark energy can reconcile Planck with local determination of the Hubble constant. EUROPEAN PHYSICAL JOURNAL C[J]. 2016, 76(9): http://ir.itp.ac.cn/handle/311006/23171.
[67] Cheng, Cheng, Zhao, Wen, Huang, QingGuo, Santos, Larissa. Preferred axis of CMB parity asymmetry in the masked maps. PHYSICS LETTERS B[J]. 2016, 757: 445-453, http://ir.itp.ac.cn/handle/311006/23259.
[68] Chen, Lu, Huang, QingGuo, Wang, Ke. Constraint on the abundance of primordial black holes in dark matter from Planck data. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS[J]. 2016, http://ir.itp.ac.cn/handle/311006/23074.
[69] Huang, QingGuo, Wang, Ke, Wang, Sai. Distance priors from Planck 2015 data. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS[J]. 2015, http://www.irgrid.ac.cn/handle/1471x/1114713.
[70] Huang, QingGuo, Ribeiro, Raquel H, Xing, YuHang, Zhang, KeChao, Zhou, ShuangYong. On the uniqueness of the non-minimal matter coupling in massive gravity and bigravity. PHYSICS LETTERS B[J]. 2015, 748(C): 356-360, http://www.irgrid.ac.cn/handle/1471x/1114818.
[71] Huang, QingGuo, Wang, Sai, Zhao, Wen. Forecasting sensitivity on tilt of power spectrum of primordial gravitational waves after Planck satellite. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS[J]. 2015, http://www.irgrid.ac.cn/handle/1471x/1114790.
[72] Huang, QingGuo. Gravitational waves: A probe to the physics in the early universe. INTERNATIONAL JOURNAL OF MODERN PHYSICS A[J]. 2015, 30(28-29): http://www.irgrid.ac.cn/handle/1471x/1114768.
[73] Huang, QingGuo, Wang, Sai. No evidence for the blue-tilted power spectrum of relic gravitational waves. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS[J]. 2015, http://www.irgrid.ac.cn/handle/1471x/1114924.
[74] Huang, QingGuo. Lyth bound revisited. PHYSICAL REVIEW D[J]. 2015, 91(12): http://www.irgrid.ac.cn/handle/1471x/1114902.
[75] 黄庆国. Constraints on inflation model from BICEP2 and WMAP 9-year data. IJMPD. 2015, [76] Cheng Cheng, Huang QingGuo. An accurate determination of the Hubble constant from baryon acoustic oscillation datasets. SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY[J]. 2015, 58(9): http://www.irgrid.ac.cn/handle/1471x/1114830.
[77] Huang QingGuo. The (p, q) inflation model. SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY[J]. 2015, 58(11): http://www.irgrid.ac.cn/handle/1471x/1114754.
[78] Huang, QingGuo, Ribeiro, Raquel H, Xing, YuHang, Zhang, KeChao, Zhou, ShuangYong. On the uniqueness of the non-minimal matter coupling in massive gravity and bigravity. PHYSICS LETTERS B[J]. 2015, 748: 356-360, http://www.irgrid.ac.cn/handle/1471x/1114818.
[79] Cheng, Cheng, Huang, QingGuo. Constraint on inflation model from BICEP2 and WMAP 9-year data. INTERNATIONAL JOURNAL OF MODERN PHYSICS D[J]. 2015, 24(4): http://www.irgrid.ac.cn/handle/1471x/1114988.
[80] Fu, TianFu, Huang, QingGuo. The four-point correlation function of graviton during inflation. JOURNAL OF HIGH ENERGY PHYSICS[J]. 2015, 2015(7): http://www.irgrid.ac.cn/handle/1471x/1114865.
[81] Cheng, Cheng, Huang, QingGuo. The tilt of primordial gravitational waves spectra from BICEP2. MODERN PHYSICS LETTERS A[J]. 2014, 29(33): http://www.irgrid.ac.cn/handle/1471x/949008.
[82] Cheng Cheng, Huang Qingguo, Zhao Wen. Constraints on the extensions to the base ΛCDM model from BICEP2, Plank and WMAP. Science China. Physics, Mechanics & Astronomy[J]. 2014, 57(8): 1460-1465, [83] 黄庆国. The title of primordial gravitational waves spectra from BICEP2. MPLA. 2014, [84] Huang, QingGuo. An analytic calculation of the growth index for f (R) dark energy model. EUROPEAN PHYSICAL JOURNAL C[J]. 2014, 74(7): http://www.irgrid.ac.cn/handle/1471x/949116.
[85] Cheng, Cheng, Huang, QingGuo. Probing the primordial Universe from the low-multipole CMB data. PHYSICS LETTERS B[J]. 2014, 738(-): 140-143, http://dx.doi.org/10.1016/j.physletb.2014.09.036.
[86] 黄庆国. Constraints on the extensions to the base LambdaCDM model from BICEP2, Planck and WMAP. Sci China-Phys Mech Astron. 2014, [87] Cheng, Cheng, Huang, QingGuo, Wang, Sai. Constraint on the primordial gravitational waves from the joint analysis of BICEP2 and Planck HFI 353 GHz dust polarization data. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS[J]. 2014, http://www.irgrid.ac.cn/handle/1471x/948959.
[88] Cheng Cheng, Huang QingGuo, Zhao Wen. Constraints on the extensions to the base ACDM model from BICEP2, Planck and WMAP. SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY[J]. 2014, 57(8): 1460-1465, http://www.irgrid.ac.cn/handle/1471x/949102.
[89] Cheng, Cheng, Huang, QingGuo. Dark side of the Universe after Planck data. PHYSICAL REVIEW D[J]. 2014, 89(4): http://www.irgrid.ac.cn/handle/1471x/836548.
[90] Cheng, Cheng, Huang, QingGuo. Constraints on the cosmological parameters from BICEP2, Planck, and WMAP. EUROPEAN PHYSICAL JOURNAL C[J]. 2014, 74(11): http://www.irgrid.ac.cn/handle/1471x/948977.
[91] Huang, QingGuo. A polynomial f(R) inflation model. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS[J]. 2014, https://www.webofscience.com/wos/woscc/full-record/WOS:000358351300014.
[92] Cheng Cheng, Qing-Guo Huang. Constraints on the cosmological parameters from BICEP2, Planck, and WMAP. The European Physical Journal C. 2014, 74(11): http://dx.doi.org/10.1140/epjc/s10052-014-3139-1.
[93] Huang, QingGuo, Zhang, KeChao, Zhou, ShuangYong. Generalized massive gravity in arbitrary dimensions and its Hamiltonian formulation. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS[J]. 2013, http://www.irgrid.ac.cn/handle/1471x/836374.
[94] Huang, QingGuo. g(NL) in the curvaton model constrained by PLANCK. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS[J]. 2013, http://www.irgrid.ac.cn/handle/1471x/836445.
[95] Choi, KiYoung, Huang, QingGuo. Can the standard model Higgs boson seed the formation of structures in our Universe?. PHYSICAL REVIEW D[J]. 2013, 87(4): http://www.irgrid.ac.cn/handle/1471x/836490.
[96] Cheng, Cheng, Huang, QingGuo, Ma, YinZhe. Constraints on single-field inflation with WMAP, SPT and ACT data - a last-minute stand before Planck. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS[J]. 2013, http://www.irgrid.ac.cn/handle/1471x/836399.
[97] Huang, QingGuo, Wang, Yi. Large local non-Gaussianity from general ultra slow-roll inflation. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS[J]. 2013, http://www.irgrid.ac.cn/handle/1471x/836419.
[98] Ma, YinZhe, Huang, QingGuo, Zhang, Xin. Confronting brane inflation with Planck and pre-Planck data. PHYSICAL REVIEW D[J]. 2013, 87(10): http://www.irgrid.ac.cn/handle/1471x/836430.
[99] Fang, Chao, Huang, QingGuo. The trouble with asymptotically safe inflation. EUROPEAN PHYSICAL JOURNAL C[J]. 2013, 73(4): http://www.irgrid.ac.cn/handle/1471x/836459.
[100] Zhang WenShuai, Cheng Cheng, Huang QingGuo, Li Miao, Li Song, Li XiaoDong, Wang Shuang. Testing modified gravity models with recent cosmological observations. SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY[J]. 2012, 55(12): 2244-2258, http://www.irgrid.ac.cn/handle/1471x/836042.

科研活动

   
科研项目
( 1 ) 国家万人计划青年拔尖人才, 主持, 国家级, 2016-01--2018-12
( 2 ) 宇宙加速膨胀的研究, 主持, 国家级, 2016-01--2019-12
( 3 ) 宇宙学及其相关量子场论, 主持, 国家级, 2014-01--2016-12
( 4 ) 宇宙加速膨胀及暗物质研究, 参与, 国家级, 2014-01--2018-12
( 5 ) 引力波和宇宙演化, 参与, 国家级, 2017-01--2021-12
( 6 ) 引力波及其探测相关的理论物理问题研究, 主持, 部委级, 2018-01--2020-12

指导学生

已指导学生

程程  博士研究生  070201-理论物理  

傅天赋  硕士研究生  070201-理论物理  

张克超  博士研究生  070201-理论物理  

郭忠凯  硕士研究生  070201-理论物理  

王科  博士研究生  070201-理论物理  

邢宇航  博士研究生  070201-理论物理  

李君  博士研究生  070201-理论物理  

现指导学生

陈璐  博士研究生  070201-理论物理  

陈祖成  博士研究生  070201-理论物理  

方芸  博士研究生  070201-理论物理  

国荣祯  硕士研究生  070201-理论物理  

黄帆  博士研究生  070201-理论物理  

孟德双  硕士研究生  070201-理论物理  

韩雨轩  硕士研究生  070201-理论物理  

吴玉梅  博士研究生  070201-理论物理  

袁晨  博士研究生  070201-理论物理