基本信息
郭宗宽  男  博导  中国科学院理论物理研究所
电子邮件: guozk@itp.ac.cn
通信地址: 北京市海淀区中关村东路55号,中科院理论物理研究所
邮政编码: 100190

研究领域

研究方向为引力理论与宇宙学,主要从事引力波、早期宇宙物理、暗能量和计算宇宙学等研究。在Phys. Rev. D, Phys. Rev. Lett., Nature Astronomy等学术期刊发表论文84篇,被引用4600余次,有13篇论文单篇引用超过100次,其中1篇论文单篇引用超过500次,入选美国SLAC发布的2009天体物理-唯像领域全球高被引论文,入选美国SLAC发布的2010广义相对论-量子宇宙领域全球高被引论文。2014年至2021年连续8年入选爱思唯尔(Elsevier)发布的中国高被引学者榜单。入选美国斯坦福大学发布的2020全球前2%顶尖科学家榜单(World's Top 2% Scientists)。

ITP个人主页:http://sourcedb.itp.cas.cn/zw/zjrck/201104/t20110413_3115158.html

ITP个人主页:http://www.itp.cas.cn/sourcedb_itp_cas/zw/zjrck/201104/t20110413_3115158.html

UCAS个人主页:http://people.ucas.ac.cn/~0015896

UCAS个人主页:https://teacher.ucas.ac.cn/~0015896

招生信息

   
招生专业
070201-理论物理
招生方向
引力理论与宇宙学

教育背景

2002-09--2005-07   中国科学院理论物理研究所   理学博士
1999-09--2002-07   郑州大学   理学硕士
1995-09--1999-07   郑州大学   理学学士

工作经历

   
工作简历
2014-04~现在, 中科院理论物理研究所, 研究员
2011-04~2014-03,中科院理论物理研究所, 副研究员
2008-11~2011-03,德国比勒菲尔德大学, 洪堡博士后
2006-09~2008-10,日本近畿大学, JSPS博士后
2005-09~2006-08,中科院物理研究所, 博士后

教授课程

现代宇宙学
现代物理学概述
相对论天体物理
宇宙学前沿系列讲座

出版信息

Inspire论文检索:https://inspirehep.net/authors/1027868?ui-citation-summary=true#with-citation-summary


发表论文

(84) Hubble parameter estimation via dark sirens with the LISA-Taiji network, Natl. Sci. Rev. 9 (2022) nwab054.
(83) Primordial black hole production during first-order phase transitions, Phys. Rev. D105 (2022) L021303.
(82) Dependence of the amplitude of gravitational waves from preheating on the inflationary energy scale, Phys. Rev. D105 (2022) 023507.
(81) Sampling with prior knowledge for high-dimensional gravitational wave data analysis, Big Data Mining and Analytics 5 (2022) 53-63.
(80) No-go guide for the Hubble tension : Late-time solutions, Phys. Rev. D105 (2022) L021301.
(79) Standard siren cosmology with the LISA-Taiji network, Sci. China-Phys. Mech. Astron. 65 (2022) 210431.
(78) Gravitational waves from resonant amplification of curvature perturbations during inflation, JCAP 10 (2021) 050.
(77) Large anisotropies of the stochastic gravitational wave background from cosmic domain walls, Phys. Rev. Lett. 126 (2021) 141303.
(76) China's first step towards probing the expanding universe and the nature of gravity using a space borne gravitational wave antenna, Communications Physics 4 (2021) 34.
(75) Chameleon dark energy can resolve the Hubble tension, Phys. Rev. D103 (2021) L121302.
(74) Gravitational and electromagnetic radiation from binary black holes with electric and magnetic charges: Elliptical orbits on a cone, Eur. Phys. J. C81 (2021) 1048.
(73) Do the observational data favor a local void?, Phys. Rev. D103 (2021) 123539.
(72) The Gravitational-Wave Physics II: Progress, Sci. China-Phys. Mech. Astron. 64 (2021) 120401.
(71) Taiji program in space for gravitational universe with the first run key technologies test in Taiji-1, Int. J. Mod. Phys. A36 (2021) 2102002.
(70) The LISA-Taiji Network: Precision Localization of Coalescing Massive Black Hole Binaries, Research 2021 (2021) 6014164.
(69) Primordial black holes from cosmic domain walls, Phys. Rev. D101 (2020) 023513.
(68) Gravitational and electromagnetic radiation from binary black holes with electric and magnetic charges: Circular orbits on a cone, Phys. Rev. D102 (2020) 103520.
(67) Taiji program: gravitational-wave sources, Int. J. Mod. Phys. A35 (2020) 2050075.
(66) Primordial black holes and gravitational waves from parametric amplification of curvature perturbations, JCAP 06 (2020) 013.
(65) The LISA–Taiji network, Nature Astronomy 4 (2020) 108.
(64) Merger rate distribution of primordial black hole binaries with electric charges, Phys. Rev. D102 (2020) 043508.
(63) A brief analysis to Taiji: Science and technology, Results Phys. 16 (2020) 102918.
(62) Analytical approximation of the scalar spectrum in the ultraslow-roll inflationary models, Phys. Rev. D101 (2020) 083535.
(61) Gravitational waves from double-inflection-point inflation, Phys. Rev. D101 (2020) 023505.
(60) Constraining gravitational-wave polarizations with Taiji, Phys. Rev. D102 (2020) 124050.
(59) Gravitational wave production after inflation with cuspy potentials, Phys. Rev. D99 (2019) 103506.
(58) Effects of the merger history on the merger rate density of primordial black hole binaries, Eur. Phys. J. C79 (2019) 717.
(57) Effects of the surrounding primordial black holes on the merger rate of primordial black hole binaries, Phys. Rev. D99 (2019) 063523.
(56) Constraining the reionization history with CMB and spectroscopic observations, Phys. Rev. D99 (2019) 043524.
(55) Primordial Black Hole Production in Inflationary Models of Supergravity with a Single Chiral Superfield, Phys. Rev. D98 (2018) 063526.
(54) Super-Eddington accreting massive black holes explore high-z cosmology: Monte-Carlo simulations, Phys. Rev. D97 (2018) 123502.
(53) Gravitational Waves from Oscillons with Cuspy Potentials, Phys. Rev. Lett. 120 (2018) 031301.
(52) The gravitational wave physics, Natl. Sci. Rev. 4 (2017) 687.
(51) Lorentz invariance violation in the neutrino sector: a joint analysis from BBN and CMB, Eur. Phys. J. C77 (2017) 386.
(50) Null test of the cosmic curvature using H(z) and supernovae data, Phys. Rev. D93 (2016) 043517.
(49) Model of inflationary magnetogenesis, Phys. Rev. D93 (2016) 043541.
(48) Dodging the cosmic curvature to probe the constancy of the speed of light, JCAP 1608 (2016) 016.
(47) Magnetogenesis in bouncing cosmology, Phys. Rev. D94, (2016) 083524.
(46) Reheating Phase Diagram for Higgs Inflation, Phys. Rev. D92 (2015) 063506.
(45) Inflection point inflation and dark energy in supergravity, Phys. Rev. D91 (2015) 123502.
(44) Reconstructing interaction between dark energy and dark matter using Gaussian Processes, Phys. Rev. D91 (2015) 123533.
(43) Higgs Inflation in Gauss-Bonnet Brane-World, Phys. Rev. D92 (2015) 063514.
(42) Principal component analysis of the reionization history from Planck 2015 data, Phys. Rev. D92 (2015) 123521.
(41) Updated reduced CMB data and constraints on cosmological parameters, Int. J. Mod. Phys. D24 (2015) 1550071.
(40) Cosmological parameter estimation from CMB and X-ray clusters after Planck, JCAP 1405 (2014) 020.
(39) CMB anomalies from an inflationary model in string theory, Eur. Phys. J. C74 (2014) 3006.
(38) Constraints on the ΛCDM model with redshift tomography, Phys. Rev. D89 (2014) 123518.
(37) Reconstruction of the primordial power spectra with Planck and BICEP2, Phys. Rev. D90 (2014) 023544.
(36) Nucleosynthesis constraint on Lorentz invariance violation in the neutrino sector, Phys. Rev. D87 (2013) 123519.
(35) Obtaining the CMB anomalies with a bounce from the contracting phase to inflation, Phys. Rev. D88 (2013) 063539.
(34) Inflation coupled to a Gauss-Bonnet term, Phys. Rev. D88 (2013) 123508.
(33) Non-Gaussian features from the inverse volume corrections in loop quantum cosmology, Phys. Rev. D86 (2012) 044020.
(32) On asymmetric brane creation, JHEP 01 (2012) 019.
(31) Primordial power spectrum versus extension parameters beyond the standard model, Phys. Rev. D85 (2012) 103519.
(30) Cosmological constraints on Lorentz invariance violation in the neutrino sector, Phys. Rev. D86 (2012) 065004.
(29) Reconstruction of the primordial power spectrum from CMB data, JCAP 1108 (2011) 031.
(28) Uncorrelated estimates of the primordial power spectrum, JCAP 1111 (2011) 032.
(27) Observational constraints on the energy scale of inflation, Phys. Rev. D83 (2011) 083522.
(26) Slow-roll inflation with a Gauss-Bonnet correction, Phys. Rev. D81 (2010) 123520.
(25) Black Holes in the Dilatonic Einstein-Gauss-Bonnet Theory in Various Dimensions II -- Asymptotically AdS Topological Black Holes --, Prog. Theor. Phys. 121 (2009) 253-273.
(24) Power spectra from an inflaton coupled to the Gauss-Bonnet term, Phys. Rev. D80 (2009) 063523.
(23) Cosmological Evolution of Dirac-Born-Infeld Field, JCAP 04 (2008) 035.
(22) Black Holes in the Dilatonic Einstein-Gauss-Bonnet Theory in Various Dimensions I -- Asymptotically Flat Black Holes --, Prog. Theor. Phys. 120 (2008) 581-607.
(21) Accelerating Cosmologies in the Einstein-Gauss-Bonnet Theory with Dilaton, Prog. Theor. Phys. 118 (2007) 879-892.
(20) Probing the Coupling between Dark Components of the Universe, Phys. Rev. D76 (2007) 023508.
(19) Realizing Scale-invariant Density Perturbations in Low-energy Effective String Theory, Phys. Rev. D75 (2007) 023520.
(18) Parametrizations of the Dark Energy Density and Scalar Potentials, Mod. Phys. Lett. A22 (2007) 883-890.
(17) Cosmology with a Variable Chaplygin Gas, Phys. Lett. B645 (2007) 326-329.
(16) Two-Field Quintom Models in the w-w' Plane, Phys. Rev. D74 (2006) 127304.
(15) Constraints on the DGP Model from Recent Supernova Observations and Baryon Acoustic Oscillations, Astrophys. J. 646 (2006) 1-7.
(14) A Tracker Solution for a Holographic Dark Energy Model, Int. J. Mod. Phys. D15 (2006) 869-877.
(13) Parametrization of K-essence and Its Kinetic Term, Mod. Phys. Lett. A21 (2006) 1683-1690.
(12) Parametrization of Quintessence and Its Potential, Phys. Rev. D72 (2005) 023504.
(11) Cosmological Evolution of Interacting Phantom Energy with Dark Matter, JCAP 0505 (2005) 002.
(10) Interacting Phantom Energy, Phys. Rev. D71 (2005) 023501.
(9) Cosmological Evolution of a Quintom Model of Dark Energy, Phys. Lett. B608 (2005) 177-182.
(8) Attractor Behavior of Phantom Cosmology, Phys. Lett. B594 (2004) 247-251.
(7) Cosmological Scaling Solutions of Multiple Tachyon Fields with Inverse Square Potentials, JCAP 0408 (2004) 010.
(6) Inflationary Attractor in Braneworld Scenario, Phys. Rev. D69 (2004) 063502.
(5) Cosmological Scaling Solutions and Cross-coupling Exponential Potential, Phys. Lett. B576 (2003) 12-17.
(4) Inflationary Attractor from Tachyonic Matter, Phys. Rev. D68 (2003) 043508.
(3) Cosmological Scaling Solutions and Multiple Exponential Potentials, Phys. Lett. B568 (2003) 1-7.
(2) 5D Dirac Equation in Induced-Matter Theory, Int. J. Theor. Phys. 41 (2002) 1733-1743.
(1) Conformally Invariant Klein-Gordon Equation in Kaluza-Klein Theory, Int. J. Theor. Phys. 40 (2001) 1259-1266.

科研活动

   
科研项目
( 1 ) 973项目:基于精密测量物理的引力及相关物理规律研究, 参与, 国家任务, 2010-01--2014-08
( 2 ) 中国科学院人才计划, 负责人, 中国科学院计划, 2011-04--2014-03
( 3 ) 国家自然科学基金面上项目:用宇宙微波背景检验暴涨模型, 负责人, 国家任务, 2012-01--2015-12
( 4 ) 国家自然科学基金重点项目:宇宙加速膨胀及暗物质研究, 参与, 国家任务, 2014-01--2018-12
( 5 ) 国家自然科学基金面上项目:用宇宙微波背景辐射探测中微子物理, 负责人, 国家任务, 2016-01--2019-12
( 6 ) 中科院战略先导科技专项(B):多波段引力波宇宙研究--空间太极计划预研, 参与, 中国科学院计划, 2016-01--2020-12
( 7 ) 国家自然科学基金重大项目:引力波和宇宙演化, 负责人, 国家任务, 2017-01--2021-12
( 8 ) 国家自然科学基金重点项目群:基于DAMPE的暗物质属性及结构形成相关理论研究, 参与, 国家任务, 2018-04--2020-12
( 9 ) 中科院战略先导科技专项(A):空间引力波探测太极计划, 参与, 中国科学院计划, 2018-07--2020-12
( 10 ) 国家自然科学基金面上项目:早期宇宙的引力波研究, 负责人, 国家任务, 2021-01--2024-12
( 11 ) 国家重点研发计划:引力波宇宙学波源物理研究, 负责人, 国家任务, 2020-12--2025-11

指导学生

已指导学生

钱鹏  博士研究生  070201-理论物理  

胡建伟  博士研究生  070201-理论物理  

戴卫明  博士研究生  070201-理论物理  

徐武涛  博士研究生  070201-理论物理  

刘畅  博士研究生  070201-理论物理  

刘京  博士研究生  070201-理论物理  

丁佳沣  硕士研究生  070201-理论物理  

柳浪  博士研究生  070201-理论物理  

赵龙  博士研究生  070201-理论物理  

阮文洪  博士研究生  070201-理论物理  

现指导学生

曾振民  硕士研究生  070201-理论物理  

何剑锋  硕士研究生  070201-理论物理  

张凯歌  博士研究生  070201-理论物理  

彭治章  博士研究生  070201-理论物理  

王嘉宁  博士研究生  070201-理论物理  

罗威龙  硕士研究生  070201-理论物理