基本信息
马红石  女    中国科学院上海硅酸盐研究所
电子邮件: mahongshi@mail.sic.ac.cn
通信地址: 上海市长宁区定西路1295号
邮政编码:

招生信息

   
招生专业
080502-材料学
080501-材料物理与化学
083100-生物医学工程
招生方向
生物活性材料;组织再生修复

教育背景

2013-09--2018-06   中国科学院上海硅酸盐研究所   博士学位
2009-09--2013-07   吉林大学   学士学位

工作经历

   
工作简历
2021-01~现在, 中国科学院上海硅酸盐研究所, 副研究员
2020-08~2020-12,中国科学院上海硅酸盐研究所, 助理研究员
2018-06~2020-06,上海交通大学医学院附属第九人民医院, 博士后
社会兼职
2021-12-31-今,《无机材料学报》青年编委,

专利与奖励

   
奖励信息
(1) 2021年度中科院上海硅酸盐研究所青年才俊奖, 一等奖, 研究所(学校), 2021
专利成果
( 1 ) 表面具有微纳米结构的生物陶瓷支架及其制备方法和应用, 专利授权, 2019, 第 2 作者, 专利号: CN106267335B

( 2 ) 石墨烯修饰的生物陶瓷支架材料及其制备方法和应用, 发明专利, 2016, 第 2 作者, 专利号: CN106139242A

出版信息

   
发表论文
[1] Ma, Wenping, Zhang, Hongjian, Ma, Hongshi, Wu, Chengtie. Iron manganese silicate incorporated bioactive hydrogels for therapy of skin tumor. PROGRESS IN NATURAL SCIENCE-MATERIALS INTERNATIONAL[J]. 2022, 32(2): 171-178, http://dx.doi.org/10.1016/j.pnsc.2022.01.012.
[2] Jianmin Xue, Hongshi Ma, Erhong song, Jianjun Liu, Chengtie Wu. Bamboo-based Biomaterials for Cell Transportation and Bone Integration. ADVANCED HEALTHCARE MATERIALS[J]. 2022, https://doi.org/10.1002/adhm.202200287.
[3] Ma, Hongshi, Yang, Chen, Ma, Zhenjiang, Wei, Xiaoyue, Younis, Muhammad Rizwan, Wang, Hanbo, Li, Wentao, Wang, Zhiyong, Wang, Wenhao, Luo, Yongxiang, Huang, Peng, Wang, Jinwu. Multiscale Hierarchical Architecture-Based Bioactive Scaffolds for Versatile Tissue Engineering. ADVANCED HEALTHCARE MATERIALS[J]. 2022, 11(13): http://dx.doi.org/10.1002/adhm.202102837.
[4] Yang, Chen, Ma, Hongshi, Wang, Zhiyong, Younis, Muhammad Rizwan, Liu, Chunyang, Wu, Chengtie, Luo, Yongxiang, Huang, Peng. 3D Printed Wesselsite Nanosheets Functionalized Scaffold Facilitates NIR-II Photothermal Therapy and Vascularized Bone Regeneration. ADVANCED SCIENCE[J]. 2021, 8(20): http://apps.webofknowledge.com/CitedFullRecord.do?product=UA&colName=WOS&SID=5CCFccWmJJRAuMzNPjj&search_mode=CitedFullRecord&isickref=WOS:000685684100001.
[5] Wenping Ma, Hongshi Ma, Chengtie Wu. Sprayable β-FeSi2 composite hydrogel for portable skin tumor treatment and wound healing. BIOMATERIALS[J]. 2021, 279: https://doi.org/10.1016/j.biomaterials.2021.121225.
[6] Li, Mengmeng, Ma, Hongshi, Han, Fei, Zhai, Dong, Zhang, Bingjun, Sun, Yuhua, Li, Tian, Chen, Lei, Wu, Chengtie. Microbially Catalyzed Biomaterials for Bone Regeneration. ADVANCED MATERIALS. 2021, http://dx.doi.org/10.1002/adma.202104829.
[7] Ma, Hongshi, Yu, Qingqing, Qu, Yu, Zhu, Yufang, Wu, Chengtie. Manganese silicate nanospheres-incorporated hydrogels:starvation therapy and tissue regeneration. BIOACTIVE MATERIALS[J]. 2021, 6(12): 4558-4567, http://dx.doi.org/10.1016/j.bioactmat.2021.04.042.
[8] Ma, Hongshi, Ma, Zhenjiang, Chen, Qufei, Li, Wentao, Liu, Xiangfei, Ma, Xiaojun, Mao, Yuanqing, Yang, Han, Ma, Hui, Wang, Jinwu. Bifunctional, Copper-Doped, Mesoporous Silica Nanosphere-Modified, Bioceramic Scaffolds for Bone Tumor Therapy. FRONTIERS IN CHEMISTRY[J]. 2020, 8: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7755992/.
[9] Ma, Hongshi, Zhou, Quan, Chang, Jiang, Wu, Chengtie. Grape Seed-Inspired Smart Hydrogel Scaffolds for Melanoma Therapy and Wound Healing. ACS NANO[J]. 2019, 13(4): 4302-4311, http://dx.doi.org/10.1021/acsnano.8b09496.
[10] Li, Tao, Ma, Hongshi, Ma, Hongzhi, Ma, Zhenjiang, Qiang, Lei, Yang, Zezheng, Yang, Xiaoxiao, Zhou, Xiaojun, Dai, Kerong, Wang, Jinwu. Mussel-Inspired Nanostructures Potentiate the Immunomodulatory Properties and Angiogenesis of Mesenchymal Stem Cells. ACS APPLIED MATERIALS & INTERFACES[J]. 2019, 11(19): 17134-17146, https://www.webofscience.com/wos/woscc/full-record/WOS:000468364500003.
[11] Ma, Hongshi, Zhou, Quan, Chang, Jiang, Wu, Chengtie. Grape Seed-Inspired Smart Hydrogel Scaffolds for Melanoma Therapy and Wound Healing. ACS NANO[J]. 2019, 13(4): 4302-4311, http://dx.doi.org/10.1021/acsnano.8b09496.
[12] Li, Tao, Ma, Hongshi, Ma, Hongzhi, Ma, Zhenjiang, Qiang, Lei, Yang, Zezheng, Yang, Xiaoxiao, Zhou, Xiaojun, Dai, Kerong, Wang, Jinwu. Mussel-Inspired Nanostructures Potentiate the Immunomodulatory Properties and Angiogenesis of Mesenchymal Stem Cells. ACS APPLIED MATERIALS & INTERFACES[J]. 2019, 11(19): 17134-17146, https://www.webofscience.com/wos/woscc/full-record/WOS:000468364500003.
[13] Ma, Hongshi, Feng, Chun, Chang, Jiang, Wu, Chengtie. 3D-printed bioceramic scaffolds: From bone tissue engineering to tumor therapy. ACTA BIOMATERIALIAnull. 2018, 79: 37-59, http://dx.doi.org/10.1016/j.actbio.2018.08.026.
[14] Liu, Yaqin, Li, Tao, Ma, Hongshi, Zhai, Dong, Deng, Cuijun, Wang, Jinwu, Zhuo, Shangjun, Chang, Jiang, Wu, Chengtie. 3D-printed scaffolds with bioactive elements-induced photothermal effect for bone tumor therapy. ACTA BIOMATERIALIA[J]. 2018, 73: 531-546, http://dx.doi.org/10.1016/j.actbio.2018.04.014.
[15] Dang, Wentao, Li, Tao, Li, Bo, Ma, Hongshi, Zhai, Dong, Wang, Xiaocheng, Chang, Jiang, Xiao, Yin, Wang, Jinwu, Wu, Chengtie. A bifunctional scaffold with CuFeSe2 nanocrystals for tumor therapy and bone reconstruction. BIOMATERIALS[J]. 2018, 160: 92-106, http://dx.doi.org/10.1016/j.biomaterials.2017.11.020.
[16] Ma, Hongshi, Li, Tao, Huan, Zhiguang, Zhang, Meng, Yang, Zezheng, Wang, Jinwu, Chang, Jiang, Wu, Chengtie. 3D printing of high-strength bioscaffolds for the synergistic treatment of bone cancer. NPG ASIA MATERIALS[J]. 2018, 10(4): 31-44, http://ir.sic.ac.cn/handle/331005/25012.
[17] Ma, Hongshi, Feng, Chun, Chang, Jiang, Wu, Chengtie. 3D-printed bioceramic scaffolds: From bone tissue engineering to tumor therapy. ACTA BIOMATERIALIAnull. 2018, 79: 37-59, http://dx.doi.org/10.1016/j.actbio.2018.08.026.
[18] Liu, Yaqin, Li, Tao, Ma, Hongshi, Zhai, Dong, Deng, Cuijun, Wang, Jinwu, Zhuo, Shangjun, Chang, Jiang, Wu, Chengtie. 3D-printed scaffolds with bioactive elements-induced photothermal effect for bone tumor therapy. ACTA BIOMATERIALIA[J]. 2018, 73: 531-546, http://dx.doi.org/10.1016/j.actbio.2018.04.014.
[19] Dang, Wentao, Li, Tao, Li, Bo, Ma, Hongshi, Zhai, Dong, Wang, Xiaocheng, Chang, Jiang, Xiao, Yin, Wang, Jinwu, Wu, Chengtie. A bifunctional scaffold with CuFeSe2 nanocrystals for tumor therapy and bone reconstruction. BIOMATERIALS[J]. 2018, 160: 92-106, http://dx.doi.org/10.1016/j.biomaterials.2017.11.020.
[20] Ma, Hongshi, Li, Tao, Huan, Zhiguang, Zhang, Meng, Yang, Zezheng, Wang, Jinwu, Chang, Jiang, Wu, Chengtie. 3D printing of high-strength bioscaffolds for the synergistic treatment of bone cancer. NPG ASIA MATERIALS[J]. 2018, 10(4): 31-44, http://ir.sic.ac.cn/handle/331005/25012.
[21] Lv, Fang, Wang, Jie, Xu, Peng, Han, Yiming, Ma, Hongshi, Xu, He, Chen, Shijie, Chang, Jiang, Ke, Qinfei, Liu, Mingyao, Yi, Zhengfang, Wu, Chengtie. A conducive bioceramic/polymer composite biomaterial for diabetic wound healing. ACTA BIOMATERIALIA[J]. 2017, 60: 128-143, http://ir.sic.ac.cn/handle/331005/26645.
[22] Wang, Xiaocheng, Li, Tao, Ma, Hongshi, Zhai, Dong, Jiang, Chuan, Chang, Jiang, Wang, Jinwu, Wu, Chengtie. A 3D-printed scaffold with MoS2 nanosheets for tumor therapy and tissue regeneration. NPG ASIA MATERIALS[J]. 2017, 9(4): http://ir.sic.ac.cn/handle/331005/25710.
[23] Lv, Fang, Wang, Jie, Xu, Peng, Han, Yiming, Ma, Hongshi, Xu, He, Chen, Shijie, Chang, Jiang, Ke, Qinfei, Liu, Mingyao, Yi, Zhengfang, Wu, Chengtie. A conducive bioceramic/polymer composite biomaterial for diabetic wound healing. ACTA BIOMATERIALIA[J]. 2017, 60: 128-143, http://ir.sic.ac.cn/handle/331005/26645.
[24] Wang, Xiaocheng, Li, Tao, Ma, Hongshi, Zhai, Dong, Jiang, Chuan, Chang, Jiang, Wang, Jinwu, Wu, Chengtie. A 3D-printed scaffold with MoS2 nanosheets for tumor therapy and tissue regeneration. NPG ASIA MATERIALS[J]. 2017, 9(4): http://ir.sic.ac.cn/handle/331005/25710.
[25] Ma, Hongshi, Luo, Jian, Sun, Zhe, Xia, Lunguo, Shi, Mengchao, Liu, Mingyao, Chang, Jiang, Wu, Chengtie. 3D printing of biomaterials with mussel-inspired nanostructures for tumor therapy and tissue regeneration. BIOMATERIALS[J]. 2016, 111: 138-148, http://dx.doi.org/10.1016/j.biomaterials.2016.10.005.
[26] Ma, Hongshi, Jiang, Chuan, Zhai, Dong, Luo, Yongxiang, Chen, Yu, Lv, Fang, Yi, Zhengfang, Deng, Yuan, Wang, Jinwu, Chang, Jiang, Wu, Chengtie. A Bifunctional Biomaterial with Photothermal Effect forTumor Therapy and Bone Regeneration. ADVANCED FUNCTIONAL MATERIALS[J]. 2016, 26(8): 1197-1208, http://www.irgrid.ac.cn/handle/1471x/1177224.
[27] Li, Jinyan, Zhai, Dong, Lv, Fang, Yu, Qingqing, Ma, Hongshi, Yin, Jinbo, Yi, Zhengfang, Liu, Mingyao, Chang, Jiang, Wu, Chengtie. Preparation of copper-containing bioactive glass/eggshell membrane nanocomposites for improving angiogenesis, antibacterial activity and wound healing. ACTA BIOMATERIALIA[J]. 2016, 36: 254-266, http://dx.doi.org/10.1016/j.actbio.2016.03.011.
[28] Ma, Hongshi, Luo, Jian, Sun, Zhe, Xia, Lunguo, Shi, Mengchao, Liu, Mingyao, Chang, Jiang, Wu, Chengtie. 3D printing of biomaterials with mussel-inspired nanostructures for tumor therapy and tissue regeneration. BIOMATERIALS[J]. 2016, 111: 138-148, http://dx.doi.org/10.1016/j.biomaterials.2016.10.005.
[29] Ma, Hongshi, Jiang, Chuan, Zhai, Dong, Luo, Yongxiang, Chen, Yu, Lv, Fang, Yi, Zhengfang, Deng, Yuan, Wang, Jinwu, Chang, Jiang, Wu, Chengtie. A Bifunctional Biomaterial with Photothermal Effect forTumor Therapy and Bone Regeneration. ADVANCED FUNCTIONAL MATERIALS[J]. 2016, 26(8): 1197-1208, http://www.irgrid.ac.cn/handle/1471x/1177224.
[30] Li, Jinyan, Zhai, Dong, Lv, Fang, Yu, Qingqing, Ma, Hongshi, Yin, Jinbo, Yi, Zhengfang, Liu, Mingyao, Chang, Jiang, Wu, Chengtie. Preparation of copper-containing bioactive glass/eggshell membrane nanocomposites for improving angiogenesis, antibacterial activity and wound healing. ACTA BIOMATERIALIA[J]. 2016, 36: 254-266, http://dx.doi.org/10.1016/j.actbio.2016.03.011.
[31] Wu, Chengtie, Zhai, Dong, Ma, Hongshi, Li, Xiaomin, Zhang, Yali, Zhou, Yinghong, Luo, Yongxiang, Wang, Yueyue, Xiao, Yin, Chang, Jiang. Stimulation of osteogenic and angiogenic ability of cells on polymers by pulsed laser deposition of uniform akermanite-glass nanolayer. ACTA BIOMATERIALIA[J]. 2014, 10(7): 3295-3306, http://dx.doi.org/10.1016/j.actbio.2014.03.035.
[32] Wu, Chengtie, Zhai, Dong, Ma, Hongshi, Li, Xiaomin, Zhang, Yali, Zhou, Yinghong, Luo, Yongxiang, Wang, Yueyue, Xiao, Yin, Chang, Jiang. Stimulation of osteogenic and angiogenic ability of cells on polymers by pulsed laser deposition of uniform akermanite-glass nanolayer. ACTA BIOMATERIALIA[J]. 2014, 10(7): 3295-3306, http://dx.doi.org/10.1016/j.actbio.2014.03.035.
发表著作
(1) Developments and Applications of Calcium Phosphate Bone Cements-Chapter 12:3D printing of Calcium Phosphate Bio-scaffolds for Bone Therapy and Regeneration, Springer Series in Biomaterials Science and Engineering, 2018-01, 第 1 作者

科研活动

   
科研项目
( 1 ) 3D打印功能化复合水凝胶支架用于乳腺癌治疗及脂肪再生, 负责人, 国家任务, 2022-01--2024-12
( 2 ) 3D打印黑色生物陶瓷:兼具疾病治疗与组织再生, 负责人, 地方任务, 2021-07--2024-06
( 3 ) 中国科学院青年创新促进会基金项目, 负责人, 中国科学院计划, 2020-11--2024-11
( 4 ) 2021年度“科技创新行动计划”启明星项目:3D打印的生物活性水凝胶支架用于软骨肿瘤治疗及缺损修复, 负责人, 地方任务, 2021-07--2024-06
( 5 ) 3D打印通道结构生物陶瓷人工骨产业化研究, 负责人, 研究所自选, 2022-01--2023-09
参与会议
(1)Multiscale hierarchical Architecture-Based Bioactive Scaffolds for Versatile Tissue Engineering    2022国际前沿材料大会   2022-03-26