基本信息
陈厚样  男    中国科学院重庆绿色智能技术研究院
电子邮件: chenhouyang@cigit.ac.cn
通信地址: 重庆市北碚区方正大道266号
邮政编码:

招生信息

   
招生专业
083001-环境科学
083002-环境工程
085700-资源与环境
招生方向
环境化工及其数字化
环境功能材料
碳资源化

教育背景

2003-09--2008-04   华东理工大学   博士学位
1999-09--2003-07   浙江理工大学   学士学位

工作经历

2021-08~现在, 中国科学院重庆绿色智能技术研究院, 研究员, 博导


出版信息

   
发表论文
[1] Yang Luo, donghai wu, Zehui Li, Xiao‐Yan Li, Yinghong Wu, Shien‐Ping Feng, Carlo Menon, Houyang Chen, Paul K. Chu. Plasma functionalized MoSe2for efficient nonenzymaticsensing of hydrogen peroxide in ultra‐wide pH range. SmartMat[J]. 2022, https://onlinelibrary.wiley.com/doi/10.1002/smm2.1089.
[2] Zhao, Yuwei, Wu, Donghai, Tang, Tingting, Lyu, Chongguang, Li, Junfeng, Ji, Shunping, Yuan, Chengzong, San Hui, Kwan, Zha, Chenyang, Hui, Kwun Nam, Chen, Houyang. In situ tailored strategy to remove capping agents from copper sulfide for building better lithium-sulfur batteries. JOURNAL OF MATERIALS CHEMISTRY A[J]. 2022, 10(8): 4015-4023, http://dx.doi.org/10.1039/d1ta10105f.
[3] Yaru Wei, Baocheng Yang, Shuaiwei Wang, Donghai Wu, Shouren Zhang, Houyang Chen, Eli Ruckenstein. Vacancy–vacancy pairs induced new phase formation in carbon boride: A design principle to achieve superior performance Li/Na‐ion battery anodes. ECOMAT[J]. 2022, 4(1): e12150-, [4] Li, Yiyi, Wu, Haiwei, Wu, Donghai, Wei, Hairu, Guo, Yanbo, Chen, Houyang, Li, Zhijian, Wang, Lei, Xiong, Chuanyin, Meng, Qingjun, Liu, Hanbin, Chan, Candace K. High-Density Oxygen Doping of Conductive Metal Sulfides for Better Polysulfide Trapping and Li2S-S-8 Redox Kinetics in High Areal Capacity Lithium-Sulfur Batteries. ADVANCED SCIENCE[J]. 2022, 9(17): https://doaj.org/article/9ee5818247514e4fb302b62de144115f.
[5] Feng, Shan, Yu, Minggao, Xie, Taiping, Li, Tao, Kong, Deshun, Yang, Junwei, Cheng, Chunlan, Chen, Houyang, Wang, Jiankang. MoS2/CoFe2O4 heterojunction for boosting photogenerated carrier separation and the dominant role in enhancing peroxymonosulfate activation. CHEMICAL ENGINEERING JOURNAL[J]. 2022, 433: http://dx.doi.org/10.1016/j.cej.2021.134467.
[6] Liu, Xiao, Gong, Juan, Wei, Xijun, Ni, Ling, Chen, Houyang, Zheng, Qiaoji, Xu, Chenggang, Lin, Dunmin. MoO42--mediated engineering of Na3V2(PO4)(3) as advanced cathode materials for sodium-ion batteries. JOURNAL OF COLLOID AND INTERFACE SCIENCE[J]. 2022, 606: 1897-1905, http://dx.doi.org/10.1016/j.jcis.2021.10.007.
[7] Wu, Donghai, Yang, Baocheng, Zhang, Shouren, Ruckenstein, Eli, Chen, Houyang. Reshaping two-dimensional MoS2 for superior magnesium-ion battery anodes. JOURNAL OF COLLOID AND INTERFACE SCIENCE[J]. 2021, 597: 401-408, http://dx.doi.org/10.1016/j.jcis.2021.04.002.
[8] Chenyang Zha, Donghai Wu, Yuwei Zhao, Jun Deng, Jinghua Wu, Rong Wu, Meng Yang, Lin Wang, Houyang Chen. Two-dimensional multimetallic sulfide nanosheets with multi-active sites to enhance polysulfide redox reactions in liquid Li2S6-based lithium-polysulfide batteries. 能源化学:英文版[J]. 2021, 163-169, http://lib.cqvip.com/Qikan/Article/Detail?id=7104063385.
[9] Li, Xiaoqing, Wu, Donghai, Yang, Jun, Zhu, Quanxi, Wang, Jiankang, Peng, Yuan, Xie, Taiping, Chen, Houyang. Monoclinic BiPO4: Preparation, photocatalytic properties in experiment and theoretical calculation. SOLAR ENERGY[J]. 2021, 220: 440-449, http://dx.doi.org/10.1016/j.solener.2021.03.043.
[10] Wei, Xijun, Wei, Jiacheng, Song, Yingze, Wu, Donghai, Liu, Xu Dong, Chen, Houyang, Xiao, Peng, Zhang, Yunhuai. Potassium mediated Co-Fe-based Prussian blue analogue architectures for aqueous potassium-ion storage. CHEMICAL COMMUNICATIONS[J]. 2021, 57(57): 7019-7022, http://dx.doi.org/10.1039/d1cc01852c.
[11] Zha, Chenyang, Wu, Donghai, Gu, Xiuquan, Chen, Houyang. Triple-phase interfaces of graphene-like carbon clusters on antimony trisulfide nanowires enable high-loading and long-lasting liquid Li2S6-based lithium-sulfur batteries. JOURNAL OF ENERGY CHEMISTRY[J]. 2021, 59(8): 599-607, http://dx.doi.org/10.1016/j.jechem.2020.11.032.
[12] Yin, Zhijian, Chen, Houyang, Yang, Li, Peng, Changjun, Qin, Yuanhang, Wang, Tielin, Sun, Wei, Wang, Cunwen. Investigations of CO2 Capture from Gas Mixtures Using Porous Liquids. LANGMUIR[J]. 2021, 37(3): 1255-1266, http://dx.doi.org/10.1021/acs.langmuir.0c03276.
[13] Yang, Li, Lu, Jiafeng, Chen, Houyang, Ruckenstein, Eli, Qin, Yuanhang, Wang, Tielin, Sun, Wei, Wang, Cunwen. Screening and Improving Porous Materials for Ultradeep Desulfurization of Gasoline. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH[J]. 2021, 60(1): 604-613, https://www.webofscience.com/wos/woscc/full-record/WOS:000611072000050.
[14] Huang, Chao, Wu, Donghai, Qin, Ping, Ding, Kang, Pi, Chaoran, Ruan, Qingdong, Song, Hao, Gao, Biao, Chen, Houyang, Chu, Paul K. Ultrafine Co nanodots embedded in N-doped carbon nanotubes grafted on hexagonal VN for highly efficient overall water splitting. NANO ENERGY[J]. 2020, 73: http://dx.doi.org/10.1016/j.nanoen.2020.104788.
[15] Wang, Shuaiwei, Yang, Baocheng, Ruckenstein, Eli, Chen, Houyang. Bco-C24: A new 3D Dirac nodal line semi-metallic carbon honeycomb for high performance metal-ion battery anodes. CARBON[J]. 2020, 159: 542-548, http://dx.doi.org/10.1016/j.carbon.2019.12.069.
[16] Yu, Chen, Yang, Li, Chen, Houyang, Qin, Yuanhang, Wang, Tielin, Sun, Wei, Wang, Cunwen. Microscale investigations of mechanical responses of TKX-50 based polymer bonded explosives using MD simulations. COMPUTATIONAL MATERIALS SCIENCE[J]. 2020, 172: http://dx.doi.org/10.1016/j.commatsci.2019.109287.
[17] Zha, Chenyang, Zhu, Xiaorong, Deng, Jun, Zhou, Yuan, Li, Yongshen, Chen, Junmei, Ding, Pan, Hu, Yongpan, Li, Yafei, Chen, Houyang. Facet-tailoring five-coordinated Ti sites and structure-optimizing electron transfer in a bifunctional cathode with titanium nitride nanowire array to boost the performance of Li2S6-based lithium-sulfur batteries. ENERGY STORAGE MATERIALS[J]. 2020, 26: 40-45, http://dx.doi.org/10.1016/j.ensm.2019.12.032.
[18] Zhou, Xumiao, Yu, Yuanyuan, Chen, Houyang, Yang, Li, Qin, Yuanhang, Wang, Tielin, Sun, Wei, Wang, Cunwen. Porous Material Screening and Evaluation for Deep Desulfurization of Dry Air. LANGMUIR[J]. 2020, 36(11): 2775-2785, https://www.webofscience.com/wos/woscc/full-record/WOS:000526362600004.
[19] Wu, Donghai, Yang, Baocheng, Chen, Houyang, Ruckenstein, Eli. New Findings on an Old Question: Can Defect-Free Graphene Monolayers be Superior Metal-Ion Battery Anodes?. ADVANCED SUSTAINABLE SYSTEMS[J]. 2020, 4(4): https://www.webofscience.com/wos/woscc/full-record/WOS:000514008200001.
[20] Luo, Yang, Wu, Yinghong, Wu, Donghai, Huang, Chao, Xiao, Dezhi, Chen, Houyang, Zheng, Shili, Chu, Paul K. NiFe-Layered Double Hydroxide Synchronously Activated by Heterojunctions and Vacancies for the Oxygen Evolution Reaction. ACS APPLIED MATERIALS & INTERFACES[J]. 2020, 12(38): 42850-42858, http://dx.doi.org/10.1021/acsami.0c11847.
[21] Zha, Chenyang, Wu, Donghai, Zhang, Tikai, Wu, Jinghua, Chen, Houyang. A facile and effective sulfur loading method: Direct drop of liquid Li2S8 on carbon coated TiO2 nanowire arrays as cathode towards commercializing lithium-sulfur battery. ENERGY STORAGE MATERIALS[J]. 2019, 17: 118-125, http://dx.doi.org/10.1016/j.ensm.2018.11.020.
[22] Wang, Shuaiwei, Chen, Zhuoran, Yang, Baocheng, Chen, Houyang, Ruckenstein, Eli. Mechanical deformation: A feasible route for reconfiguration of inner interfaces to modulate the high performance of three-dimensional porous carbon material anodes in stretchable lithium-Ion batteries. JOURNAL OF COLLOID AND INTERFACE SCIENCE[J]. 2019, 555: 431-437, http://dx.doi.org/10.1016/j.jcis.2019.07.101.
[23] Wu, Donghai, Yang, Baocheng, Ruckenstein, Eli, Chen, Houyang. Functionalization: An Effective Approach to Open and Close Channels for Electron Transfer in Nitrogenated Holey Graphene C2N Anodes in Sodium-Ion Batteries. JOURNAL OF PHYSICAL CHEMISTRY LETTERS[J]. 2019, 10(4): 721-726, [24] Wu, Donghai, Wang, Shuaiwei, Zhang, Shouren, Liu, Yibiao, Ding, Yingchun, Yang, Baocheng, Chen, Houyang. Stabilization of two-dimensional penta-silicene for flexible lithium-ion battery anodes via surface chemistry reconfiguration. PHYSICAL CHEMISTRY CHEMICAL PHYSICS[J]. 2019, 21(3): http://dx.doi.org/10.1039/c8cp05008b.
[25] Chen, Houyang, Ruckenstein, Eli. Nanoseparation of Nanoparticle Mixtures with Similar Surface Structures through a Facile Two-Step Approach. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH[J]. 2019, 58(8): 3420-3426, https://www.webofscience.com/wos/woscc/full-record/WOS:000460199800074.
[26] Wang, Shuaiwei, Si, Yubing, Yang, Baocheng, Ruckenstein, Eli, Chen, Houyang. Two-Dimensional Carbon-Based Auxetic Materials for Broad-Spectrum Metal-Ion Battery Anodes. JOURNAL OF PHYSICAL CHEMISTRY LETTERS[J]. 2019, 10(12): 3269-3275, http://dx.doi.org/10.1021/acs.jpclett.9b00905.
[27] Zha, Chenyang, Gu, Xiuquan, Wu, Donghai, Chen, Houyang. Interfacial active fluorine site-induced electron transfer on TiO2 (001) facets to enhance polysulfide redox reactions for better liquid Li2S6-Based lithium-sulfur batteries. JOURNAL OF MATERIALS CHEMISTRY A[J]. 2019, 7(11): 6431-6438, [28] Yan, Zhiguo, Tang, Sai, Zhou, Xumiao, Yang, Li, Xiao, Xingqing, Chen, Houyang, Qin, Yuanhang, Sun, Wei. All-silica zeolites screening for capture of toxic gases from molecular simulation. CHINESEJOURNALOFCHEMICALENGINEERING[J]. 2019, 27(1): 174-181, http://lib.cqvip.com/Qikan/Article/Detail?id=7001559565.
[29] Wu, Donghai, Yang, Baocheng, Chen, Houyang, Ruckenstein, Eli. Mechanical deformation induced charge redistribution to promote the high performance of stretchable magnesium-ion batteries based on two-dimensional C2N anodes. NANOSCALE[J]. 2019, 11(33): 15472-15478, [30] Wu, Donghai, Yang, Baocheng, Chen, Houyang, Ruckenstein, Eli. Nitrogenated holey graphene C2N monolayer anodes for lithium- and sodium-ion batteries with high performance. ENERGY STORAGE MATERIALS[J]. 2019, 16: 574-580, http://dx.doi.org/10.1016/j.ensm.2018.09.001.
[31] Wang, Shuaiwei, Yang, Baocheng, Chen, Houyang, Ruckenstein, Eli. Reconfiguring graphene for high-performance metal-ion battery anodes. ENERGY STORAGE MATERIALS[J]. 2019, 16: 619-624, http://dx.doi.org/10.1016/j.ensm.2018.07.013.
[32] Zha, Chenyang, Yang, Fengli, Zhang, JunJie, Zhang, Tikai, Dong, Shuai, Chen, Houyang. Promoting polysulfide redox reactions and improving electronic conductivity in lithium-sulfur batteries via hierarchical cathode materials of graphene-wrapped porous TiO2 microspheres with exposed (001) facets. JOURNAL OF MATERIALS CHEMISTRY A[J]. 2018, 6(34): 16574-16582, https://www.webofscience.com/wos/woscc/full-record/WOS:000444698200032.
[33] Wang, Shuaiwei, Yang, Baocheng, Chen, Houyang, Ruckenstein, Eli. Popgraphene: a new 2D planar carbon allotrope composed of 5-8-5 carbon rings for high-performance lithium-ion battery anodes from bottom-up programming. JOURNAL OF MATERIALS CHEMISTRY A[J]. 2018, 6(16): 6815-6821, http://dx.doi.org/10.1039/c8ta00438b.
[34] Wang, Shuaiwei, Wu, Donghai, Yang, Baocheng, Ruckenstein, Eli, Chen, Houyang. Semimetallic carbon honeycombs: new three-dimensional graphene allotropes with Dirac cones. NANOSCALE[J]. 2018, 10(6): 2748-2754, https://www.webofscience.com/wos/woscc/full-record/WOS:000424694400010.
[35] Wu, Donghai, Yuan, Jinyun, Yang, Baocheng, Chen, Houyang. Adsorption, hydrogenation and dehydrogenation of C2H on a CoCu bimetallic layer. SURFACE SCIENCE[J]. 2018, 671: 36-42, http://dx.doi.org/10.1016/j.susc.2018.01.007.
[36] Wu, Donghai, Wang, Shuaiwei, Zhang, Shouren, Yuan, Jinyun, Yang, Baocheng, Chen, Houyang. Highly negative Poisson's ratio in a flexible two-dimensional tungsten carbide monolayer. PHYSICAL CHEMISTRY CHEMICAL PHYSICS[J]. 2018, 20(28): https://www.webofscience.com/wos/woscc/full-record/WOS:000439286000004.
[37] Wang, Shuaiwei, Yang, Baocheng, Chen, Houyang, Ruckenstein, Eli. Popgraphene: a new 2D planar carbon allotrope composed of 5-8-5 carbon rings for high-performance lithium-ion battery anodes from bottom-up programming (vol 6, pg 6815, 2018). JOURNAL OF MATERIALS CHEMISTRY Anull. 2018, 6(15): 6687-6687, https://www.webofscience.com/wos/woscc/full-record/WOS:000430368900060.
[38] Zhou, Xumiao, Su, Zejun, Chen, Houyang, Xiao, Xingqing, Qin, Yuanhang, Yang, Li, Yan, Zhiguo, Sun, Wei. Capture of pure toxic gases through porous materials from molecular simulations. MOLECULAR PHYSICS[J]. 2018, 116(15-16): 2095-2107, https://www.webofscience.com/wos/woscc/full-record/WOS:000437722400018.
[39] Wang, Shuaiwei, Fan, Zhaochuan, Cui, Yan, Zhang, Shouren, Yang, Baocheng, Chen, Houyang. Fracture behaviors of brittle and ductile 2D carbon structures under uniaxial tensile stress. CARBON[J]. 2017, 111: 486-492, http://dx.doi.org/10.1016/j.carbon.2016.10.021.
[40] Wu, Donghai, Wang, Shuaiwei, Yuan, Jinyun, Yang, Baocheng, Chen, Houyang. Modulation of the electronic and mechanical properties of phagraphene via hydrogenation and fluorination. PHYSICAL CHEMISTRY CHEMICAL PHYSICS[J]. 2017, 19(19): 11771-11777, http://dx.doi.org/10.1039/c6cp08621g.
[41] Chen, Houyang, Ruckenstein, Eli. Tunable Primary and Secondary Encapsulation of a Charged Nonspherical Nanoparticle: Insights from Brownian Dynamics Simulations. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH[J]. 2017, 56(6): 1646-1651, https://www.webofscience.com/wos/woscc/full-record/WOS:000394482100027.
[42] Chen, Houyang, Ruckenstein, Eli. Controlling Nanorod Oligomer Aggregation in Solutions. JOURNAL OF PHYSICAL CHEMISTRY C[J]. 2016, 120(30): 16913-16918, https://www.webofscience.com/wos/woscc/full-record/WOS:000381236100068.
[43] Yuan, Jinyun, Li, Guowei, Yang, Baocheng, Zhang, Jinping, Li, Zijiong, Chen, Houyang. Selective adsorption of ethylene on bimetallic CuVn (+/0) (n=1-5) clusters: A theoretical study. COMPUTATIONAL MATERIALS SCIENCE[J]. 2016, 111: 489-496, http://dx.doi.org/10.1016/j.commatsci.2015.09.064.
[44] Kang, Hongwei, Si, Yubing, Liu, Jing, Chen, Lin, Li, Yanchun, Chen, Houyang, Groeper, Jonathan, Yang, Baocheng. An experimental and theoretical study of dimethylaminostyryl BODIPY-perylenetetracarboxylic derivative dyads: synthesis, properties and DFT calculation. RSC ADVANCES[J]. 2016, 6(28): 23094-23101, https://www.webofscience.com/wos/woscc/full-record/WOS:000372253200001.
[45] Wang, Shuaiwei, Si, Yubing, Yuan, Jinyun, Yang, Baocheng, Chen, Houyang. Tunable thermal transport and mechanical properties of graphyne heterojunctions. PHYSICAL CHEMISTRY CHEMICAL PHYSICS[J]. 2016, 18(35): 24210-24218, https://www.webofscience.com/wos/woscc/full-record/WOS:000382766300007.
[46] Xiao, FangZhi, Chen, Houyang, Luo, ZhengHong. Numerical evaluation and improvement efficiency of radial flow moving-bed reactors for catalytic pyrolysis of light hydrocarbons to low carbon olefins. CANADIAN JOURNAL OF CHEMICAL ENGINEERING[J]. 2015, 93(6): 1033-1043, http://dx.doi.org/10.1002/cjce.22187.
[47] Chen, Houyang, Ruckenstein, Eli. Hydrated Ions: From Individual Ions to Ion Pairs to Ion Clusters. JOURNAL OF PHYSICAL CHEMISTRY B[J]. 2015, 119(39): 12671-12676, https://www.webofscience.com/wos/woscc/full-record/WOS:000362384000011.
[48] Yuan, Jinyun, Yang, Baocheng, Li, Guowei, Si, Yubing, Wang, Shuaiwei, Zhang, Shouren, Chen, Houyang. Geometries and electronic properties of bimetallic CuVn (n=1-5) clusters and their cations: Insight from density functional calculations. COMPUTATIONAL MATERIALS SCIENCE[J]. 2015, 102: 213-219, http://dx.doi.org/10.1016/j.commatsci.2015.02.037.
[49] Wang, Shuaiwei, Yang, Baocheng, Yuan, Jinyun, Si, Yubing, Chen, Houyang. Large-Scale Molecular Simulations on the Mechanical Response and Failure Behavior of a defective Graphene: Cases of 5-8-5 Defects. SCIENTIFIC REPORTS[J]. 2015, 5: https://www.webofscience.com/wos/woscc/full-record/WOS:000362486000001.
[50] Si, Yubing, Yang, Baocheng, Qin, Haimei, Yuan, Jinyun, Wang, Shuaiwei, Chen, Houyang, Zhao, Yi. Atomistic Modeling of Triplet-Triplet Energy-Transfer Rates from Drug (S)-Propranolol to (R)-Cinacalcet in Human alpha(1)-Acid Glycoprotein. JOURNAL OF PHYSICAL CHEMISTRY C[J]. 2015, 119(15): 8014-8022, https://www.webofscience.com/wos/woscc/full-record/WOS:000353249500005.
[51] Chen, Houyang, Ruckenstein, Eli. Micellar Structures in Nanoparticle-Multiblock Copolymer Complexes. LANGMUIR[J]. 2014, 30(13): 3723-3728, https://www.webofscience.com/wos/woscc/full-record/WOS:000334572100010.
[52] Chen, Houyang, Ruckenstein, Eli. Nanomembrane Containing a Nanopore in an Electrolyte Solution: A Molecular Dynamics Approach. JOURNAL OF PHYSICAL CHEMISTRY LETTERS[J]. 2014, 5(17): 2979-2982, https://www.webofscience.com/wos/woscc/full-record/WOS:000341337400010.
[53] Wang, Shuaiwei, Yang, Baocheng, Zhang, Shouren, Yuan, Jinyun, Si, Yubing, Chen, Houyang. Mechanical Properties and Failure Mechanisms of Graphene under a Central Load. CHEMPHYSCHEM[J]. 2014, 15(13): 2749-2755, http://dx.doi.org/10.1002/cphc.201402258.
[54] Yuan, Jinyun, Wang, Shuaiwei, Si, Yubing, Yang, Baocheng, Chen, Houyang. Investigation of ternary ConCN-1/0 (n=1-5) clusters by density functional calculations. DALTON TRANSACTIONS[J]. 2014, 43(14): 5516-5525, https://www.webofscience.com/wos/woscc/full-record/WOS:000332929200031.
[55] Yang, Baocheng, Wang, Shuaiwei, Guo, Yanzhen, Yuan, Jinyun, Si, Yubing, Zhang, Shouren, Chen, Houyang. Strength and failure behavior of a graphene sheet containing bi-grain-boundaries. RSC ADVANCES[J]. 2014, 4(97): 54677-54683, https://www.webofscience.com/wos/woscc/full-record/WOS:000344600400067.
[56] Chen, Houyang, Ruckenstein, Eli. Formation and Degradation of Multicomponent Multicore Micelles: Insights from Dissipative Particle Dynamics Simulations. LANGMUIR[J]. 2013, 29(18): 5428-5434, https://www.webofscience.com/wos/woscc/full-record/WOS:000318756200006.
[57] Wu, Yifang, Chen, Houyang. Prediction of band gap reduction and magnetism in (Cu, S)-codoped ZnO. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS[J]. 2012, 324(13): 2153-2157, http://dx.doi.org/10.1016/j.jmmm.2012.02.035.
[58] Chen, Houyang, Ruckenstein, Eli. Self-assembly of pi-shaped copolymers. SOFT MATTER[J]. 2012, 8(5): 1327-1333, https://www.webofscience.com/wos/woscc/full-record/WOS:000298990600010.
[59] Chen, Houyang, Ruckenstein, Eli. Formation of complex colloidal particles: morphologies and mechanisms. SOFT MATTER[J]. 2012, 8(34): 8911-8916, https://www.webofscience.com/wos/woscc/full-record/WOS:000307306800014.
[60] Liu, Chunting, Ma, Ji, Chen, Houyang. Periodical structural conversion and its mechanism in hematite: from nanospindles, to nanotubes, to nanotires. RSC ADVANCES[J]. 2012, 2(3): 1009-1013, https://www.webofscience.com/wos/woscc/full-record/WOS:000299177000038.
[61] Xu, Yuli, Chen, Xueqian, Chen, Houyang, Xu, Shouhong, Liu, Honglai, Hu, Ying. Density functional theory for the selective adsorption of small molecules on a surface modified with polymer brushes. MOLECULAR SIMULATION[J]. 2012, 38(4): 274-283, https://www.webofscience.com/wos/woscc/full-record/WOS:000300849000002.
[62] Chen, Houyang, Ruckenstein, Eli. Aggregation of nanoparticles in a block copolymer bilayer. JOURNAL OF COLLOID AND INTERFACE SCIENCE[J]. 2011, 363(2): 573-578, http://dx.doi.org/10.1016/j.jcis.2011.08.011.
[63] Chen, Xueqian, Chen, Houyang, Liu, Honglai, Hu, Ying. A free-space density functional theory for polymer adsorption: Influence of packing effect on conformations of polymer. JOURNAL OF CHEMICAL PHYSICS[J]. 2011, 134(4): https://www.webofscience.com/wos/woscc/full-record/WOS:000286897600116.
[64] 许裕栗, 陈学谦, 陈厚样, 徐首红, 刘洪来. 接枝聚合物对小分子的选择性吸附研究. 物理学报[J]. 2011, 60(11): 117104-1, http://lib.cqvip.com/Qikan/Article/Detail?id=39835707.
[65] Chen, Houyang, Ruckenstein, Eli. Relation between molecular orientation and morphology of a multiblock copolymer melt confined in cylindrical nanopores. POLYMER[J]. 2010, 51(4): 968-974, http://dx.doi.org/10.1016/j.polymer.2010.01.002.
[66] Chen, Houyang, Ruckenstein, Eli. Structure and particle aggregation in block copolymer-binary nanoparticle composites. POLYMER[J]. 2010, 51(24): 5869-5882, http://dx.doi.org/10.1016/j.polymer.2010.10.011.
[67] Chen, Houyang, Chen, Xueqian, Ye, Zhencheng, Liu, Honglai, Hu, Ying. Competitive Adsorption and Assembly of Block Copolymer Blends on Nanopatterned Surfaces. LANGMUIR[J]. 2010, 26(9): 6663-6668, https://www.webofscience.com/wos/woscc/full-record/WOS:000276969700087.
[68] Liu, Honglai, Xu, Hui, Chen, Houyang, Peng, Changjun, Hu, Ying, Lu, X, Hu, Y. Phase Equilibria, Morphologies of Microphase Separation, and Interfacial Structures of Polymer Systems Studied by Equations of State. MOLECULAR THERODYNAMICS OF COMPLEX SYSTEMSnull. 2009, 131: 109-142, https://www.webofscience.com/wos/woscc/full-record/WOS:000262391400003.
[69] Liu, Weijun, Chen, Houyang, Zhou, Yuan, Huang, Yongmin, Liu, Honglai, Hu, Ying. Electrical Properties and Stability of Poly(N-isopropylacylamide-co-methacrylic Acid) Core-Shell Microgel. JOURNAL OF DISPERSION SCIENCE AND TECHNOLOGY[J]. 2009, 30(9): 1281-1287, https://www.webofscience.com/wos/woscc/full-record/WOS:000270206800006.
[70] Chen, Houyang, Ruckenstein, Eli. The structure of nanochannels formed by block copolymer solutions confined in nanotubes. JOURNAL OF CHEMICAL PHYSICS[J]. 2009, 131(11): https://www.webofscience.com/wos/woscc/full-record/WOS:000270097400055.
[71] Chen, Houyang, Ruckenstein, Eli. Nanoparticle aggregation in the presence of a block copolymer. JOURNAL OF CHEMICAL PHYSICS[J]. 2009, 131(24): https://www.webofscience.com/wos/woscc/full-record/WOS:000273217000070.
[72] Chen, Houyang, Ruckenstein, Eli. Nanostructures Self-Assembled in Polymer Solutions Confined in Cylindrical Nanopores. LANGMUIR[J]. 2009, 25(20): 12315-12319, https://www.webofscience.com/wos/woscc/full-record/WOS:000270594500048.
[73] Chen, Houyang, Ruckenstein, Eli. The driving force of channel formation in triheteropolymers confined in nanocylindrical tubes. JOURNAL OF CHEMICAL PHYSICS[J]. 2009, 130(2): https://www.webofscience.com/wos/woscc/full-record/WOS:000263112600039.
[74] Liu WeiJun, Zhou Yuan, Chen HouYang, Huang YongMin, Liu HongLai. Flocculation and aggregation Behavior of doubly responsive microgel. ACTA CHIMICA SINICA[J]. 2008, 66(4): 449-453, https://www.webofscience.com/wos/woscc/full-record/WOS:000254396700009.
[75] Chen, Houyang, Cai, Jun, Ye, Zhencheng, Peng, Changjun, Liu, Honglai, Hu, Ying, Jiang, Jianwen. Adsorption of copolymers in a selective nanoslit: A hybrid density functional theory. JOURNAL OF PHYSICAL CHEMISTRY B[J]. 2008, 112(32): 9568-9573, https://www.webofscience.com/wos/woscc/full-record/WOS:000258290000004.
[76] Liu WeiJun, Zhou Yuan, Chen HouYang, Huang YongMin, Liu HongLai. Flocculation and aggregation Behavior of doubly responsive microgel. ACTA CHIMICA SINICA[J]. 2008, 66(4): 449-453, https://www.webofscience.com/wos/woscc/full-record/WOS:000254396700009.
[77] Chen, Houyang, Ye, Zhencheng, Cai, Jun, Liu, Honglai, Hu, Ying, Jiang, Jianwen. Hybrid density functional theory for homopolymer mixtures confined in a selective nanoslit. JOURNAL OF PHYSICAL CHEMISTRY B[J]. 2007, 111(21): 5927-5933, https://www.webofscience.com/wos/woscc/full-record/WOS:000246695100018.
[78] Ye, Zhencheng, Chen, Houyang, Liu, Honglai, Hu, Ying, Jiang, Jianwen. Density functional theory for copolymers confined in a nanoslit. JOURNAL OF CHEMICAL PHYSICS[J]. 2007, 126(13): https://www.webofscience.com/wos/woscc/full-record/WOS:000245512400054.
[79] Chen, Houyang, Peng, Changjun, Ye, Zhencheng, Liu, Honglai, Hu, Ying, Jiang, Jianwen. Recognition of multiblock copolymers on nanopatterned surfaces: Insight from molecular simulations. LANGMUIR[J]. 2007, 23(5): 2430-2436, https://www.webofscience.com/wos/woscc/full-record/WOS:000244248700031.
[80] 陈厚样, 孙蕾, 叶贞成, 彭昌军, 刘洪来. 非对称两嵌段高分子在选择性壁面识别吸附的Monte Carlo模拟. 化工学报[J]. 2007, 58(6): 1341-1347, http://lib.cqvip.com/Qikan/Article/Detail?id=24652033.
[81] Chen, Houyang, Peng, Changjun, Sun, Lei, Liu, Honglai, Hu, Ying, Jiang, Jianwen. Assembly of copolymer blend on nanopatterned surfaces: A molecular simulation study. LANGMUIR[J]. 2007, 23(22): 11112-11119, https://www.webofscience.com/wos/woscc/full-record/WOS:000250228100041.
[82] Ye, Zhencheng, Chen, Houyang, Cai, Jun, Liu, Honglai, Hu, Ying. Density functional theory of homopolymer mixtures confined in a slit. JOURNAL OF CHEMICAL PHYSICS[J]. 2006, 125(12): https://www.webofscience.com/wos/woscc/full-record/WOS:000240877000042.
[83] Chen, Houyang, Ye, Zhencheng, Peng, Changjun, Liu, Honglai, Hu, Ying. Density functional theory for the recognition of polymer at nanopatterned surface. JOURNAL OF CHEMICAL PHYSICS[J]. 2006, 125(20): https://www.webofscience.com/wos/woscc/full-record/WOS:000242408100045.

科研活动