电子邮件: huangjing@ihep.ac.cn
通信地址: 北京市石景山区玉泉路19号乙,中科院高能物理研究所,粒子天体
邮政编码: 100049
研究领域
研究方向
招生信息
招生专业
招生方向
教育背景
学历
研究生
学位
工作经历
2012-12~2022-12, 中国科学院高能物理研究所, 担任中日国际合作西藏羊八井ASγ实验中方发言人和负责人
2008-06~现在, 中国科学院高能物理研究所, 研究员
2005-07~2008-05, 日本东京大学宇宙线研究所, 特任研究员
2003-07~2005-06, 日本东京大学宇宙线研究所, 外国人特别研究员
2002-09~2003-06, 日本宇都宫大学, 助理研究员
专利与奖励
奖励信息
出版信息
【发表论文】:
[1] Measurement of the Gamma-Ray Energy Spectrum beyond 100 TeV from the HESS J1843-033 Region. Amenomori, M, J.Huang et al., 通讯作者,
The Astrophysical Journal, 932:120, (2022) .
[2] Potential PeVatron supernova remnant G106.3+2.7 seen in the highest-energy gamma rays. Amenomori, M, J.Huang et al., 通讯作者.
Nature Astronomy, Volume 5, 460 (2021).
[3] First Detection of sub-PeV Diffuse Gamma Rays from the Galactic Disk: Evidence for Ubiquitous Galactic Cosmic Rays beyond PeV Energies.
Amenomori, M, J.Huang et al., 通讯作者. PHYSICAL REVIEW LETTERS, 126,14 (2021).
[4] Gamma-ray Observation of the Cygnus Region in the 100 TeV Energy Region. Amenomori, M, J.Huang et al., 通讯作者.
PHYSICAL REVIEW LETTERS. 127, 031102, (2021).
[6] Modelling the broadest spectral band of the Crab nebula and constraining the ion acceleration efficiency. ZHANG Xiao, Yang Chen, Huang Jing, 第三作者.
Monthly Notices of the ROYAL ASTRONOMICAL SOCIETY, 497: 3477-3483. (2020).
[7] On the Solar Cycle Variation of the Solar Diurnal Anisotropy of Multi-TeV Cosmic-ray Intensity Observed with the Tibet Air Shower Array.
Amenomori M, J.Huang et al.,. EUROPEAN PHYSICAL JOURNAL. conf 208, 08012 (2019). https://doaj.org/article/6c983fa5065c4ff38f31412045e16722.
[8] The cosmic ray energy spectrum measured with the new Tibet hybrid experiment. Amenomori M, J.Huang et al., 通讯作者.
EUROPEAN PHYSICAL JOURNAL. conf 208, 03001 (2019). https://doaj.org/article/7c67801905a6448d9697008d8215f2f5.
[9] First Detection of Photons with Energy Beyond 100 TeV from an Astrophysical Source. Amenomori M, J.Huang et al., 通讯作者.
PHYSICAL REVIEW LETTERS, 123, 051101. (2019). http://arxiv.org/abs/1906.05521.
[10] Towards a better estimation of energy and species of primary cosmic rays in the knee region with the Tibet hybrid experiment: Utilization of refined EAS
lateral distributions. Ying Zhang, Jing Huang et al;. The European Physical Journal, conf 028, 03004 (2019).
[11] Test of the hadronic interaction models SIBYLL2.3, EPOS-LHC and QGSJETII- 04 with Tibet EAS core data. Amenomori M, J.Huang et al.,.
THE EUROPEAN PHYSICAL JOURNAL. conf 028, 08013 (2019) . https://doaj.org/article/47955dfa60f445e4b7f27be86397e927.
[12] Influence of Earth-directed Coronal Mass Ejections on the Sun's Shadow Observed by the Tibet-III Air Shower Array. Amenomori, M, J.Huang et al.,
ASTROPHYSICAL JOURNAL. 860,13 (2018). http://www.corc.org.cn/handle/1471x/2175735.
[13] Evaluation of the Interplanetary Magnetic Field Strength Using the Cosmic-Ray Shadow of the Sun. Amenomori, M, J.Huang et al.,
PHYSICAL REVIEW LETTERS. 120, 031101 (2018). http://dx.doi.org/10.1103/PhysRevLett.120.031101.
[14] Northern Sky Galactic Cosmic Ray Anisotropy between 10 and 1000TeV with the Tibet Air Shower Array. Amenomori, M., J.Huang et al.,
The ASTROPHYSICAL JOURNAL. 836, 153 (2017). http://www.corc.org.cn/handle/1471x/2175674.
[15] Performance of new 8-inch photomultiplier tube used for the Tibet muon-detector array. Zhang, Y, Huang, J et al., 第二作者.
JOURNAL OF INSTRUMENTATION[J]. 11 (2016). http://ir.bao.ac.cn/handle/114a11/5300.
[16] SEARCH FOR GAMMA RAYS ABOVE 100 TeV FROM THE CRAB NEBULA WITH THE TIBET AIR SHOWER ARRAY AND THE 100m(2) MUON DETECTOR.
Amenomori, M, J.Huang et al.,. ASTROPHYSICAL JOURNAL. 813,98 (2015). http://dx.doi.org/10.1088/0004-637X/813/2/98.
[17] Sensitivity of YAC to measure the light-component spectrum of primary cosmic rays at the 'knee' energies. Zhai, L M, J.Huang et al., 通讯作者.
JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS. 42(4) (2015). http://ir.ihep.ac.cn/handle/311005/228223.
[18] Performance of the tibet hybrid experiment (yac-ii + tibet-iii + md) to measure the energy spectra of the light primary cosmic rays at energies 50–10,000 teV.
J Huang et al., 第一作者,通讯作者. ASTROPARTICLE PHYSICS. Vol.66: 18-30 (2015). http://www.corc.org.cn/handle/1471x/2070526.
[19] Probe of the Solar Magnetic Field Using the "Cosmic-Ray Shadow" of the Sun. Amenomori, M, J.Huang et al.,.
PHYSICAL REVIEW LETTERS[J]. 111, 01101 (2013). http://dx.doi.org/10.1103/PhysRevLett.111.011101.
[20] Is the large-scale sidereal anisotropy of the galactic cosmic-ray intensity really instable at TeV energies? Amenomori, M, J.Huang et al.,
ASTROPARTICLE PHYSICS[J]. 36, 237-241 (2012). http://dx.doi.org/10.1016/j.astropartphys.2012.06.005.
[21] Observation of the Fermi pulsar catalog at TeV energies with the Tibet air shower experiment. Amenomori, M, J.Huang et al.,
ASTROPHYSICS AND SPACE SCIENCES TRANSACTIONS. 7(2) (2011). http://gooa.las.ac.cn/external/index?type=-1&pid=977969.
[22] Cosmic-ray energy spectrum around the knee obtained by the Tibet experiment and future prospects. Amenomori, M, J.Huang et al.,
Advances in Space Research, volume 47, Issue 4, 629 (2011).
[23] Cosmic-ray energy spectrum around the knee observed with the Tibet air-shower experiment. Amenomori, M, J.Huang et al.,.
ASTROPHYSICS AND SPACE SCIENCES TRANSACTIONS. 7, 15, (2011). http://gooa.las.ac.cn/external/index?type=-1&pid=928218.
[24] OBSERVATION OF TeV GAMMA RAYS FROM THE FERMI BRIGHT GALACTIC SOURCES WITH THE TIBET AIR SHOWER ARRAY.
Amenomori, M, J.Huang et al.,. ASTROPHYSICAL JOURNAL LETTERS. 709(1): L6-L10 (2010). http://dx.doi.org/10.1088/2041-8205/709/1/L6.
[25] CHEMICAL COMPOSITION AND MAXIMUM ENERGY OF GALACTIC COSMIC RAYS. Shibata, M, Katayose, Y, Huang, J, Chen, D. ,
ASTROPHYSICAL JOURNAL[J]. 716(2): 1076-1083 (2010). http://ir.ihep.ac.cn/handle/311005/239005.
[26] ON TEMPORAL VARIATIONS OF THE MULTI-TeV COSMIC RAY ANISOTROPY USING THE TIBET III AIR SHOWER ARRAY. Amenomori, M, Huang, J et al.,
ASTROPHYSICAL JOURNAL[J]. 711(1): 119-124 (2010). http://ir.ihep.ac.cn/handle/311005/212928.
[27] MULTI-TeV GAMMA-RAY OBSERVATION FROM THE CRAB NEBULA USING THE TIBET-III AIR SHOWER ARRAY FINELY TUNED BY THE COSMIC RAY
MOON'S SHADOW. Amenomori, M, Huang, J et al.,. ASTROPHYSICAL JOURNAL[J]. 692(1) : 61-72 (2009). http://ir.ihep.ac.cn/handle/311005/212890.
[28] New estimation of the spectral index of high-energy cosmic rays as determined by the Compton-Getting anisotropy. Amenomori, M, J.Huang et al.,.
ASTROPHYSICAL JOURNAL LETTERS 672(1): L53-L56 (2008). https://www.webofscience.com/wos/woscc/full-record/WOS:000255231900014.
[29] The all-particle spectrum of primary cosmic rays in the wide energy range from 10^14 to 10^17 eV observed with the tibet-iii air-shower array.
Amenomori M, J. Huang et al., 通讯作者. THE ASTROPHYSICAL JOURNAL. 2008, 678(2): 1165, (2008).
[30] Primary proton spectrum around the knee observed by the Tibet air-shower experiment. M. Amenomori, J.Huang et al., 通讯作者.
ADVANCES IN SPACE RESEARCH[J]. 2006, 37(10): 1938-1943, http://dx.doi.org/10.1016/j.asr.2005.11.018.
[31] Are protons still dominant at the knee of the cosmic-ray energy spectrum?. Amenomori, M, J.Huang et al., 通讯作者.
PHYSICS LETTERS B[J]. 632(1): 58-64 (2006). http://www.irgrid.ac.cn/handle/1471x/841088.
[32] Primary proton spectrum around the knee deduced from the emulsion-chamber data obtained at Mts. Fuji and Kanbala. J.Huang et al., 第一作者,通讯作者.
ASTROPARTICLE PHYSICS[J]. 2003, 18(6): 637-648, http://dx.doi.org/10.1016/S0927-6505(02)00182-2.
发表论文
科研活动
( 2 ) 验证高能核碰撞相互作用模型, 主持, 研究所自选, 2008-06--2011-12
( 3 ) 利用羊八井空气簇射轴芯探测器探索宇宙线起源, 主持, 中国科学院计划, 2010-01--2015-12
( 4 ) 空气簇射轴芯探测器阵列和邻近宇宙线源的探索, 主持, 国家级, 2011-01--2014-12
( 5 ) 西藏 100 TeV Gamma 源和超高能宇宙线研究, 主持, 研究所, 2010-07--2015-12
( 6 ) 利用羊八井(YAC+Tibet-III)数据进行10TeV 以上能量朝前区强子作用性质的研究, 主持, 国家级, 2013-01--2016-12
( 7 ) 100TeV γ射线源探索和宇宙线成分能谱观测及相关高能天体爆发现象和辐射机制的研究, 主持, 国家级, 2016-01--2020-12
( 8 ) 西藏羊八井超高能γ射线源和宇宙线能谱的观测研究, 主持, 国家级, 2017-01--2019-12
( 9 ) 面向南天区高海拔超高能伽马射线天文的试验阵列, 主持, 国家级, 2023-01--2027-12
参与会议
合作情况
西藏ASγ实验始建于1989年,是科技部国家重点研发计划 “中日政府间国际合作重点专项”。合作单位共 24 个,合作成员已达 118 人。其中中方合作单位有 8个,分别是:中科院高能物理研究所,中科院国家天文台,清华大学,南京大学,山东大学等。日方合作单位有16个,分别是:日本东京大学 宇宙线研究所,日本早稻田大学,日本横滨国立大学,日本崎玉大学,日本宇都宫大学,日本理化学研究所等。本人从 2012 年开始担任西藏ASγ 国际合作实验发言人和总负责人,主持ASγ实验科学研究和进一步发展。近 3 年,本人带领 ASγ 合作组取得多个国际顶级的重大成果,本人均是这些成果论文的撰稿人和通讯作者。
2007 年ASγ实验国际首次开发了创新性联合观测技术(表面阵列+地下繆子水切伦科夫阵列),在国际上首次实现对繆子数目大面积精确测量,攻克了长期困扰超高能伽马射线观测灵敏度低下的问题。即在 ASγ 原有表面阵列(65000平方米)的基础上,在地下2.5米深的土层下增建原创的地下水切伦科夫缪子探测阵列,国际首次做到能准确测量宇宙线次级粒子中所含缪子数目,该观测参数非常灵敏,被用于甄别入射的高能宇宙线是质子、重原子核还是高能伽玛射线光子。
近年ASγ实验凭借该创新型探测器(MD),取得多个国际顶级的重大成果:1)2019年,ASγ国际首次发现迄今最高能量的宇宙伽马射线辐射,它们来自蟹状星云方向,能量高达450TeV,这是超高能伽马射线天文学重要的里程碑,宣告人类对极端宇宙的探索从此正式迈入100 TeV (100万亿电子伏特)以上的观测能段,该结果被PRL同时采用为“编辑推荐”和“物理视角”最高级别高亮点论文,结果发表在美国《物理评论快报》,在国际上取得巨大反响,被美国的《科学》杂志和 Physics World 头版头条报道。2)2021年3月,ASγ国际首次发现超新星遗迹(SNRG106.3+2.7)是银河系中最强大的宇宙线源(PeVatron:PeV宇宙线质子加速器)的候选天体,为解开超高能宇宙射线的起源之谜打开了重要窗口,结果发表在《Nature astronomy》杂志上。3)2021年4月,ASγ国际首次观测到最高能量接近 1 PeV (1000万亿电子伏特)的弥散伽马射线辐射,并发现它们广泛弥漫分布在银盘,同时证认了它们是“拍电子伏特宇宙线加速器”在银河系中存在的证据。该结果被PRL同时采用为“编辑推荐”和“物理视角”最高级别高亮点论文, 结果发表在美国《物理评论快报》上。PRL同时邀请同行领域专家(美国著名实验 HAWC发言人)解说该成果。该结果被美国物理学会评论为研究高能宇宙线起源“世纪之谜”的里程碑。4月2日由美国物理学会主持召开国际新闻发布会向全世界宣布这一重大成果。该成果发表后,被大量国内外著名媒体报道(外媒54家,内媒60多家)。
2021年西藏ASγ实验入选“国家十三五科技创新成就展”。 2019年 ASγ国际首次发现迄今最高能量的宇宙伽马射线辐射,所求蟹状星云能谱入选国际顶级学术杂志--美国《粒子物理手册》(PDG)。
项目协作单位
指导学生
已指导学生
杨振 硕士研究生 070202-粒子物理与原子核物理
翟留名 博士研究生 070202-粒子物理与原子核物理
张颖 博士研究生 070202-粒子物理与原子核物理
刘金胜 博士研究生 070202-粒子物理与原子核物理
陈旭 博士研究生 070202-粒子物理与原子核物理
林钰晖 博士研究生 070202-粒子物理与原子核物理
方建华 博士研究生 070202-粒子物理与原子核物理
现指导学生
梦玉 博士研究生 070202-粒子物理与原子核物理
邹依欢 硕士研究生 070202-粒子物理与原子核物理
胡孔毅 博士研究生 070202-粒子物理与原子核物理
於彦霖 硕士研究生 070202-粒子物理与原子核物理